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The preceding filter gains converge to

s oy e 8 (26)
0T T Dy + ana?
where
ani—en = [p+ pv/T+ o278+ [p — pv/1 +2/27]42 (27)
and
— d33
P = ? *

1lence in steady state, the prediction gain as given by (20) and (21)
can, by a proper choice of g, be equal to the optimal gain given by
(27). However, the actual magnitude of ¢ must be several times larger
than dss to obtain the same steady-state gain. This is illustrated in
Fig. 1. Finally, even though the steady-state gains are identical, the
gain sequences will generally differ prior to the steady state, as seen
in Fig. 2.

V. CONCLUSION

An approximate solution to the stated problem (6) is given by
(11), (12), (15), and (16). Some care must be taken if the solution is
programmed in a general fashion, since components of E(x.x,T) and
E(x,%T) may be unbounded when either &, §®, or &+ 6& is unstable.
However, the results can be very useful in resolving certain practical
aspects of the implementation of linear estimation theory.
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In general, (18) can be used to decide whether or not the compu-
tations (11), (12), (15), and (16) represent a significant improvement
over the usual approach (3) through (5). More significantly, (18)
should be helpful in determining the sensitivity of the estimator to
model approximations as well as aid in determining the elements of
Q in the solution given by (3) through (5).

Finally, a comment on the simplicity of the example. Due to a
space constraint, a simple example was chosen in an attempt to illus-
trate the results with as little confusion as possible. A more useful
example can be obtained by considering third-order dynamics for
&4 6% while & is second order. This will lead to an analysis of the
much studied o —g trackerlfl in a maneuvering target environment.
This last application is given in Heller.[7
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Mazximum Likelihood Estimation of Rational
Transfer Function Parameters

ALAN E. ROGERS, MEMBER, IEEE, AND
KENNETH STEIGLITZ, MEMBER, IEEE

Abstract—The problem of estimating unknown transfer function
parameters from finite input-output records which have been dis-
turbed by additive Gaussian noise with unknown correlation is con-
sidered. A rational sampled-data model of preselected order is
assumed appropriate, and following the work of Klein,["l Astrém
and Bohlin,!?] and Mayne,[t] the likelihood function is gemerated
from the data by numerical filtering, The maximum likelihood cri-
terion leads to nomlinear regression equations for the unknown
parameters, Which are solved by damped Gauss-Newton iteration.
Some computational experiments are described.

I. INTRODUCTION

Many authors have considered the identification problem.
Kalmanl!l suggested the use of a linear pulse transfer function model
and the estimation of its parameters, the coefficients of the transfer
function, by linear regression applied to available input-output rec-
ords. Though numerically simple, the method leads to biased esti-
mates of the denominator coefficients and, therefore, of the system
poles, when additive measurement noise is present at the output. The
bias occurs because the method minimizes a linear equation error,
rather than the difference between the model and the observed out-
puts. An iterative method has been proposed®] which does minimize
the model plant output error and has, in the presence of uncorrelated
Gaussian noise at the output, the probabilistic interpretation of
maximum likelihood estimation.['!] Giese and McGheel® considered
the problem of parameter estimation in the presence of noise with
known correlation and showed that the maximum likelihood criterion
leads to a weighted least-squares estimation problem. In a similar
vein, Levinl reduced this weighted least-squares estimation problem
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to an eigenvector problem but, in order to obtain an explicit solution,
relaxed certain constraints.[5] Leel®! presented another least-squares
method but, in order to achieve independent measurement errors,
some of the information present in the observation records was
wasted.

