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An algorithm is described for transforming a quad tree encoding for a picture into
a quad tree for the same picture after application of a general linear operator. The
technique relies on algorithms and data structures described previously for the construc-
tion and superposition of quad trees. The transformation algorithm is shown to take
time O (n + sp + mq), where n is the number of nodes in the input tree, s is a scale factor,
p is the total perimeter of all the regions of the original picture, m is the number of
regions, and ¢ is a resolution parameter.

1. INTRODUCTION

In this paper we describe an algorithm to transform a picture represented by
a quad tree. In the quad tree representation of an image the root represents an
entire square field, and each node has either four children, each representing a
quadrant of its parent, or is a leaf representing a quadrant. Figure 1 shows a
simple example of a quad tree representation of a picture. The ordering of the
children of each node from left to right in this sketch of the tree is SE, SW, NW,
NE. Solid dots at the leaves represent shaded quadrants; hollow dots represent
blank quadrants.

Klinger and Dyer [1] provide a good bibliography of the history of quad
trees. Their paper reports experiments on the degree of compaction of picture
representation which may be achieved with tree encoding. Pavlidis [2] reports
on approximation of pictures by quad trees, and Horowitz and Pavlidis [3] show
how to segment a picture by polygonal boundaries using fraversal of a quad tree.
Tanimoto [4] discusses distortions which may occur in quad trees for pictures,
and he observes in [5, p. 277 that quad tree representation is particularly con-
venient for scaling a picture by powers of 2. Quad trees are also useful in graphies
and animation applications [6, 7, 117], which are oriented toward construction
of images from polygons and superposition of images. Encoded pictures are
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Fia. 1. An example of a picture and a quad tree representing it.

especially useful for display [8] if the encoding lends itself to processing of the
image while in encoded form, and it is that sort of problem that we study in
this paper.

In particular, we consider the following problem: Suppose we are given a
quad tree for a picture. How may we efficiently generate a quad tree for the same
picture after application of a general linear transformation T? (This will include
translation, scale change, rotation, and combinations thereof.) The input to the
algorithm is therefore a quad tree for a picture and a transformation T (z, y)
= (ax + by + ¢, dr + ey + f), where a, b, ¢, d, ¢, and f are constants. The out-
put will be a quad tree representing the picture which is obtained when the
input picture is mapped, point-by-point, by 7.
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Fia. 2. Pictorial description of the algorithm.
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The idea of the algorithm can be described informally as follows. Each region
of uniform color in the input picture is in fact a polygon, with sides that are
edges of squares in the input picture’s quad tree. These polygons are traced from
vertex to vertex, and the images of these vertices determine polygons in the
output picture. In [9, 10, 127 it is shown how to construct in the output picture
a quad tree for cach of these polygons. The final picture is obtained by super-
posing these polygons, with the polygons interior to a given polygon represented
by holes—regions of a transparent color. Figure 2 illustrates the process.

To desecribe the algorithm preeisely, we must first repeat the definitions and
main results of [9, 10, 127, which we do in the next seetion.

2, DEFINITIONS AND SUMMARY OF PREVIOUS RESULTS

Pictures. A picture is a square array of colored points. The color of a point may
in fact be any information to be associated with a point in a two-dimensional grid.

Quad trees. A quad tree is a tree whose nodes are cither leaves or have four
children. The children are ordered: 1, 2, 3, and 4.

Quad trees for pictures. A quad tree for, or representing, a picture is a quad
trec whose leaves represent areas of the picture. Each leaf is labeled with the
color of the area of the picture which it represents. Fach node is associated
with a square region of the picture, and the root is associated with the entire
picture. Besides the root, cach other node is associated with one of the four
quadrants of its parent’s square, the 7th child being associated with the ¢th
quadrant of its parent’s square. No parent node may have all its descendant leaves
the same color. Since a parent and its descendants represent the same region of
the picture, if all the descendants have the same color, the picture can be more
compactly represented by coloring the parent, and removing all the children.

The superposition algorithm. The superposition algorithm has as input the tree
encodings of two pictures. The output is the tree for the picture which is the
superposition of one picture over the other. Input specifies which tree represents
the oceluding picture, and also designates a color to be considered transparent.

The superposition theorem. Superposition of pictures encoded as quad trees
can be performed in time linear in the number of input nodes.

Finitely many quad tree pictures may be superposed at once, rather than by
sequential superposition of pairs, and the total time is still linear in the total
number of input nodes. (‘“**” Denotes exponentiation.)

Polygons. A polygon is a list of coplanar points, called its vertices, listed as
pairs of nonnegative coordinates. Polygons are simple; that is, their edges do
not intersect.

Pictures of polygons. A picture P = (C, A) is a picture of polygon G if the
following conditions hold. C is a finite sct of colors, and A is a 2**%¢ X 2¥*¢ square
array of square pixels, each associated with an element of (. Coordinates of
are between 0 and 2**¢, inclusive. A (1, 1) represents a pixel with corners (0, 0),
0, 1), (1, 0), and (1, 1); A(2%¥*q, 2**%¢) is a pixel with corners (2%*g, 2%*%¢),
(2%*%q — 1, 2%%¢ — 1), (2%*%q — 1, 2¥*¢), and (2**q, 2**¢ — 1). Other pixels in
A are mapped into the coordinate system in the natural way. All pixels inside
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the polygon have one color, “interior.” Pixels outside the polygon are colored
“exterior.” Pixels intersecting the polygon are colored interior.

