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The preceding  filter  gains  converge to  

where 

and 

&I=-. d33 

U2 

IIence  in  steady  state,  the prediction gain  as given by (20) and (21) 
can,  by a proper  choice of q, be equal  to  the  optimal gain  given by 
(27). However,  the  actual  magnitude of q must be several  times  larger 
than CE, to  obtain  the same steady-state gain. This is illustrated in 
Fig. 1. Finally,  even  though  the  steady-state gains are  identical,  the 
gain  sequences will generally  differ  prior to  the  steady  state, as Seen 
in  Fig. 2. 

V. CONCLUSION 

An approximate  solution  to  the  stated problem (6) is given by 
(ll),  (12), ( l j ) ,  and (16). Some care  must be taken if the solution is 
programmed  in a general fashion,  since components of E(.ranT) and 
E(x,&q may be unbounded  when  either 0, 8 0 ,  or @+m is unstable. 
Hon-ever,  the  results  can  be  very useful in resolving certain  practical 
aspects of the  implementation of linear estimation  theory. 

In general, (18) can  be used to  decide  whether or not  the compu- 
tations ( l l ) ,  (12), ( l j ) ,  and (16) represent a significant improvement 
over the usual approach (3)  through (5). More significantly, (18) 
should  be  helpful  in determining  the  sensitivity of the  estimator  to 
model approximations as well as aid in determining  the  elements of 
Q in  the solution  given by (3) through (5). 

Finally, a comment on the simplicity of the  example.  Due  to a 
space constraint, a simple example was chosen  in an  attempt  to illus- 
trate  the  results with as little  confusion as possible. A more  useful 
example can be obtained  by considering third-order  dynamics  for 
%+a* while Q is second  order. This will  lead to  an analysis of the 
much  studied OL - p  tracked6] in a maneuvering target e m .  wonment. 
This  last  application is given  in  Heller.[71 
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Maximum Likelihood Estimation of Rational 
Transfer Function Parameters 

E.  ROGERS, XEMBER, IEEE, A S D  
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Abstract-The  problem of estimating unknown transfer function 
parameters  from flnite input-output  records which have  been dis- 
turbed by additive  Gaussian  noise with unknown correlation is con- 
sidered. A rational  sampled-data  model of preselected o5der k 
assumed appropriate, and following the work of Klein,[?]  Astr6m 
and Bohlin,[lol and  Mayne,Pl  the likelihood function is generated 
from the  data by numerical  Ntering.  The maximum likelihood cri- 
terion  leads  to  nonlinear  regression  equations  for  the unknown 
parameters, which are solved by damped  Gauss-Newton  iteration. 
Some  computational  experiments  are  described. 

I. INTRODUCTION 
Many  authors  have considered the identification  problem. 

Kalmant'l  suggested the use of a linear  pulse transfer  function model 
and  the  estimation of its parameters,  the coefficients of the  transfer 
function,  by h e a r  regression  applied to  available  input-output rec- 
ords. Though numerically  simple, the  method  leads  to biased  esti- 
mates of the  denominator coefficients and,  therefore, of the  system 
poles, when  additive  measurement noise is present at the  output.  The 
b$s occurs  because the  method minimizes a linear equation  error, 
rather  than  the difference  between the model and  the observed out- 
puts. An iterative  method  has been proposed[?] which  does  minimize 
the model plant  output  error  and  has, in the presence of uncorrelated 
Gaussian noise at the  output,  the probabilistic interpretation of 
maximum  likelihood estimation.['91 Giese and M ~ G h e e [ ~ ]  considered 
the problem of parameter  estimation in the presence of noise with 
known  correlation  and showed that  the maximum  likelihood criterion 
leads to a weighted least-squares  estimation problem. In  a similar 
vein, Levin['] reduced this weighted least-squares  estimation problem 

Supported  by U S Army  Research Office, Durham. S. C.. under  Contract  DA-31- 
Manuscript received Kovember 17. 1966;  revised h i a s  23. 1967. This  work w a s  

Grant GP-579. This  paper was presented at   the  1967 IEEE  International Conven- 
12CARO-D-292. The computer  facilities used were supported in  part  by NSF 

tion. Kerv York. N. Y.. March 1967. 
A. E. Rogers is with the Dept. of Statistics  and  Computer Science, University of 

Delaware, Newark. Dela. 19711. 
K. Steiglitz is with  the  Dept. of Electrical  Engineering.  Princeton  University. 

