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ABSTRACT. Improved exact and approximate algorithms for the n-job two-machine mean finishing 
time flow-shop problem, n/2JF/P, are presented While other researchers have used a variety of 
approximate methods to generate suboptimal solutions and branch-and-bound algorithms to gen- 
erate exact solutmns to sequencing problems, thin work demonstrates the computatmnal effectiveness 
of couphng the two methods to generate solutmns with a guaranteed accuracy. The computational 
reqmrements of exact, approximate, and guaranteed accuracy algorithms are compared expem- 
mentally on a set of test problems ranging in size from 10 to 50 jobs The approach is readily apphca- 
ble to other sequencing problems 
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1. Introduction 

This paper presents improved exact and approximate algorithms for solving the classic 
n-job two-machine mean finishing time flow-shop problem, n/2/F/l~ [2]. In  this sequenc- 
ing problem, each job is assumed to consist of at most two distinct operations, where 
each operation can be performed on only one of two distinct machines. The processing 
time required by job i on machine j will be denoted by p , .  In  keeping with the flow-shop 
assumption that  the operations of each job are processed by the machines in the same 
order, we will assume that  each job completes its processing on machine 1 before it begins 
processing on machine 2. Permutat ion schedules result when each machine processes the 
jobs in the same order (permutation), with no unnecessary idle time between operations. 
When the mean of the job finishing times is used as the measure of scbedule performance, 
it is well known that  the class of permutation schedules is guaranteed to contain an opti- 
mal solution [2]. Although the mean finishing time criterion has not received as much 
at tention as the makespan (maximum job finishing time) criterion [1-5, 11], Ignall and 
Schrage [6] presented computational results for an exact branch-and-bound approach and 
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Krone and Steiglitz [9] applied local search techniques to the general m-machine case 
n /m/F / f t .  We will present improved exact and approximate algorithms for the two- 
machine problem and demonstrate the computational effectiveness of coupling local 
search and branch-and-bound to generate solutions with a guaranteed accuracy. 

2. Branch-and-Bound Exact Algorithms 

Exact branch-and-bound algorithms for combinatorial optimization problems whose 
solution space is the set of permutations of n objects have been characterized in our recent 
paper [8] by the sextuple (Bp,S,E,D,L,U), where 

B~ is the branching rule for permutation problems (fixed), 
S is the next node selection rule; 
E is the set of node elimination rules; 
D is the node dominance relation; 
L is the node lower-bound cost function; 
U is an upper-bound solution cost. 

We refer the reader to that  paper for precise definitions of these terms and an explicit 
description of a general class of branch-and-bound algorithms. 

Here we will be concerned with the following choices of parameters: 
1. S = LLBF~po (least-lower-bound). Select the currently active node with the least 

lower-bound cost. In  the case of ties, select the node that  was generated first. 
2. E ~ {U/DBAS,  U/DB, A S / D B } .  
(a) U / D B A S  (upper-bound tested for dominance of descendants of the branching 

node and members of the active set). Eliminate those descendants of tile branching node 
and those members of the active set whose lower-bound costs exceed the current upper 
bound U. 

(b) U / D B  (upper-bound tested for dominance of descendants of the branching node). 
Eliminate those descendants of the branching node whose lower-bound costs exceed the 
current upper bound U. 

(c) A S / D B  (active node set tested for dominance of descendants of the branching 
node). Eliminate those descendants of the branching node that are dominated by a 
member of the active set. 

3. D = Dis (Ignall and Schrage [6]). Let ~ry and ~r, be two nodes which represent par- 
tial schedules involving the same subset of jobs, P, and let F,(lr)  be the finishing time 
of job ~ on machine3 under the partial schedule 7r. Then (~ru, 7r,) E Drs (that is, ~r, domi- 
nates v~) if and only if (1) max~ce F~2(~-~) < max~cp F~2(~-~), and (2) ~ e ~  F,2(~r~) < 
~ e e  F~2(~-~). Note that  max~ee F~l(~y) = max~c~ F,i(~'~) = ~],eP P,1, since thereis no 
idle time between operations on the first machine. 

