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The identification and control of unknown linear
discrete systems]

S. C. SCHWAl~TZ and K. STEIGLITZ
Depart.mcnt of Electrical Engineering, Princeton University,
Princeton, New Jersey 08540

[Beceived 9 June 1970]

This investigation is concerned with the optimal control of unknown, t-ime- invariant.
linear discrete systems. Of particular interest is tho relationship among the identi
fication problem. the specification of the control law assuming the system is known
and the overall optimuLizing control. For single-stage control with noiseless obser
vations, conditions under which the usc of separate identification and control pro
cedures results in overall optimal control arc established. The complexity inherent
in the control problem is illustrated with a simple single-stage example wherein
optimal control calls for filtering of the observed data by a t-ime- varying, dote
dependent operator, for which no simple recursive implementation exists.

1. Introduction
There is a large body of literature dealing with the identification of determin

istic linear systems from noisy output (and possibly input) records. For
discrete systems, these investigations range from statistically optimum pro
cedurcs (Levin 1964, Ho and Lee 1965, Astrom 1967, Rogers and Steiglitz 1967)
to various recursive techniques (Ho and Whalen 1963, Cox 1964, Sakrison 1967).
Presumably, the purpose of the identification effort is the subsequent control
of the plant in some optimum fashion. Concurrent with the work on the identi
fication problem there has been a number of investigations dealing with the
control of Iinear systems. The initial work by Kalman and Koepcke (1958) on
the optimal control of completely deterministic systems with various per
formance indices has been extended to include both noisy observations (Joseph
and Tou 1961), and systems with random parameters (Gunckel and Franklin
1963, Farison 1964, Farison et al. 1967, Bar-Shalom and Sivan 1968).

It is surprising that not more has been done with the problem of controlling
a linear system with unknown, constant parameters. It would appear that
this is the situation more often met in practice than the independent random
parameter case. In a sense, the control of linear systems with constants
('highly dependent random parameters') has been considered before (Drenick
and Shaw 1964, Zadioario and Sivan 1966, Bar-Shalom and Sivan 1968).
However, the problem formulation and solution are either of such generality
as to preclude the possibility of abstracting much useful information, or they
are too restrictive.

The present investigation is concerned primarily with 'single-stage' control
in contrast to the usual N-stage controlt. Having thus narrowed the problem
wc are able to investigate somewhat more deeply the relationship between

t Communicated by Professor S. C. Schwartx. The research reported here was con
ducted with (.}W support of NSF under Grant NSF-GK-13193 and the U.S. Army Research
Office, Durham under Contract DAHC04 69 C 0012.

+Single-stage control is the logical sub-optimum procedure to lise. iV-stage control is
discussed in § 4.
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44 8. G. Schwartz and K. 8teiglitz

identification and control than has been previously reported, e.g. Sworder
(1966).

The investigation deals exclusively with the noiseless observation case. It
is our contention that the complexity of the problem is not introduced by
noisy observations, although this certainly makes the problem more difficult.
Rather, the complexity is introduced by assuming the unknown parameters
are constants and by the specification of an N-stage control policy, whether it
bc closed or open-loop optimal, or open-loop feedback'[.

It is our intention here to clarify the relationship between the identification
problem, the control laws which may be derived with the assumption that the
parameters are known, and the overall optimization problem. "Ve make the
following assumptions, which in many cases of practical interest are not overly
restrictivc: the performance index depends only on a scalar output signal; only
scalar input and output signals are observed. In certain cases it will turn out
that an overall optimum solution can be obtained by first estimating the
system parameters using conditional mean estimates, and then using these in
thc control law derived assuming a known plant. 'Ve call this situation
complete separation.

