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Application of the Maximum Principle to the Design 
of Minimum  Bandwidth Pulses 
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Abslracf-The minimum  bandwidth  pulse  for  a given rms value 
and peak  amplitude is found using the Pontryagin  Maximum 
Principle for bounded phase space. The solution is obtained by 
actually solving the equations of the maximum principle rather 
than by a verification of a solution arrived at  by other  means.  The 
resulting optimal pulse shape can be  used for comparisons with 
more  easily generated pulses, and  may  be considered to be  the 
optimal modification of a  rectangular  pulse from the point of view 
of minimum  bandwidth. Pulses of this  sort  are  useful in  pulse 
communication systems. 

T 
I. INTRODUCTION 

HE PROBLEM of finding the best pulse shape  to 
use in  a  pulse  communication  system  has been the 

object of investigation  for  some  time. At  the  turn of the 
century A. C. Crehore and G. 0. Squier [l] suggested 
that  the rectangular pulses then being used  on the Atlantic 
Cable  be replaced by half-cycle sine pulses. They claimed 
that  the half-cycle sine pulse was more efficient than  the 
rectangular pulse because, for a given peak  value of 
voltage,  more  energy  is transmitted  through  the pass 
hand of the cable. 

In  1924, H. Nyquist [ a ]  argued that  the half-cycle 
sine pulse was inferior to a  rectangular pulse which had 
been suitably  filtered. From  the point of view of received 
energy and  spectral  spread, his proposed pulse was 
superior.  His reasoning, however, was based on the 
principle that  the shape of the received signal was prac- 
tically  independent of the shape of the pulses used in the 
transmitted signal. In modern pulse communication 
systems, this principle does not  apply. 
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The half-cycle sine pulse appeared  again  in 1946 when 
D. Gabor [3] showed that of all pulses of finite duration 
and given  energy the half-cycle sine  pulse had  the mini- 
mum  bandwidth.  He arrived at  the solution using the 
classical calculus of variations.  His  result was as follows: 
for.  a fixed rms  value defined by 

l T  
EaTms = - s p2( l )d t  (1) 

T o  

and  a  bandwidth defined by 

B 2  = T (clp/dt)’dt, LT ( 2 )  

t’he pulse which minimizes this  bandwidth  is 

p ( t )  = &E,,, sin  at/^), o 5 t I T .  (3) 

J. H. H. Chalk  [4]  in 1950 derived  a set of optimal 
pulse shapes using an  alternate criterion. He considered 
pulse shapes which maximized the ratio of available 
energy to  total energy of the pulse, where available  energy 
is that remaining  after  a  linear  filtering of the pulse. The 
pulses he  obtained using this criterion  have  discontinuities 
at  the endpoints  and therefore have  spectra which are 
similar asymptotically to  the rectangular pulse. In  fact, 
according to (2), t.hey have infinite bandwidth. 

A simpler approach was taken  by %. Jelonek and E. 
Fitch [Fj], who proposed a modification of the rectangular 
pulse. First a  trapezoidal pulse was considered, and  then 
the upper corners of this pulse were rounded. They showed 
that  the rise time of the pulses at   the receiver was not 
unduly diminished, while the bandwidth was decreased 
markedly. 

This  intuitive  approach to  the design of a  suitable 
pulse is interesting because i t  reflects qualities of an 
optimal pulse which heretofore  have not been incorporated 
in  the  nlathematical formulation. I n  fact  the modification 
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of rectangular pulses to reduce  their  bandwidth and  yet 
maintain  their  desirable  qualities,  such as low peak-to- 
rms  ratio  and small rise time,  suggests the introduction of 
an amplitude  constraint  into  Gabor's  formulation. The 
following problem, then, will be considered in  this  paper: 
What pulse shape of fixed finite  duration  and  energy,  with 
amplitude  constrained to be less than or equal to a fixed 
quantity,  has  the minimum  bandwidth  as given by (2)? 