4. L = L~s (Ignall and Schrage [6]). This is the lower-bound function of Ignall and 
Schrage [6]. The reader is referred to their paper for details. 

5. Let U0rb) denote the least upper-bound solution cost known at the time ~rb is the 
current branching node. Then U(e) denotes the initial upper bound that appears in the 
sextuple specification of each algorithm. Here we will consider two possibilitms: 

(a) U(e) = oo, when no initial solution is given, 
(b) U(e) < oo, when some initial solution is given. 

3. Approximate A lgorzthms 

A. NONBACKTRACKING BRANCH-AND-BOUND. A tree search with no backtracking 
can be used to quickly generate a complete solution, whose cost then is an upper bound 
on the optimal cost. Such an algorithm results from choosing the following parameters: 
S = LLBelro, E = ~ ,  D = ~ ,  L = L~s, U(e) = oo, and limiting the number of active 
nodes to one. In  this case the least lower-bound descendant at each branching node be- 
comes the next branching node. This algorithm will be denoted by BBLB(1) ,  and is simi- 
lar to one described by Ashour [1]. 
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B. LOCAL NEIGHBORHOOD SEARCH. The local search approach to finding approxi- 
mate solutions to combinatorial problems has been described by many authors [10, 12, 13]. 
I ts  specific application to the flow-shop problem can be found in [7, 9]. The idea of such 
algorithms is to search from one solution in some neighborhood defined by a local trans- 
form~btion, adopting improvements as they are found, and continuing this process until 
no further local improvement is possible. This is possibly repeated from many different 
random starting solutions, and the best solution retained. This class of algorithms will 
be denoted by LNS( I ,  P, N)  (local neighborhood search), where (1) I is the method for 
choosing initial solutions, (2) P is the policy for searching the neighborhood and accept- 
ing irnprovements, and (3) N is the neighborhood searched for improvements. 

We will be concerned here with the following choices: 
1. (a) I = UPRS (uniform pseudorandom start), in which starting solutions are gen- 

erated using random permutations. 
(b) I = BBLB(1),  in which the single result of algorithm BBLB(1)  is used as the start. 
2. P = R F I  (random first improvement), in which the neighborhood is enumerated 

randomly and the first improvement encountered is accepted. 
3. (a) N = P S I  (backward single insertion) is the set of permutations (solutions) 

generated by inserting the job currently in position i after the job currently in position 3, 
( 2. For example, i = 2, j = 4 transforms solution abcde into solution acdbe. 
(b) N = FSI  (forward single insertion) is the set of permutations generated by in- 

serting the job currently in position, before the job currently in position j, i > j. For 
example, ~ = 4, 3 = 2 transforms solution abcde into solution adbce. 

(c) N = A P I 2  (adjacent pair interchange 2) is the set of permutations generated by 
first interchanging the jobs in positions i and z + 1, and then, if a second number j # 
is specified, interchanging the jobs then in positions3 and3 + 1. For example, ~ = 2, j = 
4, transforms abcde into acbed. Also, ~ = 2, j = 3 transforms abcde into acdbe. 

(d) N = P S I  U API2 .  
All of these neighborhoods are of order u 2 in size, denoted O(n'). 

4. Computational Results 

A. PROBLEM DATA. Twenty-five standard sets of random data, five sets for each 
of the problem sizes n = 5, 10, 15, 20, and 50, were used to test exact and approximate 
algorithms. The processing times, p , ,  were selected as independent integer samples from 
the uniform distribution prob {p, = r} = -~ for r = 1, .--  , 10. Rather than computing 
the mean finishing time, which may not be integer valued, the sum of the finishing times 
was adopted as an equivalent measure of schedule cost. 

B. EVALUATION Of APPROXIMATE TECHNIQUES. Local neighborhood search and 
nonbacktracking branch-and-bound were used to generate suboptimal solutions to the 
twenty-five test problems. In the first set of experiments, the local neighborhood search 
algorithm was used with parameters I = UPRS; P = RFI;  and the neighborhoods 
N = PSI ,  FSI ,  API2 ,  and B S I  0 API2 .  