Quad trees for polygons. T is a quad tree for polygon G if T is a quad tree for
picture P, and P is a picture of polygon G.

In a quad tree for a polygon, nodes are partitioned into three exclusive classes:
interior, exterior, and boundary nodes.

Boundary nodes. Nodes intersecting the boundary of the polygon are boundary
nodes. It may be that only the boundary of the node intersects the polygon.

Interior nodes. Nodes containing only points interior to the polygon are in-
terior nodes.

Exterior nodes. Nodes wholly outside the polygon are exterior nodes.

Complexity parameters. v is the number of vertices in a polygon. ¢ is the base-2
logarithm of the side of a picture. ¢ limits the depth of the quad tree. If we assume
that the number of bits in the coordinates of polygonal vertices is fixed, it is not
meaningful to let ¢ increase indefinitely. We will assume that if the number of
bits in polygonal coordinates is fixed, so is picture resolution, and so is ¢, but
our analyses will make explicit the effect of varying ¢. p is the smallest integer
no less than the perimeter of a polygon. p is measured in pixel-widths, assuming
there is a picture associated with the polygon.

A pair of nodes are neighboring, or bordering, if their quadrants do not overlap
areas, but intersect on an entire side of one of them, not only on a corner. (A
quadrant includes the points on its boundary.)

A quad tree may be built in such a way that each side y of each leaf z is con-
nected by a two-way pointer to a circularly linked list of two-way pointers to
the neighbors (of the leaf 2 on the side y), in order along the side y, counterclock-
wise around x. Call a tree so structured, a netted quad tree. This data structure
makes it possible to scarch the neighbors on a side in time linear in their number.

The outline-and-color algorithm. An algorithm which takes as input a polygon
and produces as output a netted quad trec for the polygon is an outline-and-
color algorithm.

TraEOREM. The Outline-and-Color Algorithm may be done in time O(v + p + ¢).

3. THE QUAD TREE TRANSFORMATION ALGORITHM

Input. Input consists of a netted quad tree for a picture; the designation of
some color to be called “background”; and 7, some transformation which
is a linear transform together with a translation. T(x, y) = (ax + by + ¢,
dx 4+ ey + f), where a, b, ¢, d, ¢, and f are constants. We will assume that T
does not map all points into the same line or point. 7' defines a transformation
of a picture which is the same picture with its coordinates transformed by 7.
Input specifies the desired resolution of the output tree, which can be different
from the resolution of the input tree.

Output. Output consists of a netted quad tree for the picture which is the
transformation of the input picture by 7'; when an output area contains no
image of any input area, it is colored background. The following is a precise
definition of the output netted quad tree. For every pixel represented by a leaf
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B in the output tree, some leaf colored the same as B in the input tree must
have one of its points transformed into the pixel. An output leaf which contains
no image of any point of any input leaf is colored background.

The edge of visibility is defined as the inverse image of the output picture’s root’s
sides, that is, of the output picture boundary. Visible is defined to be true of those
things in the input tree containing some points either on the edge of visibility,
or interior to the region defined by the edge of visibility. We shall mean the same
thing by the edge of a leaf as by the side of a leaf.

Start by stacking all visible edges of leaves, with two-way pointers between
them and the edges in the input quad tree. Note that an edge may be stacked
twice and associated with two different leaves. For our purposes an edge shared
by two leaves is two edges. If the stack is empty, output Is a tree with one node.
If the input is & one-node tree colored background, output is the same as input.

Pop the stack until a leaf-side is found with a visible portion which lies between
two different colors, or which lies on the edge of the picture and has a non-back-
ground-colored leaf. This may require examining all the neighbors of any par-
ticular popped side, using the netted data structure.

Follow the boundary of the largest contiguous region of homogeneous color
containing this leaf. The outline of this region is a polygon formed of edges of
leaves. The edge of visibility, the inverse image of the output picture’s root’s
sides, is an intercolor boundary.

Here is how we trace the polygon. Begin by proceeding along a visible portion
of a side which has been popped from the stack, choosing the direction of the
path taken so that the interior of the leaf for the side is on the right of the path.
The color of the leaf will be called the right-side color. The right-side color
will lie to the right of all the edges of the polygon. The edges of the polygon will
be sides of leaves and intersections of the edge of visibility with leaves having
the right-side color. When the following of the boundary of the polygon intersects
a corner or & side of a leaf or the edge of visibility, there may be a choice of edges
with which to continue the polygon. The point of intersection may be an end-
point of some sides of leaves. Should onc of these sides be followed in continuing
the polygon? The edge of visibility may lead out of the point in two dircctions.
Should one of these possible continuations be chosen? First, eliminate from con-
sideration those continuations which would enclose another color in the polygon
we are forming by having a color other than the right-side color on the right
side at the point of continuation. Of the remaining possible continuations, the next
edge is chosen to be the leftmost (in an angular sense) continuation. Since sides
may be duplicated if they arc common to two leaves, if the continuation taken
is a portion of a side, then it should be the side of the leaf whose visible points
are interior to the polygon. That is, the leaf should be of the right-side color.
If the continuation taken is a portion of a side of a leaf, remove all sides of the
leaf from the stack.