This pulse shape  must  approach a  rectangular pulse 
as the peak-to-rms  ratio  approaches unity, since this is 
the only possible shape  with  unity peak-to-rms  ratio. 
Also it must,  reduce to  the half-cycle sine pulse when the 
pcak-to-rms  ratio is V-2, since the half-cycle sine pulse 
satisfies the  stated requirements and  has a  peak-to-rms 
ratio of a. For intermedia.te  values of peak-to-rms 
ratio, the solution  represents,  from the point of view of 
minimum  bandwidth, the optimum modification of a 
rectangular pulse. The solution to  this problem  provides 
a guide to  the trade-off between  bandwidth  and  peak-to- 
rms  ratio of pulses and leads to  an inequality  involving 
these  parameters. 

From a mathematical  point of view this problem  is of 
interest because the classical calculus of variations  no 
longer applies. The problem  can  be  formulated  as an 
optimal  control  problem in bounded  phase space, and  the 
Pontryagin  Maximum Principle [6] can  be used to  obtain 
necessary conditions  for  optimality. It turns  out  that 
these  conditions  uniquely specify a trajectory  in  the phase 
space and hence, uniquely  determine the pulse shape. 

I n  a recent  paper, D. W. Tufts  and D. A. Shnidman 
[7] considered the  situation  in which a  peak-value con- 
straint is added  to  the  matched filter problem of radar 
theory. In  their  application of the maximum principle, 
the unknown  pulse was the control  variable  and the peak- 
value  constraint  bounded the control region. The solution 
was found to be  a clipped version of the previously known 
solution. In the formulation that follows, the unknown 
pulse  appears  as  a  phase  coordinat,e  and the amplitude 
constraint  bounds the pha,se space. It is interesting to 
note that a clipped version of the solution  given by (3) 
is not  the optimum pulse shape  for the problem considered 
in this  paper. ' 

11. FORMULATION 
The Polltryamgin  Maximum  Principle  can be applied 

to  a system described by  a  vector  differential  equation 
of the form 

x = f(x, u), 

where x is the n-vector of phase  coordinates and u is 
the r-vector of control  variables [SI. The  dot will be used 
to denote  a  time  derivative. I n  order to cast the proposed 
problem in this  form  let  the phase  coordinate sl(t) = p ( t ) ,  
the unknown pulse shape.  Let x z ( t )  correspond to  the 
accumulated energy in  the pulse a t  time t, and  let ~ ( t )  
be a time  coordinate.  Finally, let u(t), the control, be  the 
derivative of xl(t). Time is included as  a  phase  coordinate 
and  the  time tl when the  trajectory intersects the terminal 

point x(&) will be thought of as unknown. This  puts  the 
problem  in the form considered by  Pontryagin [9]. 

The following differential  equations  incorporate  these 
definitions : 

kl(t)  = u(t) 

%(t) = z;(t) (4) 

%(t) = 1. 

The initial  conditions at   the time t = 0 are  obtained  as 
follows: xl(0) = 0 since any  discontinuity gives an infinite 
bandwidth; xz(0) = 0 since the energy of the pulse a t  
the  start of the trajectory is zero;  and x3(0) = 0 since 
the pulse starts  at t = 0. The final  conditions a t  tl are: 
xl(tl) = 0 for the same reason as  the initial  condition on 
2,; xz(tl) = TEZrms the required total  energy;  andx3(tl) = T 
the  time interva.1 given. 

The  appropriate control  problem  is: Find  the control 
u(t) such that  the  fuwtional 

UZdt 

is minimized. This corresponds to minimum  bandwidth 
since u(t) = 21(t). Following Pontryagin [lo] an  additional 
phase  coordinate xo(t) is defined so that 

kO(t) = u"t) ( 5 )  

with the initial  condition xO(0) = 0. The coordinate zo(t) 
is  proportional to  the bandwidth of the pulse  when t = T .  
Finally the constraint  on the maximum  value of the pulse 
becomes 

Izl(t)( 5 E,, 0 5 t I 21. 