Table I shows the best solution produced by each neighborhood and indicates the 
nmnber of times it was produced and the number of starting solutions used, i.e. # = 
nmnber of times best solution found/number of starting solutions used. The starred solu- 
tions have been proved optimal by an exact technique and the underlined solutions are 
the best known suboptimal solutions for those data sets. Problems of size n = 5 have not 
been included since they are relatively simple problems and all neighborhoods frequently 
produced the optimal solution for each data set. A comparison of the solution quality 
based on this small number of data sets shows no readily apparent differences between 
neighborhoods. No one neighborhood was uniformly better than any other on all data sets. 
In particular, it is interesting to note that P S I  0 A P I 2  is not uniformly better than B S I  

or API2.  
Branch-and-bound without backtracking, BBLB(1),  was also employed to generate 
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suboptimal solutions. The solutions generated by this heuristic were generally not as 
good as the local neighborhood search solutions, but they required less than half the 
computation time. The next step was to use these solutions as improved nonrandom 
starting solutions for local neighborhood search. LNS(BBLB(1), RFI, N) was tested with 
two neighborhood sets N = BSI  and FSI. For small problems (n < 15) we found that 
the solutions generated with these improved starting solutions were about the same as 
with l~he random starting solutions, but the improved start usually generated better 
solutions for the large problems (n = 20, 50). Also, the BSI  neighborhood produced uni- 
formly better solutions than FSI for the 50-job problems, but about the same quality 
for the smaller problems. The solutions are tabulated in Table I along with the optimal or 
best known solutions for each data set. 

When n < 15, the average time required to generate a locally optimal solution using 
LNS(UPRS,  RFI,  BSI)  was greater than the sum of the times required by BBLB(1) 
and LNS(BBLB(1), RFI, BSI). This suggests that a good heuristic for large mean 
finishing time flow-shop problems is to generate an improved starting solution using non- 
backtracking branch-and-bound and then to try to improve the solution with local neigh- 
borhood search. 

The average number of neighbors that are tested (selected and cost compared to base 
solution cost) before finding a local optimum can be used as a relative measure of execution 
time requirements for local search. This also measures the number of cost function evalua- 
tions performed For n-job In-machine flow-shop problems, each cost evaluation requires 
time that grows linearly with the product nm, since the finishing times of each of fl jobs 
on m machines must be computed by recursively building the permutation schedule until 
all n jobs have been assigned a starting time on each of m machines. Experimental results 
for our five problem sets indicate that the number of neighbors tested using LNS(UPRS,  
RFI, N) and LNS(BBLB(1), RFI, N) grows as O(n 2 ~) - O(n ~ 5), and the execution time 
as O(n 33) _ O(n3 7), when N = BSI, FSI, API2,  and BSI  U API2 Thus, the number of 
neighbors tested seems to grow slightly faster than the neighborhood size O(n~). Non- 
backtracking branch-and-bound always generates n(n - 1)/2 + 1 nodes, each requiring 
a lower-bound function evaluation; and consequently, the execution time increases as 
approximately O(n3). 

C. EVALUATION OF EXACT AND GUARANTEED ALGORITHMS. The branch-and-bound 
approach used by Ignall and Schrage [6] for the two-machine mean finishing time problem 
is equivalent to BB~ to be described below, except that they use LLBL~ro, breaking ties 
in the selection rule with a last-in-first-out policy, instead of our first-in-first-out policy. 
This change was found to have a negligible effect on the experimental results to be 
described. From the analysis in [8] we know that the computational requirements of this 
algocithm may be reduced, and cannot be increased, by adding upper-bound elimination 
rule U/DBAS to E. In addition it was shown that the computational requirements are a 
monotone nonincreasing function of the initml upper-bound cost U(e). The analysis in [8] 
is w~lid for any measure of computation that is a monotone nondecreasing function of (1) 
the total number of nodes generated, (2) the total number of nodes actually branched 
from, and (3) the size of the branched-from and active node sets at each stage of the 
algorithm. Measures based on these statistics are independent of the data structures, 
language, or computer used to implement the algorithm. Consequently, in addition to the 
measured CPU time, we have tabulated data on the maximum number of active nodes (a 
good measure of the storage required) and the total number of nodes generated (a very 
rough measure of the relative time required). The next set of computational results will 
show that the average computational requirements for the mean finishing time flow-shop 
problem can be significantly reduced by adding a slightly weaker version of rule U/DBAS 
to E and using a good suboptimal solution as the initial upper bound U(e). 