Princeton, N. J. 08540. 



SHORT PAPERS 595 

to  an eigenvector  problem but, in order  to  obtain  an explicit solution, 
relaxed certain constraints.[51 Lee[GI presented  another  least-squares 
method but, in order  to  achieve  independent  measurement  errors, 
some  of the  information  present in the  observation records was 
wasted. 

In an econometric context Klein['] pointed  out  that  true maxi- 
mum  likelihood estimation of transfer  function  parameters  may lead 
to intractable nonlinear equations.  He considered a single-pole trans- 
fer  function with an  additional  parameter included tp account for 
unknown  serial  correlation of the  measurement noise. AstromIsl con- 
sidered  process  identification  when the  input signal is unobserved, a 
problem equivalent  to identifying  unknown  power spectrum  param- 
e t e r ~ . [ ~ ]   k r o m  and Bohlin[l31 and  kIayt~e[~l] discussed parameter 
estimation from input-output records  where the  output record con- 
tains independent Gaussian noise of unknown  spectrum.  They ob- 
served that  the likelihood  function of all  unknown  parameters  can  be 
generated by suitably filtering the  available  data  through model 
filters. Here a similar technique is described; however, it is applied to  
a transfer  function model different  from that employed  in  Astrom and 
BohlinL'OI and Mayne.["I In  addition,  the results of computational 
experiments  are presented. 

Maximum  likelihood estimation of transfer  function  parameters 
is discussed under  the  folloaing conditions. 

1) The model transfer  function is a rational  function of z of pre- 
selected order. 

2) The  estimation uses finite, uninterrupted, normal operating 
records of one input along  with a corresponding output signal. 

3) All effects  in the  output signal, which are  not  attributable  to 
the  input  signal,  are  represented by additive Gaussian noise with a 
spectral  density which, though unknown, is rational  and of selected 
order. 

11. GESERATISG THE LIKELIHOOD FUNCTION 
The  situation  and  nomenclature  are shown  in  Fig. 1. Use z-trans- 

form notation  and write X(3)  = X X ; E - ~ ,  etc., where summations  are 
over the  available records. The model transfer  function  has K -1 
zeros and L poles, so  that 

The "whitening"  filter is assumed to  have M poles and LV zeros, so 
that 

C(z) = 1 + ciz--i D(z)  = 1 4- a d .  (2) 

The coefficients of C(z) and D ( z )  are  unknown  and  are  estimated along 
with  those of A ( z )  and B(z ) ,  requiring  altogether P=R+L+M+N 
parameters  to be estimated.  They form the P vector 0. 

If A(z)  and B(zj were  known  exactly, so that the model truly 
represented  the  plant,  then  the  model-plant difference  signal g would 
be  correlated Gaussian noise. I f ,  in addition,  the  whitening filter  is 
correct,  then  the filtered error signal e is uncorrelated  Gaussian noise. 
Hence,  the likelihood  function  for 8 is 

di R 

1-1 i=l  

where T is the record  length and hZ the noise variance.  Maximum 
likelihood estimates of 6 and X are  thus given by solvingPgl 

If the problem is considered,  in  z-transform notation  the  task reduces 
to finding that 0 which minimizes the  average-square  value of the 
signal 
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Fig. 1. Block diagramyof the  parameter  estimation  problem. 
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Fig. 2. Generation of the  derivative signals by filtering. 