This Constraint defines an a.llowable region in the phase 
space and  to such  a  situation  a more complicated form 
of the maximum principle applies [ll 1. Let G be the closed 
region in the phase  space defined by the constraint (x11 5 
E , .  Then  the segments of the opt,imal trajectory  interior 
to G satisfy the maximum principle as given in Section 111. 
The segments  on the boundary of G satisfy  a  more com- 
plicated  form of the maximum principle given  in  Section 
IV.  At each  junction  point, the  jump condition described 
in Section V is satisfied. It will be seen that  the required 
pulse  shape follows as a direct consequence of these 
conditions. 

111. THE MAXIMUM PRINCIPLE IN THE INTERIOR OF G 
For  the  system of differential  equations  given  by (4) 

and ( 5 )  the Hamiltonian H ( x ,  4, u) which is defined [12] 
to be H ( x ,  4, u) = ic.q becomes 

H ( x ,  4, u) = +ou2 + $ 1 ~  + +z$ + +3, (6) 

where IJJ is the  state vector of the  adjoint  system.  The 
differential  equations for the  adjoint  system  are  obtained 
from the Hamiltonian  equation [12] 

!!A - _ -  bH 
dt 

- , i = o  , . . . a  3. 
dXf 
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$0 = 0 

$1 = --x& (7) 

$2 = 0 

$3 = 0. 

For constant  values of (I and x ,  the Hamiltonian H ( x ,  (I, u) 
is explicitly a  function of the control u. Define [13] &!((I, x) 
as the least  upper  bound of H ( x ,  (I, u) over  all allowable 
controls u. The control which achieves this  least  upper 
bound is the  optimal control. In  the general situation  to 
which the maximum principle can be applied,  restrictions 
on the control  can be introduced. In  this  situation, how- 
ever,  no  restriction  on u = kl has been made.  Therefore, 
the ordinary  theory of maxima and minima applies. 
Setting 

b H  - = o  
bU 

requires that 

and therefore, 

The condition that  the  stationary point is indeed  a 
maximum,  namely that b2H/bu2 < 0 implies that $0 < 0. 

Solutions  can now be given for x and (I using the expres- 
sion for the optimal  control u, (S), obtained  above.  These 
solutions will be  denoted  by x -  and (I-, indicating  they 
are  interior  to G. There  must be such  a  segment of optimal 
trajectory because the initial  condition  on x is  within G. 
The solutions to the differential  equations are: 

x&) = z,(O) + (+J2+,)2dt l 
z,(t) = z,(O) + (xJ2dt 

X ; ( t )  = z;(o) + t (104 

+ a t )  = $0 

* a t )  = +z 
+ a  = +;. 

The simult,aneous differential equations (4) and (7) for 
XI and J.1 

x 1  = - - + l / W O  

$1 = -2x1+z 

have the solutions 

x;(t)  = A sin (ut) + B cos (at) 

+;(t) = 2+;wB sin ( w l )  - 2+;wA cos (wt)  (lob) 

where 

w2 = -+;/+;. (11) 

Here A and B are  arbitrary  constants. 
If it is assumed that'  the final conditions  on x can be 

sat,isfied without  a  segment of optimal  trajectory  on the 
boundary of G, then  the  arbitrary  constants  in  the fore- 
going solutions  can be evaluakd immediately. For  such 
a final condition, however, the restriction  on the phase 
space is superfluous. Since there is no restriction  on the 
control, the problem reduces to one in the classical calculus 
of variations [14], and  the solution is the half-cycle sine 
pulse as previously indicated. 

In  the general  situation some of the.arbitrary  constants 
in the above  solution are determined from the maximum 
principle in  the interior of G and  the  initial condition on 
x .  The remaining  constants are  evaluated  in conjunction 
with the segment of optimal  trajectory  on  the  boundary 
of G. The initial  condition x ( 0 )  requires that 

zO(0) = 0 

B = O  

Xi(0) = 0 

x,(O) = 0. 