In our computational experiments, we assumed that the upper-bound cost at each 
branching node would be used only to eliminate the descendants of that branching node 
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and not the currently active set. This new rule is denoted by U/DB. U/DB is weaker 
than U/DBAS since an active node ira not eliminated by the upper bound when generated, 
i.e. L(r , )  ~ U(P(~-a)), where P(~-~) denotes the immediate ancestor of ~r~, may have 
L(~ra) > U(~rb) at a later branching node ~'b if an improved upper-bound solution was 
found. By not rechecking for possible dominance of the active set when the upper bound 
is improved, some unnecessary nodes may be on the active list and may be branched 
from. However, in our experiments, the initial upper-bound U(e) was usually an optimM 
solution and consequently U/DB and U/DBAS would eliminate the same nodes. Further- 
more, since we used the LLB selection rule exclusively, the set of branched-from nodes 
cannot include nodes with lower bound greater than the optimum cost ([8, Lem. 6]). 
Therefore, using U/DB rather than U/DBAS did not change the branched-from set. 
Now consider 

BB2 = (By, LLBv, vo, {AS/DB}, D~z, L,s, U~(e) = ~o), and 

BB1 = (Bp, LLBp,Po, {AS/DB, U/DB}, D,s, L,s, U~(e)), 

where Us(e) = best solution generated by LNS(BBLB(1), RFI, BSI). BB1 differs from 
BB2 by the addition of rule U/DB to the set of elimination rules and the use of a sobopti- 
real solution as the initial upper bound. The computational requirements of BB2 and BB~ 
are displayed in Table II .  T denotes the rule by which the algorithm terminated for each 
data set" R1 & Rule 1 for an optimal solution [8] (the upper-bound solution proved 
optimal); R2 & Rule 2 for an optimal solution [8] (the next branching node is a complete 
solution), ET ~ execution time equals or exceeds prespecified limit, EN & number of 
currently active nodes equals maximum active node limit. When termination occurs 
under ET or EN, the cost of the least lower-bound active node is listed as the final lower- 
bound cost. When termination occurs under R1 or R2, the final lower-bound cost is the 
cost of an optimal solution v*. 

BB~ and BB2 both terminated with optimal solutions (R1) for all problems of size n = 
10, but an examination of Table I I  shows that  the computational requirements of BB1 
are significantly less than BB2. The maximum-number-of-active-nodes statistic can be 
interpreted as the minimum storage needed to execute the algorithm. An average storage 
requirement for problems of a given size n was found by averaging this statistic. When 
n = 10 the average storage requirement for BB1 was only 15 percent of the average storage 
requirement for BB2; and the average measured execution time used for BBi was only 
13 percent of that  used for BB2. When the time required to generate the initial upper- 
bound solution is included (the time required by LNS(BBLB(1), RFI, BSI) for ten starts 
per data set), there is still an average savings of 76 percent. The improvement in execu- 
tion time and storage occurs because all descendants with lower-bound costs greater than 
upper-bound cost U are immedmtely eliminated by rule U/DB. These descendants never 
become active and it is unnecessary to test if they are dominated by existing active nodes 
under rule AS/DB. 

When the problem size was greater than ten, our preset storage and execution time 
limits were frequently exceeded. However, since the computational requirements of BB~ 
are less than or equal to the requirements of BB2, BB~ generally got closer to an optimal 
solution before termination. In some cases (problems 15-5 and 20-5), BBI reached an 
optimal solution while BB~ exceeded the computational limits. When both algorithms 
are terminated for exceeding storage or execution time limits, the final lower bound 
achieved by BBi is at least as great and frequently greater than the bound achieved by 
BB:. Because we are using the LLB branching rule, the active node with the least lower- 
bound cost is always the current branching node. This lower-bound cost, denoted by LB, 
together with the final upper bound U can be used to bracket the cost of an optimal solu- 
tion. This feature has not been exploited in the computational work of other researchers. 
Table I I  indicates brackets (U-LB)/U of 0.-2.3 percent for problems of size n = 15, 



112 W .  H .  K O H L E R  A N D  K ,  S T E I G L I T Z  

Z 

~J 

© 

0 

0 

0 

C~ 

ig 
i " 

o o 

o o cD o cD c,J o o o ~ c o  o o o o ~ ~ ~ ~ ~'~ 
~ j  . . . . . . . . . . . . . . . . . . . .  