Asg this polygon we shall call primary is outlined, each edge is transformed by
T and the transformed polygon is processed by the Qutline-and-Color Algorithm
to form a quad tree for its picture. The interior of the primary polygon is colored
in the input tree. The coloring is not a true coloring, but only temporary for the
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purpose of finding the outside edges of the largest contiguous regions interior
to the primary polygon which do not have the primary polygon’s right-side
color on their boundaries. These are called inierior polygons and are separated
from the boundary of the primary polygon by the right-side color of the primary
polygon.

Coloring is defined to be the recursive spreading of color from boundary leaves
to neighboring leaves, their neighbors, and so on. The number of times leaves
propagatc color to smaller neighbors is limited to a constant times the number
of leaves which can be neighbors to leaves larger than themselves. The number
of propagations of color to non-smaller leaves is also linear in the number of
leaves, so the total coloring cost is linear in the number of leaves. The coloring
process extends only to the edges of the interior polygons, does not extend inside
the interior polygons, and is erased after the interior polygons are discovered.

The interior polygons are outlined and transformed as above to create a quad
tree for each. Now the interior polygons are cut out of the primary polygon by
superposing them as holes in the quad tree for the primary polygon. In other
words, the quad tree for the primary polygon has its background color placed
where these interior polygons, and any they contain, are located.

Repeat the process of popping the stack, finding an intercolor edge, and build-
ing quad trees with holes for polygons found until the stack is empty and all
colored regions are thus represented by quad trees with holes.

Superpose the quad trees for the transformed polygons with holes. Let the color
which is in the holes and in the background be transparent in all but the bottom
tree, where the background color should be the background color desired in the
output of the transformation algorithm. Superposing the quad trecs for the trans-
formed polygons gives the output of the quad tree transformation since holes are
treated as transparency, as are the backgrounds. The bottom tree may be selected
arbitrarily.

No two different non-background colors exist in the same picture locations
in different trees being superposed. Possible exceptions to this rule are pixels in
different output trees which contain transform images of points on the boundary
between two uniformly colored regions in the input tree. Different orderings of
superposition may result in different colorings of these pixels. With these excep-
tions, the holes let all significant information show through, and the order of the
trees in superposition does not matter.

4, COMPLEXITY ANALYSIS OF THE TRANSFORMATION ALGORITHM

In cssence, the above algorithm uses the Outline-and-Color Algorithm for
polygons with a total perimeter which we shall designate p. That is, p is the total
perimeter of polygons surrounding the uniformly colored, non-background,
visible regions of the input picture, including that portion of their perimeter
lying along the picture boundary.

Let m be the number of polygons in the input tree.

Let n be the number of nodes in the input tree.

Let s be the scaling factor: the maximum distance between T'(z, v) and 7 (w, 2)
when (x, y) and (w, 2) are chosen one unit apart.
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TaeoreM. Time and space of O(n 4+ sp + mq) are sufficient for the quad tree
transformation algorithm.

Proof. The total number of vertices for both holes and primary polygons is
O(n). The total perimeter of primary polygons is p, and the total perimeter of
holes is no more than p. The total number of primary polygons is m, and the total
number of holes is no more than m. Outlining and coloring a polygon into a
quad tree is O(v + p + ¢). Therefore, constructing all the trees requires time

O (i + pi + q)),

with the »/s, p/s, and ¢/s from all the trees. Since X v, is O(n), 2. p; is O(sp),
and 2 g; is O(mgq), the total requirement is O(n + sp + mg).

The superposition step is linear in the number of nodes in all the trees to be
superposed, so this step does not change the asymptotic complexity.

Checking sides popped from the stack for whether they have a neighbor of
different color may require checking all the neighboring nodes on the side. The
number of sides is O(n). Therefore, checking the sides which have non-smaller
neighbors is O(n). Checking the sides which have smaller neighbors is no worse
than reading all their smaller neighbors which is no worse than reading all the
leaves in the tree times the constant representing how many sides to which
a leaf can be a smaller neighbor: O (n).

In the application of the algorithm for coloring the input trees, the boundary
leaves of the primary polygon are colored as the polygon is outlined. Color spreads
recursively to all neighboring, interior, uncolored leaves which do not belong
1o interior polygons. The primary polygons, minus their interior polygon holes,
are disjoint sets of nodes. Therefore, coloring them is O(n). Q.E.D.

CoRroOLLARY. Stnce m is no larger than n, time and space of O(nq + sp) are
sufficient, or O(n + p) if the resolution q and the scale factor s of T are fized.
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