The maximum principle [13], in  addition to requiring 
that u be such that H ( x ,  (I, u) is maximum  in the  variable 
u, further  stipulates  that 

*; 5 0 

M[(I-( t j ,  x - ( t ) ]  = 0. 
and  that 

This  later condition  requires that 

A"; + +; = 0 (13) 

which is obtained  by  substituting  the solutions for x and 
(I [(lo)] into  the expression for &!((I, x )  [(9)]. 

All the conditions of the maximum principle in the 
interior of 0 have been accounted for, and  the  next  step 
is to consider the segment of the  optimal  trajectory on the 
boundary of G. 

IV. THE MAXIMUM PRINCIPLE ON THE BOUNDARY OF G 
The form of the maximum principle [ I l l  that will be 

applied is more complex than  the previous case, and some 
preliminary definitions will be necessary [15]. The allow- 
able region G in the phase  space is to be defined by  a 
set of the form 

G = { x : g ( x )  5 0 )  

in the neighborhood of the boundary. Since this definition 
is meant  to apply only near  the  boundary of G, and only 
one  boundary need be considered a t  a  time  as x1 is either 
positive or negative, i t  will be  assumed that z1 reaches 
the positive  boundary z1 = E,. The solution is identical 
if the negative  boundary is considered, since the energy 
and bandwidth  involve  the  square of XI. Hence, for positive 
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values of xl, let 

g ( X )  = 2 1  - E,. (14) 

The function g ( x )  has  continuous second partial  derivatives 
as required and 

grad g(x )  = (0, 1 ,0 ,0 )  (15) 

is nonzero on  the  boundary of G. 
The function p ( x ,  u) is defined [16]  to be the  dot  product 

of the normal  vector  to  the  boundary of G [(15)]  and  the 
velocity of the phase  point x :  

p ( x ,  u) = grad g ( x )  .x. 

I n  order  for the phase  point to remain on  the  boundary 
of G, p ( x ,  zc) must  be zero; in  this case the phase  point 
has no  velocity  component  normal to  the boundary of 
G.  From (4) and (5), which specify the velocity of the 
phase  point,  and  from (15) for the gradient of g ( x ) ,   p ( x ,  u) 
is found  to  be 

p ( x ,  u) = u. (16) 

A phase  point x is called regular with respect to a 
control  point u1 if 

p ( x ,  U d  = 0 

and 

o. 
bzc 

Let w(x)  be  the  set of all ZL for which x is regular. That is: 

w(x)  = { u : x is regular j . 

The  trajectory x ( t )  corresponding to u(t) and lying on  the 
boundary of G is also called regular if u(t) E w z ( t ) .  Only 
these  trajectories will remain on the boundary of G; hence 
only  these  trajectories need be considered. 

Define 1n(1]c, x )  for x on the boundary of G by 

m(4, x )  = sup H ( x ,  4, u). (17) 
UBW (x) 

For p(x, u) given by p = u [(lci)] the  set w(x)  has  the 
one  member u = 0. Therefore m(+, x )  is found by sub- 
stituting  the  optimal control u = 0 into H(r]c, X, u) [(S)]. 

For trajectories  on the boundary of G the differential 
equations  for the adjoint  system  involve an additional 
term which. does not  appear  in  the previous case. This 
term is the product of a  Lagrange  multiplier X ( t )  defined by 

and  the  factor 

In  the present  situation, p ( x ,  u) depends  only on u [(16)], 
and  the  term given by (19) vanishes. Hence the differential 
equations  for x and 4 are those given previously [(4), (5), 

(S)] with the optimal  control u = 0. The solutions will 
be  denoted  by x +  and tf, indicating they lie on  the 
boundary of G. These are 

x;o> = x; 
&t) = x; (20) 

where 7 is the  start of the (+) segment of the trajectory. 

the maximum principle are 
The remaining necessary conditions that follow from 

dX 
dt - 
- < 0. 

