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This paper considers the static flowshop-scheduling problem with the objec- 
tive of minimizing, as a cost function, the mean job-completion time. Within 
the more general framework of combinatorial optimization problems, it defines 
a heuristic search technique-an approach that has been successful in the 
past in obtaining near-optimal solutions for problems that could not be solved 
exactly, either for lack of theory or because of exorbitant computational re-
quirements. The paper presents a two-phase algorithm: The first phase 
searches among schedules with identical processing orders on all machines; 
the second refines the schedule by allowing passing. Results of computer 
study are presented for a large ensemble of pseudorandom problems, and 
for two particular problems previously cited in the literature. The method 
is shown to provide solutions that are exceptionally low in cost, and superior 
to those provided by sampling techniques in the cases for which comparison 
is possible. Computation time is also discussed and is given in machine- 
independent terms. 

I-IF; PURI'OSE of this paprr is to present a heuristic method used for obtaining 
Tllear-optimal solutions to  large static flowshop-schrduling prob l~ms n i t h  a 
mean-flow-time cost miterion. The method of approach, referred to  here as 
heuvzstic programmzng, is applicable to combinatorial optimization problems in 
general, and was developed largely in the context of the travelling salesman problem 
by  REITERAND SHERNIANI~I More recently, has been and L1xr61. the method 
applied 115th some success to several other problem areas (for example, see references 
2, 5, and 9). 

The assumptions axid requirements of the static flowshop-scheduling problem 
considered hrrc are: 

1. The machine group consists of nz machines J f l ,  3f3, . . . , ?/I,, each perfonning a differ- 
ent function. 

2. 411 machines are available and ready to start processing at t =O.  

3. There are n independent jobs to be scheduled, identified by integers 1,2, . . ., n.  

4.  Each job consists of nz operations whose precedence structure is a strict ordering of 
the operat~ons, where, for each job, the first operation requires machine 311,the second opera- 
tion requires 1112, etc. 
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5. The required processing times (denoted t[i,j ]  for the it11 operation of the jth job) are 
known in advance. 

6. No interruption of an operatio11 is allowed-each nlust be scheduled into a single 
contiguous time interval. 

7. The cost of a schedule S ,  denoted by C(S), is the flow time averaged over the jobs, 
whcre flow time for a job is the time elapsed from t = O  until the completion of its mth opera- 
tion (the earliest time at which it may leave the system). 

A review of the flo~vshop scheduling problem can be found in CONWAY, MAX-
WELL, AND MILLER.['] Following their notation, an n-job, m-machine flowshop 
problem is abbreviated as an n / m  problem. 

The constraints of the flowshop problem do not dictate the order in which the 
jobs are talien by a particular machine and, in fact, this order may differ from one 
machine to another. If the same order is used by every machine, the resulting 
schedule is called order preserving. 

1. SAMPLING APPROACHES AND THEIR INFERENCES 

THEINVESTIGATION O F  HELLER[~]was one of the earliest attempts to understand 
the contributing factors to the cost of large flowshop schedules, and to evaluate 
the utility of a sampling technique. To this end, Heller computed histograms of 
finishing time for randomly sampled schedules for a particular 20/10 problem, 
comparing the distribution of finishing time for order-preserving schedules with 
that of the more general class, in which the order for each machine was generated 
independently. Finding the worst order-preserving schedule obtained far better 
than the best general schedule obtained, he concluded that the former represents a 
more attractive investment of computation although possibly excluding optimal 
schedules. Because the general schedules tend to include exorbitant delays, the 
conclusion carries over to mean flow time. 

The work of T\'uc,ENT~~' on schedule sampling by randomized dispatching con- 
siders the flowshop problem as a special case of the more general jobshop problem. 
His work presents results on sample problems whose data is available in the open 
literature; some of these sample problems are also used here. In connection with 
flowshop schedules, Nugent examined the structure of the best schedules and, 
based on these results, made several noteworthy observations concerning controlled 
departure from order-preservation that appear likely to improve upon schedules. 
On his schedules for the same 20/10 problem studied by Heller, he observes that 
they "did not strictly preserve order over the 10 machines, but rather specified 
occasional and local reversals of order on neighboring machines." In other words, 
jobs should be allowed to 'pass' each other as they move from one machine to the 
next. 