111. N~XERICAL PROCEDURE 
The Gauss-Newton meth0d[~1.[81,[151.[lsl has second-order  con- 

vergence characteristics  although it requires the  computation of only 
first-order  derivatives. However, it  can be unstable, even locally.[1~1~1171 
Hartley's modificati0n['~1  employs at each step a one-dimensional 
search for a minimum and is shown to converge  on a  quadratic sur- 
face. I t  involves  considerably  more  program  complexity than a Iixed 
step-size algorithm;  for  this  reason, a "damped" Gauss-Newton 
methdI"1 is  used,  with the  iterative  parameter  increment 

where k is a step-size parameter which remains fixed during  an  itera- 
tion.  Effective values of k can be established  empirically  for a class of 
problems. In  the  authors' experience,  values of the  order of 0.2 have 
resulted in good convergence characteristics for starting  points  quite 
far  from the final  solution. A test for stability of the model at each 
step was added  to  the program so that, whenever the model becomes 
unstable,  the  step size  for the  denominator  parameters is halved  until 
a stable model is obtained. 

The  derivative signals ae(e ) /a0  can be computed more  efficiently 
and more accurately  by using parameter influence  filter~,[~*1-[1*] 
rather  than  by  the  method of finite  differences. The necessary ex- which is a nonlinear  numerical  problem. 
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pressions can be obtained  by  differentiating (5) (see Fig. 2). For 
example, 

Iv. THE DIFFICULTY OF k1ULTIPI.E $OLUTIOWS 

Iterative  methods locate local maxima of the likelihood function, 
but  do not indicate  when a local maximum is the global  maximum. 
There does not, in fact,  appear  to be any  method for establishing with 
certainty  that  the global  maximum of the likelihood  function has been 
found.  Several  strategies  have been  suggested,  however, which do 
appear  to increase the  probability of finding the global  maximum. 
A\mong  these are  the following: 

1) Randomly search the  parameter space and use as a starting 
point for the  iteration  the  point corresponding to  the  greatest value 
of the likelihood fun~tion.[~l  

2) Start  the  iteration at many  randomly selected  points.[*] 
3) Use a suboptimal  but  consistent  estimate  as a starting  point 

4) Having  found a local maximum of the likelihood function, 
search the  parameter space  for a point which yields a higher value of 
the function.[211 

The difficulty remains a major  theoretical obstacle  in  using the 
maximum  likelihood criterion  when it leads to  nonlinear equations in 
the  parameters. In  practice, it may  not be  troublesome  because there 
may be only a  small  number of local maxima  and  a fairly  large  region 
from Khich the  iteration mill converge to  the global  maximum. 

Mantey[l81 gives a simple example of a surface w i t h  two local 
minima. The problem he describes is that of fitting  in a least-squares 
sense the impulse  response of a second-order rational  digital filter 
with a first-order rational model. In  the next  section an example 
which occurred  in an  experiment with  random data is given. 

for the iteration.l2o1 

V. RESLZTS OF COXPUTER ESPERIYESTS 
Experiments were conducted for several different  conlbinations of 

transfer  functions  and noise shaping filters on the I B l I  7091. Typi- 
cally,  when estimating 5 parameters from  records containing 100 data 
points, 7-place  convergence was obtained  within 30 to 60 iterations, 
or 10 to 20 seconds.  Occasionally, iterations which were started from 
different points produced  different  local maxima of the likelihood 
function.  However, from having solved  problems  with  similar data, 
it was usually  clear  when a maximum aas not global. 

-4s an example of the  experiments a specific case is described. To 
provide the  data  that might  represent a process input-output record, 
100 Gaussian independent pseudorandom numbers \\-ere generated 
for the  input signal x .  To produce y ,  these  were pa5sed through the 
filter 

Correlated noise was represented by passing 100 more  Gaussian 
independent pseudorandom numbers  through  the noise shaping  filter 

C(%) 1 -- - 
D(z)  1 - 0.95~~' 

The correlated noise was scaled in amplitude so that, when added  to 
F, the noise-to-signal power ratio was 0.2. 