As indicated previously m(4, x )  [(17)] is found by sub- 
stituting u = 0 into  the  Hamiltonian.  Hence  evaluating 
(21) yields 

The next  two  conditions [ (22) and (23)] give no relation- 
ships  between the constants,  although  they  limit  their 
possible values and  can be checked from the final solution. 
The  fourth condition  [(24)]  requires that +:(T) = 0. 
The Lagrange  multiplier X(t) is found  from its defining 
equation (18). Remembering that u = 0, the fifth condi- 
tion [ (25) ] requires that 

cl x 
clt dt 
- - !!G = -2x1*., 5 0. + +  - 

That is 

*+ 2 -  < 0 

as x; is assumed positive. 
The initial  condition of x +  is  determined  by the end- 

point of x - ,  since the  trajectory  must be  continuous. 
The remaining  initial conditions for 4+ are  obtained from 
the  jump condition. 

V. THE JUMP CONDITION AND THE FINAL SOLUTION 
Let X ( T )  be  the  junction  point of x - ( t )  and x + ( t )  on 

the boundary of G. The  jump condition [171 is satisfied 
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if the corresponding adjoint  vectors are related  by the 
following equation 

for arbitrary EL. In  order to  facilitate  the  evaluation of the 
remaining  parameters, the solutions [ (10) and (11) ] will 
be  rewritten  incorporating the relationships  among the 
constants so far  encountered: 

$-(t)  = (+;, -2+,wA COS (ut), +,, -A2+,) 

and 

x+@) = (x;, x:, 22') + (x32d1, 22') + 1 )  
(29) 

d!+(t) = <+;, - 2 x m t  - T I ,  +;, - ( a + ; ) .  

w2 = - +J2+<. Since the Hamiltonian H is homogeneous 
For x- and 4-, what remains to  be  determined is A and 

in  the components of 4, these  components need only be 
determined up  to a multiplicative  constant [ H I .  This is 
reflected in the fact that w is the significant parameter. 
For x+ the initial condition is pbtained from x- at  t = 7 

the junction  time. That is 

x - ( T )  = X + ( T ) .  (30) 

In  particular: 

x: = E,  (31) 

as  this is the boundary of G. For 4+ the  jump condition 
(28) gives the following relationships 

+i = +; 
+; = +; 

-A2+; = -(x:)2+;. 

This  must be the case since grad g(x) [(15)] has  a nonzero 
component corresponding to only G1; hence all other 
components of 4 must be continuous at   the junction. 
In  particular  these  equations  imply that 

A = Em. (32) 

Therefore what remains to be  found is W. which mill 
specify the junction  time T .  Since +; must be positive 
[(27)] and +: must  be  negative [(22) 1, w is real. 

The final conditions on x(t), namely 

X l ( t 1 )  = 0 

zz(t1) = TE2rms 

x&) = 0, 

require that x1 leave the boundary of G and  return  to 
x1 = 0. It is clear that this  segment is entirely analogous 
to  the segment x- in that  the same  equations and solutions 
apply. The  jump condition at  the  departure point  requires 
that  the amplitude  and frequency of the sinusoid be the 

same as those of the (-) trajectory. The final condition 
for x3(tl) gives tl, the duration of the trajectory. As before, 
the frequency w specifies the  departure  time. Hence what 
remains is the  endpoint of xz(tl), that is, the energy con- 
straint.  This specifies the frequency w, the only  remaining 
unknown  parameter. 