2. COMBINATORIAL OPTIMIZATION PROBLEMS AND HEURISTIC PROGRAMMING 

INTUITIVELY,COMBINATORIAL optimization problem is of the following nature: A 

given a structure that can be arranged in any one of a large but finite number of 
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ways, and some numerical data that allow a. 'cost' to be associated with each, 
design the structure so as to minimize the cost. For the forthcoming discussion 
of a heuristic program, the notion of such a problem is abstracted as below. 

A combzlzatorial optimization problem is a triple (S, X, f )  with the following con- 
notation: 

(a)  The solution space S=isl, s2, . . . , s ~ )is a finite set of feasible solutions that 
satisfy structural requirements of the problem and are thus candidates for opti- 
mality. 

(b) The parameter space X ;  each point xaX represents admissible 'data' for the 
problem. 

(c) The cost function f :  SXX+R where f (s, x) is the cost of solution s with 
parameter value x (R is the set of real numbers). 

A globally optimal solution (or simply an optimal solution) for parameter value 
r is a feasible solution s* such that f (s*, r )  _lf (s, c) for all seS. 

In  the sequel, x is assumed fixed through the optimization process; hence f (s, x) 
will be denoted simply by C(s). 

Based on the apparent structure of solutions, a 'perturbation' rule, callcd a local 
transformation, is designed, which allows a given solution to be transformed into 
any one of a set of alternative solutions. These alternatives may be thought of as 
neighboring the given solution in solution space. (Hence the use of the word 
'local.' A local transformation need not be localized within the solution structure- 
the notion of locality applies in solution space only.) Given this structure, the idea 
of local optimality follows naturally. 

A neighborhood structure on a solution space S is an undirected graph N on S.  
For each saS, the neighborhood of s, denoted N (s), consists of s and all points 

adjacent to s in N .  
A solution s is locally optimal in a neighborhood structure if C(s) 5C(s1 )  for 

every d in N (s). 
Locally optimal solutions can be exceptionally low in cost (and have a reason- 

able probability of being optimal) if the local transformation is well chosen. The 
goal of a heuristic program is to compute members of the set of locally optimal 
solutions as now described. To initiate the computation, a starting solution is 
chosen pseudorandomly. 

A pseudorandom starting algorithm is an algorithm that, for each call, generates 
a member of S so as to simulate some probability distribution over S. 

A heuristic program is an algorithm that, using a pseudorandom starting algo- 
rithm and a local transformation N, computes a sequence sl, s2, . . ., U(sl) of 
trial solutions such that: 

(1) sl is generated by the pseudorandom starting algorithm. 
(2) s i eN(~ i -~ )and C(si)<C(si-I), i = 2 ,  3, . . .. 
(3)  U(sl), the 'ultimate ~uccessor ' [~~ of sl, is locally optimal in N. 
The program terminates when local optimality of the current trial solution is 

verified by searching its neighborhood exhaustively. In  application to the flow- 
shop problem, incumbent solutions are replaced on a first-improvement-found 
basis. For each run of the program from a new starting solution sl, a sample of 
the local optima is computed. The program is usually used by making as many 
runs as resources allow, and taking the best of the results. 



Marfin J.  Krone and Kenneth Steiglifz 

3. APPLICATION TO THE FLOWSHOP PROBLEM 

3.1 Notation and Formalism 

Following conventional terminology, a schedule is called semiactive if no opera- 
tion in it can be continuously shifted forward in time, i.e., the schedule is 'compact.' 
The flowshop problem is reduced to a combinatorial one by considering as feasible 
solutions only semiactive schedules. Since all schedules are semiactive, a unique 
schedule with associated cost is implied given the processing times and the job 
processing order for each machine. (An algorithm for computing cost is given in 
the next section.) With this assumption, the following identification is adopted: 
A schedule for an n-job, m-machine jlowshop problem is an wlXn matrix S in which 
each row contains each of the integers 1, 2, . . . , n exactly once. 