For purposes of comparison, two different  models  were  used, 
referred to as model A and model B. Nodel A did not ha\Te a noise 
whitening  filter and  had K = 2 ,  L=2, M = O ,  and S = O .  I t  therefore, 
provided parameter  estimates  that minimized the average-square 
difference  between model and obserl-ed outputs  hlodel B included a 
noise whitening  filter and  had K = 2 ,  L=2, M = O ,  and S = 1 .  In both 
cases the order of the model transfer function was selected from 
a priori  knowledge of the process. 

Using the  same sequence of random numbers for s but different 
noise samples, 12 runs were made. Figs. 3 and 4 show scatter  diagrams 
of bl versus b?, and a1 versus a?. As expected, model B,  corresponding 

0,  

I 

1.5 

Fig. 3. Scatter  diagram of 61 versus 6, for the  com1,utationd 
experiment. .-model -4, :-model B. 

NOMINAL 
VALUE 

Fig. 4. Scatter  diagram of a ,  Yersus as for the  computational 
exoeriment.  e-model A .  0-model B. 

to maximum  likelihood estimation, provided  more accurate  values on 
the  average.  The sample  root-ax-erage-square distances from the 
nominal parameter  values  are 

(I1 a2 bl br 
Model d 0.3760 0 .-I937 0.0556 
Model B 0.1179  0.1311  0.0239 0.0240 

0.0579 

Run 2 with model B provided an  example of a problem with  two 
local  maxima of the likelihood function.  The  values  are 

nJ a. bl b 2  dl ZeZ 
Solution 1 1 .1S7  0.4301 -1.812 0.8622 -0.7968 0.06707 
Solution 2 0.9862 1.543 -0.1503 -0.7993 -0.9493 0.1205. 

1.1. COSCLL-SIOSS 

-A method for the  maximum  likelihood  estimation of the  param- 
eters of a  rational  transfer  function  when  the  measurement noise is 
Gaussian and  additive  at  the  output, with  unknown  correlation has 
been described. I t  is necessary to  estimate  the  parameters of the noise 
spectral densit!. along  with  those of the  transfer  function.  The prob- 
lem of multiple  maxima of the likelihood function  stands in the way 
of developing a completely automatic  algorithm,  although  the 
method described  in this  paper  appears  quite  practical. 
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Input  Selection  for Parameter Identification 
in Discrete  Systems 

ROBERT &I. GAaGLI.ARDI, NEMBER, IEEE 

Abstract-In this paper the problem of selecting an optimal  input 
for  identifying an unknown parameter of a known discrete  system 
by observing  its  output in the presence of Gaussian  noise is con- 
sidered. The system is assumed  to  be a generalized  discrete  system 
in which the inputs  and  possible  parameter  values are members of 
a finite set. The criterion  for the optimal  input is defined as that 
which  maximizes  the  probability of correctly  determining  the true 
parameter  value  from a multiple  hypothesis test. Although the  above 
criterion  totally  orders  the set of inputs, it is a dillicult task  to  select 
the  best  inputs.  Some  theorems are presented  which yield a partial 
ordering  whose ex@nsion is the desired  total  ordering. In the special 
case of strong  noise, it is shown that the  ordering of inputs  can  be 
related  to  the  perimeter in the output vector  space. The  results of 
the paper are applicable to  the  selection of preset  input  lengths  or 
to  adaptive identification. 
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I. IKTRODUCTIOK 