The solution  for ~ ( t )  is therefore 

x ~ ( t )  = E ,  sin (wt) 0 i t 5 a/2w 

= E ,  a/2w 5 t 5 T - a/2w  (33) 

= E, sin w(T - t )  T - a/2w 5 t 5 T 

VI. AN INEQUALITY 
The rms  value and  bandwidth of the optimum  pulse 

(33) are  found to  be 

EZrms = (F) 
0 5 a < 1  

where CY is the fraction of the interval [O,T] during which 
the pulse is at its maximum  value. If the bandwidth  and 
peak  value are normalized by  the rms energy and a is 
eliminated from the preceeding equations, the following 
equality  is  obtained for the optimum pulse shape: 

Since all other pulses of finite duration  have a  larger 
bandwidth  for  a given peak-to-rms ratio, the following 
inequality  results  for  all pulses of finite duration: 

where the definitions (1) and ( 2 )  have been used. For 

the optimal  trajectory does not intersect the boundary 
and  the solution is given by  the half-cycle sine pulse. In 
this case the inequality becomes simply 

These  inequalities correspond to well-known uncertainty 
relationships  when the  amplitude  constraint is removed 
and when  different definitions of bandwidth or duration 
are used. For a discussion of these  results the reader  is 
referred to  the work of Landau  and Pollak [19]. . 
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Frequency Division in Speech Bandwidth  Reduction 
R. E. BOGNER 

Absfracf-The following phenomena are  discussed  in relation to 
experimental  observations  on  a number of frequency division 
schemes: “division’) of a wave containing several  frequencies; 
phase  ambiguity;  and strobing. Phase ambiguity is believed to  be 
a fundamental limitation, and  the  results of a number of previous 
experiments  are  attributed  to  its effects. 

D 
I. INTRODUCTION 

URING  the  past decade  a  number of at,tempts  have 
been made  to reduce the  bandwidth required  for the 

transmission of speech by  the use of “frequency division” 
techniques. In  most cases, the experiments  have produced 
distortions which were not  adequately explained. It is 
the purpose of this article to discuss some basic ideas 
about “frequency division” which enable the phenomena 
observed in  the various  experiments to be explained. 

11. PREVIOUS OBSERVATIONS 
It is of interest to exanline the schemes which have 

been  tried  in the  past,  together  with  the hypotheses on 
which they were based, and  the results observed. This 
review is necessarily brief and  omits  many of the resulks 
which do not  have a  bearing on frequency division 
phenomena. 

a) The. experiments of  RiIarcou and  Daguet [l] were 
initiated  by  the  fact  that  “constant  amplitude” speech 
is highly intelligible [a],. [3]. A single sideband (carrier 
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suppressed)  signal is expressible in  the form 

f ( t )  = A(t) COS @(t) 

where A(t) can  be  thought of as the instantaneous ampli- 
tude or envelope, and cos @(t) as  the oscillation filling 
in  the envelope. 

Figure 1 (a)-(c)  illustrates the process. This representa- 
tion is valid and useful for  baseband signals (i.e., carrier 
frequency of zero), but  the physical  picture is not so clear 
then. A “constant  amplitude”  signal  may  then  be  repre- 
sented  by cos @(t).  This signal may  be generated  by 
amplitude clipping f(t) [Fig. l(d)]  and  then filtering to 
remove  harmonic  components. The “instantaneous fre- 
quency,” @’(t) = d@(t) /dt  [Fig. l(e)],  may  be  obtained 
by  frequency  measurement. 

The bandwidth compression scheme, shown in Fig. 2, 
was based  on the idea of reducing the excursions of W ( t )  
by  “frequency division” [Fig. l(e) 1. The “frequency 
divided” signal, cos @(t)/n, was demonstrated to have  a 
narrower effective spectrum than cos @(t) ,  as was expected 
from  frequency  modulation  theory.  When the frequency 
was “multiplied”  again  with  no filtering, the result was 
highly intelligible. Then a filter was interposed  between 
the frequency  divider and  the frequency  multiplier, as 
would be necessary to remove minor  extraneous com- 
ponents  for  narrow-band  transmission. The resultant 
frequency  multiplied signal was then seriously distorted. 

b)  The schemes of Bogert  [4] and  the first scheme of 
Bogner and  Smith  [5] were similar. It had  been noticed 
that  the three  main vowel formants  in speech usually 
occurred in  the frequency  ranges 200-1000, 1000-2000 
m d  2000-3200 c/s, respectively. Accordingly, as in 
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