.,~ ~ ~ 

oz ~ 

c 

II 

• LL  _.~ CS 

I i 

° °  

- -  . . , , , 

~ =  o . o . o ,  o o. o o ~ o o o ~ o o o o o o ~ 

m 

.~ co cu ~ ~ co cu ~ 
F " - ~  

. . . .  ~ ~  ~ ~  ~ ~  ~ ~  

o 

~=o ~ ~ ~" ~ 3 ~ ~" ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

b 

~ o o  
i.L.._1 c~ 

o ~ ~ o 

Q_ 

§ 
: x :  

o 



Algorithms for the Flow-Shop Problem n/2/F/ff 113 

0.-3.6 percent for problems of size n = 20, and 5.0-11.8 percent for problems of size 
n = 50. 

These experiments suggest that a good suboptimal solution should be obtained before 
attempting to generate an optimal solution with branch-and-bound. The use of elimina- 
tion rule U/DB together with a good initial upper-bound solution significantly reduces 
the necessary computation, and if the branch-and-bound algorithm exceeds the allowed 
storage or execution time limits, the known upper-bound solution and the least lower- 
bound active node nevertheless give a closs bracket on the cost of an optimal solution. 

D. BRACKETING WITH SUBOPTIMAL SOLUTIONS. When an optimal solution is not 
necessary, even more dramatic computational savings are possible. In this section we use 
the branch-and-bound algorithm to verify that a suboptimal solution exceeds the optimal 
cost by no more than a prespecified amount. This technique for achieving a prespecified 
bracket has been suggested by other authors and is discussed in [7]. We will again be using 
BB~, but now given prespeeified accuracy ratio r, 0 < r < 1, BB~ will be terminated at 
branching node ~rb if r. U(vb) _4 L(Trb). The cost f(v*) of an optimal solution qr* is then 
bracketed by r U(Trb) < L(m) _< f(~'*) < U(Trb). The case when r = 1 was discussed in 
the previous section. Table I] shows the computational requirements for BB~ when 
r = .95 (n = 10, 15, and 20) and r = .90 (n = 50). T = AB signifies that BB1 achieved 
the prespecified bracket. In most cases the bracket was achieved at the first branching 
step (the total number of nodes generated is then n + 1) and the required execution time 
was insignificant compared to the optimum producing branch-and-bound requirements. 
This is a result of the fact that the initial upper-bound solutions are optimal and the 
lower-bound function L generates a very close bound. When the bracket was tightened to 
r = .99, the average computational requirements were not significantly different from 
the optimal case, since both methods usually exceeded the allowed computational limits. 
However, on data sets where this was not the case, savings were achieved. 

5. Conclusions 

The computational results with the n/2/F/ff flow-shop problem indicate that computa- 
tional requirements for optimum producing branch-and-bound algorithms can be de- 
creased by using a good initial upper-bound solution together with an upper-bound 
dominance rule. The reductions are large enough so that the total computation (the 
computation required to obtain an initial upper-bound solution, plus the computation 
required by the optimum producing branch-and-bound algorithm) may be sigmficantly 
reduced by first computing a good suboptimal solution. Use of a good upper bound with 
optimum producing branch-and-bound is computationally competitive with approximate 
algorithms for problems as large as n = 20. 

When a suboptimal solution guaranteed to satisfy a prespecified bracket is sufficient, 
the branch-and-bound technique can be used to verify the quality of a suboptimal solu- 
tion or to generate another suboptimal solution satisfying the desired bracket. Brackets 
of 5-10 percent frequently result in dramatic computational savings over the optimum 
producing (0 percent) requirements. Applying local neighborhood search to the solution 
obtained from branch-and-bound without backtracking provides a good initial upper- 
bound solution. 
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