2. Preliminaries

Consider the system governed by the operator equation:

A G
X n = 131l n +De,,, (2.1)

Xu is the scalar output and Un the scalar control. en represents a sequence of
independent noise disturbances with E{e;} = 0, E{e;ej } = a2 oij' The operators
A, 13, G and D are polynomials in the delay operator Z-l and are given byt:

1.)
A = 1 + ~ a; e:',

i=l

ka
G = 1+ ~C;Z-;,

1...1

k.
B=I+~b;z-;,

jE:ll

k 4

D = 1 + ~d;z-;,
i>21

} (2.2)

with the roots of 13, G and D inside the unit circle. The above model and
operator notation has becn useful in previous theoretical and practical investi
gations (Astrom 1967, Rogers and Steiglitz 1967). The operator notation is
the natural one to choose if the output of the system and not the state can be
observed, or only the output is included in the performance index. Further
more, using this notation, the operations specified by the optimum control law
can be stated more succinctly and are more readily interpreted in terms of
filters which can subsequently be realized in a natural way on a digital computer.
We assume that the plant parameters in (2.2) are unknown constants, and we
denote this parameter set by the vector e.

We consider the following control problem: choose un to maximize E{xn2} ,

having observed the input sequence un-1 = (un-v 1ln_2, ... ) and the output

t Seo Dreyfus (1964) and Zadieario and Sivan (1966) and the recent survey paper by
Larson (1967).

:j: For simplicity, wo have assumed that the leading term of A is uniby , this assumption
can be relaxed.
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(2.6)

(2.7)

I dentiflcation and control 01 ~tnknown linear discrete systems 45

sequence X,,-1 = (xn_1,xn_2, ... ). To minimize the mean-square output E{xn2},

clearly it is only neccssary to minimize the quantity conditioned on the past
input-output records, E{xn21 xn-1, Un-I}. The technique used to perform this
minimization is well established in the literature (Meier 1965, Aoki 1967).
Here, we only outline the steps:

E{Xn21 xn-1,~tn-l} = r rX,,2 p(x" 1 X,,-I, U"-1, 6)p(6 1 xn-1,~t"-I) d6 dx"
JXIIJO

= <E{x" 21 x"-1, un-I, 6})n_l> (2.3)

where we have defined <1(6)n-l as the a posteriori conditional mean:

<1(6)11_1 = Jj(6)p(6 IXn-1, un-I) ze. (2.4)

The inner expression in (2.:~) is now written as:

E{x 21 X,,-1 un-1 6} = J",(U IX,,-1 ~tn-l 6) E{x 21 Xn-1 ~tn 6}dun " rn" n'" It

= E{x 21 X n - 1 U * U n - 1 6} (2.5)n 'n , ,.

The second line of (2.5) follows from the observation that if u" is chosen to
minimize E{x,,21xn-1, u"; 6} for every given set x"-1, ~t"-1, the left-hand side is
minimized if p(u" 1 x"-1, u"-1, 6) is chosen as a delta function S(~t" - ~t"*); i.e.
non-randomized control is optimum (see Aoki 1967, p. 28). In the sequel, we
denote the minimizing un by u"*.

Proceeding to calculate (2.5), we rewrite (2.1) as:

x" = e" +~u"+ (~ - 1) en'

Observe that the expression (GID - 1) en is a function of e,,-1 and not e". Hence,
if X"-1 and U"-1 are observed, (GID -1) e" can be calculated prior to choosing u".
Substituting e" = (DIG) (xn -AIBu,,) in (2.6) and rearranging terms gives:

x" = en+~t" + (~~-1) un+ (1-~)xn.
Then, (2.5) becomes:

E{x,.' 1xu-I, un-I} = <E{x,,2I x"-1, Un,6})n-l

Since the first term in the numerator of the operator [(DIG) (AlB) -1] is
(const.) z-l, only the first term in (2.8) depends on u". Hence, differentiating
with respect to Un and solving for un*, we obtain:
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* _ (( _DA)') * ((D _ ))
1t" - 1 BC n_,1t" + C 1 n-l x"

whercr

DA
Q,=l-C13'

D
Q2=C-1. }

(2.10)

(2.11)

Recull that <>n-l is a conditional mean estimate and as such, is a minimum
mean-square (MMS) estimate. Equation (2.10) has the following interpretation:
the overall optimum control law results from the use of the MMS criterion in
estimating the operators Q1 and Q2' This result is not surprising-a quadratic
cost has been used us the performance index for a single-stage control problem.