In an econometric context Kleinl” pointed out that true maxi-
mum likelihood estimation of transfer function parameters may lead
to intractable nonlinear equations. He considered a single-pole trans-
fer function with an additional parameter included to account for
unknown serial correlation of the measurement noise. Astrsm®l con-
sidered process identification when the input signal is unobserved, a
problem equivalent to identifying unknown power spectrum param-
eters.[!l Astrésm and Bohlinl?l and Mayne[*!l discussed parameter
estimation from input-output records where the output record con-
tains independent Gaussian noise of unknown spectrum. They ob-
served that the likelihood function of all unknown parameters can be
generated by suitably filtering the available data through model
filters. Here a similar technique is described; however, it is applied to
a transfer function model different from that employed in Astrém and
Bohlin and Mayne.[!!] In addition, the results of computational
experiments are presented.

Maximum likelihood estimation of transfer function parameters
is discussed under the following conditions.

1) The model transfer function is a rational function of z of pre-
selected order.,

2) The estimation uses finite, uninterrupted, normal operating
records of one input along with a corresponding output signal.

3) All effects in the output signal, which are not attributable to
the input signal, are represented by additive Gaussian noise with a
spectral density which, though unknown, is rational and of selected
order.

II. GENERATING THE LIKELIHOOD FUNCTION

The situation and nomenclature are shown in Fig. 1. Use s-trans-
form notation and write X(2) = 2_x:z~, etc., where summations are
over the available records. The model transfer function has X —1
zeros and L poles, so that

K L
A =2 @z %Y B =1+ 2. b I5))

i=1 =1

The “whitening” filter is assumed to have M poles and N zeros, so
that

M
Cl®) =1+ az

N
> D) =1+ Zl diz. 2
The coefficients of C(z) and D(z) are unknown and are estimated along
with those of 4(z) and B(z), requiring altogether P=K-+L+M+N
parameters to be estimated. They form the P vector .

If A(z) and B(s) were known exactly, so that the model] truly
represented the plant, then the model-plant difference signal g would
be correlated Gaussian noise. If, in addition, the whitening filter is
correct, then the filtered error signal ¢ is uncorrelated Gaussian noise.
Hence, the likelihood function for 6 is

1
L(6) = (2m\?) T/ exp (— o e,-z(e)) ®)

where T is the record length and A? the noise variance. Maximum
likelihood estimates of @ and A are thus given by solving?]

; e2(8) = min A% = min (% Z eﬁ(ﬁ)). @

If the problem is considered, in s-transform notation the task reduces
to finding that @ which minimizes the average-square value of the
signal

D(E)[4()

2% v — W(z)] 5

E@ = colEm

which is a nonlinear numerical problem.
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111. NUMERICAL PROCEDURE

The Gauss—Newton methodBl'[8]'[15]'[¥] has second-order con-
vergence characteristics although it requires the computation of only
first-order derivatives. However, it can be unstable, even locally.l18].[17]
Hartley's modificationl?®] employs at each step a one-dimensional
search for a minimum and is shown to converge on a quadratic sur-
face. It involves considerably more program complexity than a fixed
step-size algorithm; for this reason, a “damped” Gauss-Newton
method{!7} is used, with the iterative parameter increment

e[ T e o

where k is a step-size parameter which remains fixed during an itera-
tion. Effective values of % can be established empirically for a class of
problems. In the authors’ experience, values of the order of 0.2 have
resulted in good convergence characteristics for starting points quite
far from the final solution. A test for stability of the model at each
step was added to the program so that, whenever the model becomes
unstable, the step size for the denominator parameters is halved until
a stable model is obtained.

The derivative signals 9¢(8)/90 can be computed more efficiently
and more accurately by using parameter influence filters,(12-[14
rather than by the method of finite differences. The necessary ex-
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pressions can be obtained by differentiating (5) (see Fig. 2). For

example,
IE(3) _ D(z)A(z)zd X@,

ab; C(z) B(3)

j=1,--«, L, etc @

IV. TrEe DirricurLty oF MULTIPLE SOLUTIONS

Iterative methods locate local maxima of the likelihood function,
but do not indicate when a local maximum is the global maximum.
There does not, in fact, appear to be any method for establishing with
certainty that the global maximum of the likelihood function has been
found. Several strategies have been suggested, however, which do
appear to increase the probability of finding the global maximum.
Among these are the following:

1) Randomly search the parameter space and use as a starting
point for the iteration the point corresponding to the greatest value
of the likelihood function.