The connotation of S is that is the job number of the job that is j th to be 
processed on machine Mi under schedule S, Note that, for fixed i, S defines (as a 
function of j )  a permutation of degree n that is the processing order for the jobs on 
machine Mi. This permutation is described by the i th row vector of S and is 
denoted by Si,.. 

In all other cases, the double subscript i,jrefers directly to the ith operation of 
job number j .  The following quantities are relevant: 

t[i, j] =operation processing time. 

s[i,j]=operation starting time in schedule. 

j[i,j]=operation completion time in schedule. 

The start and finishing times are those in the semiactive schedule represented by 
S. The cost (mean flow time) may then be expressed as 

C (S)  = ( l / n )  xjlpf [m, j]. 

As examples of the notation, and quantities to be used below, t[i, is the proc- 
essing time on the i th machine of the job scheduled jth in order on that machine; 
f[i- 1, Si,j]is the earliest time a t  which job Sijjis ready for processing of its ith 
operation ( i > l ) ;  f[i,Si,i-l]is the time a t  which Mi is free to take on job S,,i 
( j>  1 ) ;  a schedule is order preserving if S i , k =  S i , k  for all i,j, and k or, equivalently, 
Si,.= Sf,*for all i and j .  

3.2. Schedule-Cost Evaluation 

In  order to compute the cost of a schedule, it is necessary to form the schedule 
explicitly, assigning starting and finishing times to each operation. An algorithm 
for computing the cost C ( S )  of the (semiactive) schedule corresponding to S 
works in the following manner: 

1. Schedule job operations on the first machine in order given by XI,. with no 
idle time between operations. 

2. (a)  Performstep 2(b)  for i = 2 , 3 ,  . . ., m. 
(b) Schedule jobs on machine M, in the order given by St,=, starting job 

S,,, at the earliest feasible time, given by 
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max {f[i- 1, Xi, j], f[i, Si,j-I]), (j>l) 
s[i, = 

If [i- 1, S(,fI, ( j=1)  
and set f [i,j]=s[i,j]+t[i, j]. 

The algorithm consists of mn basic steps; each involves taking the maximum of 
two quantities already computed and adding an operation time to the result. 
Computation therefore increases in proportion to the size of the problem, but with 
a small constant of proportionality. 

3.3. Design of the Heuristic Program 

The program for flowshop scheduling is based primarily on the results of pre- 
liminary computational experiments that were concerned with observing the per- 
formance of a fairly general class of transformations on schedules in order to surmise 
transformations capable of finding improvements efficiently. Details ~f these 
experiments, together with more extensive treatment of topics discussed in this 
section, are given by Krone.I51 

Results of this investigation agreed strongly with conclusions drawn from sam- 
pling studies discussed in Section 1: that the set of order-preserving schedules 
should be privileged, but that consideration should be given to limited deviation 
from order-preservation with the possibility of further improvement. They also 
suggested a transformation rule that would fill the role of Nugent's "occasional 
and local reversals"; this appears in phase 2 of the optimization process discussed 
below. 

The heuristic program computes locally optimal schedules in two phases. In 
phase 1, search is confined to the set of order-preserving schedules; in phase 2, the 
schedule produced by phase 1is subject to deviation from uniform ordering. The 
two phases are independent, so that phase 2 can start from any order-preserving 
schedule, and phase 1 can use any local transformation defined on permutations. 

Phase 1 Optimization 

To start phase 1, S is defined pseudorandomly, with a uniform distribution 
over the set of order-preserving schedules, by the following algorithm. 