An  important  problem in system  control is that of identifying an 
unknown parameter  inherent to  a particular  system.  When  the sys- 
tem  input-output  characteristics  are  completely known for every 
possible parameter  value,  identification  can  generally  be accom- 
plished by applying some particular  input  and  observing  the  resulting 
output.  The problem becomes complicated by  the presence of noise 
occurring  during  the  output  observation  period,  and its ability to 
resolve the  parameter  values  can  only  be  interpreted  statistically. 
In  this  paper  the  related problem of selecting  the  best  input for deter- 
mining which of a finite set of possible parameter  values is the  true 
value for a generalized discrete  system is investigated.  The  criterion 
for best input will herein  be  interpreted as that which maximizes the 
probability of correctly  identifying  the  true  parameter,  based upon 
nois!. output  observations. I t  shall  be  further assumed that  the  set of 
all possible inputs is finite, and  that  the observable noise is additive 
and Gaussian.  Even  though  the  above  criterion  totally  orders  the 
input  set,  the  probability for a given  input is difficult to  compute.  The 
objective  here is to  see if there is an intrinsic  property of the  optimal 
inputs  that  are easier to  identify.  Once the  unknown  parameter is 
identified, within an acceptable  probability,  the  system  can  be con- 
trolled to   any desirable output or state  by  means of a proper suhse- 
quent  input.  Previous work on  an  analogous  type of input selection 
problem was  investigated  by Gagliardil’l using a less meaningful 
“minimum distance”criteri0n. 

11. SYSTEM MODEL 

Let a general  discrete  system  be  described hy  the  real difference 
equation 

where ~ ( i )  is the system output from the set of reals  denoted  by R, 50 

is the  initial  state, u(j) is the  input  symbol  from a set U .  p is a s>-stem 
parameter  from a set P, and F is a mapping of SOX G X P  into R. 4 n  
input  vector u will correspond to a sequence of input  symbols 
u = { 71(1), u ( ~ ) ,  . . . , u ( ~ )  } C Ca.  The  system  responds to  71 by yielding 
the  output  vector Y = (dl). d 2 ) !  . . , d m )  1 CR“. depending, of course, 
on so and p .  In  the following it is assumed that C and P are finite 
sets,  and  the  parameter p is unknown  but  remains fixed during  the 
obsemation period. The observable  output is taken  to  be  the  sum of $2 

and n where n is an a-dimensional  Gaussian noise vector  having  zero 
mean and  covariance  matrix E(n nr) =dI, E is the  expectation  oper- 
ator, T denotes  transpose, I is the aXoc identity  matrix,  and ut is a 
scalar. For convenience, we shall  consider the observable to  be nor- 
malized with  respect to  u and  denote  it  by y. Thus, 

and is an a-dimensional  Gaussian  vector  with a mean of T ( U ) / U  and a 
covariance  matrix I. 

In  the  parameter  identification  problem, p in (1) must  be  identi- 
fied by  applying some U C  l.va and observing y. Since the  mapping F is 
completely  known, the objective is to  determine  the  input  vector u 
that  best  aids in the  identification of p .  The criterion  for  “best.” is 
taken as that which maximizes the  average probabilitS- of correctly 
determining  the  true PCP, where  any  member of P i s  equally  likely 
a pricri.  Note  that  the basic objective  here is to  make a multiple 
hypothesis  test  on  the  observable y ,  using the  input u that maximizes 
the  probability of the  test being correct. ‘Thus, if P = :pi}, i =  1 ,  
2, . . . , 8. i t  is desirable  to  test  the  hypothesis p = p l  versus p = p 2  
versus p = p B ,  etc.  Since 31 is Gaus5ian  and P finite,  there is an  ample 
supply of applicable l i t e ra t~re[* l~[~]  describing the  optimal  test  that 
must  he  performed on y. In  this  regard,  the  test is analogous to a cor- 
responding problem in communication  theory.  i.e., that of determin- 
ing which of a set of signals is being received in the  preseuce of 
Gaussian noiseP1 and some of these  latter  results  are  applicable  here. 
Trivial  situations  shall  be  avoided  by  assuming  that all the  param- 
eters of P are observable,  i.e.,  can  be identified uniquely  n-ith m n e  
input u of LTa in the absence of noise. 