3. The relationship between system identification and control

In most practical situations, we are usually restricted to estimating the
set of parameters 6, rather than the operators Q, and Q2' In such cases we are
interested in the possible overall optimality of a system which uses the estimated
parameters 6 in the control law determined by Q, and Q2' 'I'his consideration
motivates the following definition.

Definition
Complete separation of identification and control is said to take place if:

and } (3.1)

'We can then state the following theorem, which follows directly from the
linearity of the operation <>n-"
Theorem 1

Complete separation takes place if Q, and Q2 are both linear in 6.

The following cases arc of interest.

Corollary
Complete separation takes place if any of the following situations occur:

(1) A, C known; 13 = D unknown,

(2) A,13,C known; D unknown,

(3) B,C,D known; A unknown.

To illustrate complete separation, consider the following example.

t Note that Q1 find Q 2 e.rc operators on the past. If the plant para.meters were known,
un III is given by un· = QI u 11· + Q2 x JP i.o, un· is a. function only of the sequences un-I, xn- 1•

Sec also Aoki (1964) and Dreyfus (1964).
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Identification and control of unknown linear discrete systems 47

Example 1

Take B = D = 1+ l;7';l b,e:', A and G as known operators. For simplicity,
we set A = G = 1, and (2.1) becomes:

xn = (un + en)/B, (3.2)

or, writing out the operation explieitly:

k,

xn = - Lbixm_i+un+eno
i=l

The desired eontrol is given by (2.10):

~{.rb.p(b.lxn-lun-l)db.\x .~ t t , tJ n-1,"
t=1 •

(3.3)

Since the parameters b, appear linearly, the expeetation with respect to
p(OI xn-\ un-l) reduces to that shown in the last line of (3.3). Hence :

(3.4)

The identification and control problems separate completely if the l\1MS
estimate is used as the criterion for the identification of systems parameters.
vVith more general, but known operators A and G, Un* becomes:

k l k3 k'l.

un* = - l; ai un-i* - l; ci xn_i + l; (bi>n-l xn_i·
i=1 i=1 i=1

(3.5)

It should be noted that if separation does not oceur, then even the single-stage
control law, viewed as a sub-optimum procedure, is generally quite complicated.
This is amply illustrated by the following 'simple' system.

Example 2

The operators A, G and D are known and taken equal to unity. B is given
by B = 1- bz:", with the single parameter b unknown. From (2.10), the
optimum control is given by:

Note that l/B can be written as:

(3.6)

Then:

1
B

1

1-bz 1

00

l; b' zr',
1=0

(3.7)

(3.8)
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48 S. G. Schwartz and K. Steiglitz

Therefore, at each stage, optimality requires the estimation of all moments of b:

<bi>n_1 = Ibip(blxn-1,11,n-1)db.

The control law (3.8) can be interpreted as follows: (bi>n_1 represents the
(time-varying) pulse response of the system which generates the optimum
control 11n* by filtering the previous controls un- i*.

Interestingly, the pulse response for fixed n is not, in general, a rational
function of z, and there is no simple recursive implementation for the filter.

Having encountered these difficulties for the single-stage, noiseless observa
tion case, it is clear that the iV-stage control problem even with perfect
observations is considerably more complex. It is not surprising, then that
many investigations have dealt with sub-optimum procedures (Aoki 1964,
Dreyfus 196'i, Sworder 1966, Zadicario and, Sivan 1966, Farison et al. 1967,
Bar-Shalom and Sivan 1968).

4. Closed-loop N-stage control
The difficulty in studying complete separation for the iV-stage control

problem is related to the fact that, in general, the form of the control sequence,
even for the known parameter problem, is unknown. Nevertheless, a partial
characterization can be given.