2) Start the iteration at many randomly selected points.18!

3) Use a suboptimal but consistent estimate as a starting point
for the iteration.[20

4) Having found a local maximum of the likelihood function,
search the parameter space for a point which yields a higher value of
the function.i?1l

The difficulty remains a major theoretical obstacle in using the
maximum likelithood criterion when it leads to nonlinear equations in
the parameters. In practice, it may not be troublesome because there
may be only a small number of local maxima and a fairly large region
from which the iteration will converge to the global maximum.

Mantey{®®] gives a simple example of a surface with two local
minima. The problem he describes is that of fitting in a least-squares
sense the impulse response of a second-order rational digital filter
with a first-order rational model. In the next section an example
which occurred in an experiment with random data is given.

V. REstLTs or CoMPUTER EXPERIMENTS

Experiments were conducted for several different combinations of
transfer functions and noise shaping filters on the IBM 7094. Typi-
cally, when estimating 5 parameters from records containing 100 data
points, 7-place convergence was obtained within 30 to 60 iterations,
or 10 to 20 seconds. Occasionally, iterations which were started from
different points produced different local maxima of the likelihood
function. However, from having solved problems with similar data,
it was usually clear when a maximum was not global.

As an example of the experiments a specific case is described. To
provide the data that might represent a process input—output record,
100 Gaussian independent pseudorandom numbers were generated
for the input signal x. To produce y, these were passed through the
filter

A(2) 14 0.5z
B(z) 1— 181 +0.85:2

Correlated noise was represented by passing 100 more Gaussian
independent pseudorandom numbers through the noise shaping filter
Cla) 1
D 1— 09571

The correlated noise was scaled in amplitude so that, when added to
v, the noise-to-signal power ratio was 0.2.

For purposes of comparison, two different models were used,
referred to as model 4 and model B. Model 4 did not have a noise
whitening filter and had K'=2, L=2, A7 =0, and N =0. [t therefore,
provided parameter estimates that minimized the average-square
difference between model and observed outputs. Model B included a
noise whitening filter and had K =2, L=2, 3/ =0, and N =1. In both
cases the order of the model transfer function was selected from
a priori knowledge of the process.

Using the same sequence of random numbers for x but different
noise samples, 12 runs were made. Figs. 3 and 4 show scatter diagrams
of & versus bs, and a; versus a,. As expected, model B, corresponding
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to maximum likelihood estimation, provided more accurate values on
the average. The sample root-average-square distances from the
nominal parameter values are

ai az bl b2
Model 4 0.3760 0.4937 0.0556 0.0579
Model B 0.1179 0.1311 0.0239 0.0240

Run 2 with model B provided an example of a problem with two
local maxima of the likelihood function. The values are
) as by ba d;

1.187 0.4304 —1.812 0.8622 —0.7968 0.06707
0.9862 1.543 —0.1503 —0.7993 —0.9493 0.1205.

Ze?

Solution
Solution 2

YI. CoxcLusioNs

A method for the maximum likelihood estimation of the param-
eters of a rational transfer function when the measurement noise is
Gaussian and additive at the output, with unknown correlation has
been described. 1t is necessary to estimate the parameters of the noise
spectral density along with those of the transfer function. The prob-
lem of multiple maxima of the likelihood function stands in the way
of developing a completely automatic algorithm, although the
method described in this paper appears quite practical.
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Input Selection for Parameter Identification
in Discrete Systems