1. Generate a random permutation p of degree n. 
2. (a) Perform step 2 (b) for i =  1, 2, . . ., m. 

(b) Set S , , j = p ( j )  f o r j = l ,  2, . ..,n. 
3. Compute C(S)  using the cost-evaluation algorithm. 
Several transformation rules were suggested by the experimental results. The 

rule selected for further study, referred to as single insertion, may be stated thus: 
for any i and j such that 1 6 i < j g n ,  remove the j th  job in the sequence and rein- 
sert it in the i th position. For example, the transformation 

that moves the bold-face job to the space marked, corresponds to i = 4 ,  j =7  (i.e., 
the seventh job has been moved to the fourth position). 
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I t  has also been discovered that the number of calls to the cost-evaluation al- 
gorithm, and therefore the computation time, during phase l can be quite sensitive 
to the order in which neighborhoods are searched. This is determined by the 
exact manner in which indexing is done in program implementation. Letting 
ordered pairs (i, j )  denote single insertions as suggested above (where 1 $i< j 5n) ,  
the ordering imposed upon transformations by program indexing is 

(i,j ) <  (k, I) iff i<k ,  or i = k  and j<1. 

When an improvement is found, the corresponding values of i and j are recorded, 
and indexing continues from the next value (i, j + l ) ,  reverting to (1, 2) whenever 
the highest value (n- 1, n )  is reached. A permutation is therefore locally optimal 
upon rearrival a t  the point of last improvement. 

Phase 2 Optimization 

The second phase begins with the order-preserving schedule produced in phase 
1, and attempts to reduce C(S)  further by allowing deviations from uniform order- 
ing. 

The local transformation used in phase 2 consists of rearrangements of S of the 
following type: for any j, 1 S j S n -  1, and k, 2 Sk S m ,  interchange S,,, with S,,,+l 
for i = k ,  k+ l ,  . . ., m. The value of k is strictly nondecreasing through phase 2, 
with all such interchanges considered for each value of k before proceeding to the 
next value. In  effect, a different 'subneighborhood' is defined for each value of k, 
and checkout of each is completed before moving to the next. In  the following 
algorithm, step 2 searches a subneighborhood and step 3 moves to the next. 

1. Set k=2.  
2. (a) S e t j = l .  

(b)  If interchange of S,,,  with S,,,+1 for i=k, k+ l ,  . . . , m yields a schedule 
of lower cost, accept the change and return to part (a) .  If not, continue. 

(c) If j < n -  1, increasej by 1 and repeat part (b) ;  if j = n -  1,go to step 3. 
3. If k<nz, increase k by 1 and repeat step 2; if k=m, S is phase 2 optimal. 

Stop. 
Thus, for example, starting from the natural-order-preserving schedule for an 

8/5 problem, phase 2 might produce the schedule 

by the following transformations: interchange of positions 6 and 7 for the last 
three machines, then positions 3 and 4 for the last two machines, then positions 7 
and 8 for the last machine. These transformations correspond to the 'passing' or 
'local reversals' discussed earlier. 
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4. COMPUTATIONAL RESULTS 

4.1. Locally Optimal Schedules for Pseudorandom Problems 

For the statistical studies cited here, the algorithms described above were im- 
plemented in FORTRAK IV. An ensemble of 50 pseudorandom problems of size 
10/5 was developed, this size being large enough for the results to be typical of the 
heuristic program, yet small enough that large numbers of runs could be made 
economically. Processing times were uniformly distributed on the interval (0, 
1000) and truncated to integer values so that integer mode computation could be 
used. The choice of the uniform distribution is in keeping with established prac- 
tice in the literature on the flowshop problem. 

I.o 1.5
COST (NORMALIZED) 

Fig. 1. Cost distribution for pseudorandom order-preserving starting schedules. 

For the purpose of standardizing the results, an empirical optimal cost u.as 
established for each of the 50 problems in the ensemble, as follows. For e x h  
problem, twenty runs of the heuristic program were made; the best of the 20 pbase 
2 locally optimal schedule costs was taken as the empirical optimum and all 20 
samples were normalized to it. The costs of the corresponding pseudorandom 
starting schedules were similarly normalized to this empirical optimum and saved: 
these reflect a random sampling of order-preserving sched~ll~s. 