By a closed-loop control policy we mean that the optimal control sequence
fOI' iV-stages, associated with each possible state of the system, is specified
(Dreyfus 1964). This implies, for example, that at a particular state, future
outputs arc anticipated through their correlations with the data on hand, and
arc incorporated into the present control. Consider, first, the last two stages,
where it is desired to minimize E{(xn2+xn_12)}. Again, this quantity is mini
mized if 11n and 11n _ 1 arc chosen to minimize:

E{(x 2+X 2)IX,,-2 un-2}
n n-l' ) ,

for every set {xn - 2 , un - 2} . This conditional expectation can be written as:

E{(X,,2+X"_12) 1 xn-2,1In-2}

= E{(xn21 xn-2,1In-2)} + E{(Xn_121 xn-2, un-2)}

= E{(X,,21 X"-2, U"-2)} + <[a2+ (un_1-Q1 un_1- Q2x"_1)2J>n_2' (4.1)

where the last line follows from (2.10) and the definitions introduced in (2.11).
The first expression on the right-hand side of (4.1) is minimized by choosing un'

Since 11" is applied after xn - 1 has been observed, and since a closed-loop policy
has becn specified, it is required to incorporate the pair xn-l> un-1' into the
expectation. This is accomplished through the application of Bayes' rule
(Meier 1965, Aoki 1967). The result is:

E{(xn21 xn-2,U"-2)} = (Ip(Xn-11 Xn-2,11"-2,6)

x <a2+ (Un -Q1 Un-Q2 Xn)2>n_1 dXn_1)n-2 (4.2)

Equation ('1.2) is substituted for the first expression on the right-hand side of
(4.1), and the resulting expression is minimized with respect to the controls
~(,lt-V v-:
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Identification and control of unknown linear discrete systems 49

Defining the operator:

L(un, xn) == a2+ (l~n -Q1Un-Q2 Xn)2

and the conditional expectation:

Ej{j(xj)} =Jf(xj)p(xjlxi-l,l~i-l,e)dxj'

the quantity to be minimized is:

E{(Xn2 + Xn_121 xn-2, un-2)}

= <En_1{<a
2+ (Un-Q1Un-Q2 Xn)2)n_l})n_2

+ <a2+ (Un-1-Ql Un-1-Q2 Xn_l)2)n_2

= <L(un_v Xn_1)+ En_1{<L(un, Xn)n-l})n-2'

(4.3)

(4.4)

(4.5)

By way of comparison, the single-stage control policy requires the minimizntion
of [see (2.8)]:

(4.6)

It is clear that complete separation will occur if the conditions of the above
corollary are met and if the N -stage control problem factors into N single-stage
controls. Though it is not possible to give a complete characterization of the
conditions for factorization, special cases can be investigated. Consider a
specific case of Example 1.

Example 3

Take A = 0 = 1, B = D = 1 +bz-l, with the parameter b unknown. From
(3.3), the last control is:

Un* = <b)n-lxn-l'

Let us now assume that the a posteriori variance of the estimate is independent
of the past input-output record, but does depend on the number of
observationsj :

«b-<b)m_i)2)n_i = J(b-<b)n-YP(b l xn-i, Un-i) db = J(n-i' i = 1,2, ....
(4.7)

We then have:
(4.8)

and from (4.4):

E"_l{<L(lin*,xn)n-l} = a2+J(n_lL(un_l,Xn_l)'

Hence, for this example, (4.5) and (4.6) are equivalent:

This example can be generalized to N stages by noting that to minimize:

Rk+l = E{(XN2+XN_12+ ...+XN-k21 xN-k-l, UN- k-1},

t Note that (4.7) docs not necessarily require a Gaussian assumption.
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50 Identification and control of unknown linear discrete systems

one can obtain the recurrence relation] :

R"+1 = min{<L(1tN_",xN_,,)+EN_,,{R,,}) N_(I<+I J'
llN_k

Then, assuming that

UN_(/~+l)* = <b)N_kXN_kl

Rk = CXk + f3k xn_k2, } (4.9)

(4.10)

it can bc established by induction that uN_,,* and R"+1 are of this form with '"
and {3 satisfying:

"'1<+1 = "'" + a2
( 1+{3,,),

{3"+1 = (1 +{3,,) 1(N-("+1)'

Conscquently, uN_/ = <b)N-i-l xN-i-l> j = 0,1, ... , N -1, i.e. both factorization
and complete separation occur. Processes for which the a posteriori variance
satisfies (4.7), and conditions under which complete separation occurs without
factorization are presently under investigation.
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