ROBERT M. GAGLIARDI, MEMBER, IEEE

Abstract—1In this paper the problem of selecting an optimal input
for identifying an unknown parameter of a known discrete system
by observing its output in the presence of Gaussian noise is con-
sidered. The system is assumed to be a generalized discrete system
in which the inputs and possible parameter values are members of
a finite set. The criterion for the optimal input is defined as that
which maximizes the probability of correctly determining the true
parameter value from a multiple hypothesis test. Although the above
criterion totally orders the set of inputs, it is a difficult task to select
the best inputs. Some theorems are presented which yield a partial
ordering whose extension is the desired total ordering. In the special
case of strong noise, it is shown that the ordering of inputs can be
related to the perimeter in the output vector space. The results of
the paper are applicable to the selection of preset input lengths or
to adaptive identification.
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I. INTRODUCTION

An important problem in system control is that of identifying an
unknown parameter inherent to a particular system. When the sys-
tem input—output characteristics are completely known for every
possible parameter value, identification can generally be accom-
plished by applying some particular input and observing the resulting
output. The problem becomes complicated by the presence of noise
occurring during the output observation period, and its ability to
resolve the parameter values can only be interpreted statistically.
In this paper the related problem of selecting the best input for deter-
mining which of a finite set of possible parameter values is the true
value for a generalized discrete system is investigated. The criterion
for best input will herein be interpreted as that which maximizes the
probability of correctly identifying the true parameter, based upon
noisy output observations. It shall be further assumed that the set of
all possible inputs is finite, and that the observable noise is additive
and Gaussian. Even though the above criterion totally orders the
input set, the probability for a given input is difficult to compute. The
objective here is to see if there is an intrinsic property of the optimal
inputs that are easier to identify. Once the unknown parameter is
identified, within an acceptable probability, the system can be con-
trolled to any desirable output or state by means of a proper subse-
quent input. Previous work on an analogous type of input selection
problem was investigated by Gagliardilll using a less meaningful
“minimum distance” criterion.

II. SysTEM MODEL

Let a general discrete system be described by the real difference
equation

7@ = F(So, '1"(j)7 P), j= 1,2, 3, (1)

where 7( is the system output from the set of reals denoted by R, sq
is the initial state, #” is the input symbol from a set U, p is a system
parameter from a set P, and Fis a mapping of soX UX P into R. An
input vector % will correspond to a sequence of input symbols
w={u® 4® ... @} L= The system responds to % by yielding
the output vector 7= {7, 7® . .. @} Re depending, of course,
on sp and p. In the following it is assumed that U and P are finite
sets, and the parameter p is unknown but remains fixed during the
observation period. The cbservable output is taken to be the sum of #
and » where # is an «-dimensional Gaussian noise vector having zero
mean and covariance matrix E(n #7) =2/, E is the expectation oper-
ator, T denotes transpose, [ is the a X« identity matrix, and ¢%is a
scalar. For convenience, we shall consider the observable to be nor-
malized with respect to ¢ and denote it by y. Thus,

r(n) n

y= @
and is an a-dimensional Gaussian vector with a mean of #{) /o and a
covariance matrix I.

In the parameter identification problem,  in (1) must be identi-
fied by applying some #C U** and observing ¥. Since the mapping 7 is
completely known, the objective is to determine the input vector %
that best aids in the identification of p. The criterion for “best” is
taken as that which maximizes the average probability of correctly
determining the true pCP, where any member of P is equally likely
a priori. Note that the basic objective here is to make a multiple
hypothesis test on the observable v, using the input # that maximizes
the probability of the test being correct. Thus, if P={p.}, i=1,
2, -+ -, 8, it is desirable to test the hypothesis p=p; versus p=p.
versus p = ps, etc. Since y is Gaussian and P finite, there is an ample
supply of applicable literaturel? Bl describing the optimal test that
must be performed on y. In this regard, the test is analogous to a cor-
responding problem in communication theory, i.e., that of determin-
ing which of a set of signals is being received in the presence of
Gaussian noisel!l and some of these latter results are applicable here.
Trivial situations shall be avoided by assuming that all the param-
eters of P are observable, i.e., can be identified uniquely with some
input # of T'* in the absence of noise.