Figures 1 and 2 present histograms of the 1000 normalized costs computed as 
above; starting values are included in the histogram of Fig. 1 and phase 2 locally 
optimal costs in that of Fig. 2. Comparing the cost distribution of locally optimal 
schedules with that of the general population of order-preserving schedules, as re- 
flected in the starting costs, we can see that virtually all the locally optimal costs 
fall within the lower 0.3 percentile of the general population distribution. 

In  41 of the 50 problems, some improvement occurrcd in phase 2 of one or more 
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of the 20 runs; for the runs in which phase 2 produced some improvement, the 
average decrease in cost was about 0.66 percent of the cost a t  the end of phase 1. 
The average number of cost evaluations for these runs was approximately 128 for 
phase 1 and 38 for phase 2. 

Table I summarizes results set forth in this section and the next, and includes 
some additional information. 

4.2. Performance on Previously Explored Problems 

The performance of the heuristic program has been tested on two sample 
problems for which the processing times appear in published work: the 20/10 

1.0 1,05 
COST (NOR MALIZED) 

Fig. 2. Cost distribution for phase 2 locally optimal schedules. 

problem used by Heller in his random-sampling study (the first 20 of 100 jobs 
given in reference 3, Table I), and a 9/3 problem used by STORYAND WAGNERin 
studying integer programming (reference 10, Table 5-D). The figures given by 
Xugent[71 for the mean flow times of sample dispatching schedules for these prob- 
lems provide measuring marks. 

For the 9/3 problem, the best of 1300 samples of nondelay schedules formed 
by Nugent's probabilistic dispatching procedure had a mean flow of 45.78. Using 
a modified procedure that allowed controlled delay insertion, the best of 1000 
further samples had a cost of 44.11. For the same problem, the heuristic program 
was run 100 times; the best schedule produced, with a cost of 43.33, appeared 70 
times. (The second-best schedule, with a cost of 44.66, appeared 29 times, and 
one schedule had a cost of 45.0.) No improvement was produced by phase 2 on 
any of the 100 runs. The average number of cost evaluations was approximately 
109 in phase 1 and 16 in phase 2 (thc figure for phase 2 was al~vays 16, since this 
phase amounts to a checkout of all possible reversals with none actually done). 
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For the 20/10 problem, the best nondclay schcdulc of 1300 samples generated 
by Nugent had a cost of 98.75; further sampling of 100 delay schedules reduced the 
cost to  92.75. I n  20 runs of the heuristic program, the best phase 1optimal schedule 
had a cost of 88.8; the best phase 2 optimal schedule had a cost of 88.6 and resulted 
from a phase 1 optimal schedule whose cost was 89.45. The avcragc of the non- 
zero cost reductions in phase 2, as a percentage of the cost a t  the end of phase 1, 
was about 0.3 percent. Phase 1 required an average of 694 cost evaluations, and 
phase 2 an avcragc of 183. 

5. CONCLUSIONS 

PREVIOUSEXPERIENCE WITH the flowshop problem, together with experimental 
study of local transformations, aided the design of an efficient heuristic program. 

TABLE I 

SUMMARYOF COMPUTATIONALRESULTS 

Best mean Heuristic program results 
flow time by 
randomized Final schedule cost Avg. no. of 
dispatching cost 

Problem Source of data (Nugent [71) Phase phase 2 evaluations 

z~,"; 
Description 


Avg. im- 


Delay Best Avg. Best provement Phase Phase 
when 1 2 

nonzero 

Ensemble of 50 Pseudorandom - - - - - 0.66% 128 38 
10/5 problems 

9/3 Ref. 10, Table 45.78 44.11 43.33 43.66 43.33 Noneob- 108 16 
5-D served 

20/10 R e f . 3 T a b l e I  9 8 . 7 5 9 2 . 7 5 8 8 . 8  90.0 88.6 0.3% 694 183 

Execution time of the program is sensitive to the exact manner in which the neigh- 
borhood search is indexed. Almost all of the minimization of mean flow time is 
accomplished in phase 1, with phase 2 of the optimization process providing only 
slight improvement in general. However, for certain instances of processing times, 
the cost reduction in phase 2 can be appreciable, and this possibility should not 
be overlooked. 
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