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Time-gated Manakov spatial solitons are computationally universal
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We prove that time-gated Manak¢{+ 1)-dimensional spatial solitons can perform arbitrary computation in
a homogeneous medium with beams entering only at one boundary.
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[. INTRODUCTION general picture of the physical arrangement is shown in
Fig. 1.
It was shown in Ref.[1], using explicit solutions of The all-optical computation described in this paper joins a

Radhakrishnaret al. [2], that collisions of bright Manakov growing list of candidate alternatives to the paradigm of
solitons can be described by transformations of a complexsilicon-based chips, at least for specialized applications, in-
valued state which is the ratio between the two Manakowluding quantum computinfb], DNA computing[13], and
components. A NOT operation was described there, and flynamics based computing based on chads15.

was suggested that it might be possible to use these light-

light interactions to do general computation in a bulk me- Il. THE MODEL

dium, without interconnecting discrete components. This ]

would result in a “gateless” computer, one without spatially ~ 1he Manakov system consists of two coupled 3-NLS
fixed gates, and with no physically interconnected logical€duations

elements. We show in this paper that this is possible if we

use(1+1)-dimensional spatial solitons that are governed by 1020+ Auext 2] A2 ?+ 0215 91=0, (1)
the Manakov equations and if we are allowed to time gate
the beams input to the mediurtFor a recent review of op- 1021+ Oaxxt 2(]q1]%+ 92/ 92=0,

tical spatial solitons and their interactions, see Ref.)

We should emphasize tha_t although the model we USe i{hereq,=q(x,t) andg,=0g,(x,t) are two interacting op-
r_ne_ant t(_) reflect kno_wn physical ph_enomena, at Ie_ast in thgsg) componentsy. is a positive parameter, andandt are
limit of ideal behavior, the result is a mathematical one.grmalized space and time. Note that in ordertfay repre-
Practical considerations of size and speed are not consideregdnt the propagation variable, as in Manakov’s original paper
here, nor are questions of error propagation. In this sense thjg|, our variablesc andt are interchanged with those of Ref.
program of this paper is analogous to Fredkin and Toffli  [2]. Furthermore, in our picture of spatial solitons, the vari-
for ideal billiard balls, and Shdi5] for quantum mechanics. ablesx andt will represent the horizontal and vertical coor-
There are, however, several candidates for physical instamtinates of the medium, with being the direction of beam
tiation of the basic ideas in this paper, including photorefracpropagation.
tives[6—10], and semiconductor quantum well wave guides The system admits single-soliton, two-component solu-
[11]. Very recently, ideal Manakov solitons were also pro-tions that can be characterized by the complex nunkber
posed in quadratic media, via optical rectification cascading=Kg+i-K;, wherekg determines the energy of the soliton,
and the electro-optic effe¢i2]. andk; is the velocity, all in normalized units, and a complex

Although we are describing computation embedded in &tatep, constant between collisions, which is the ratio be-
homogeneous medium, and not interconnegatksin the  tween theq; andq, components. The two components can
usual sense of the word, we will nevertheless use the terrhe thought of as components in two directions of polariza-
gatesto describe prearranged sequences of soliton collisionton, but in the case of a photorefractive crystal are in fact
that effect logical operations. We will in fact adopt other two different uncorrelated beams.
computer terms to our purpose, suchvasng to represent Consider a two-soliton collision, and lk{ andk, repre-
the means of moving information from one place to anothersent the constant soliton parameters. petand p_ denote
andmemoryto store it in certain ways for future use. We will the respective soliton states before impact. Suppose the col-
proceed in the construction of what amounts to a completéision transformsp, into pgr, andp, into p, (see Fig. 2 We
computer in the following stages: First we will describe aassociaték; with the right-moving soliton, andé, with the
basic gate that can be used for FANOUT. Then will showleft-moving soliton.
how the same basic configuration can be used for NOT, and It turns out that the state change undergone by each col-
finally, NAND. Then we will describe ways to use time gat- liding soliton takes on the very simple form of a linear frac-
ing of the input beams to interconnect signals. The NANDtional transformationLFT) (also called bilinear or Moius
gate, FANOUT, and interconnect are sufficient to implementransformation[1]. The coefficients are simple functions of
any computer, and we conclude with a layout scheme for éhe state of the other soliton in the collision. Explicitly, the
general-purpose, and hence Turing-equivalent computer. THe-Ts are
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/t/ ml . FIG. 3. Colliding spatial solitons.
A o .
,//, 1 Pk \ Several properties of these transformations are derived in
4 o P Ref.[1], including the characterization of inverse operators,
3 P NN fixed points, and implicit forms. In particular, when viewed
P vy b EERY as an operator every soliton hasiamerse which will undo
results the effect of the operator on state. Note that this requires that

_ ) . .theinverse operator have the saknparameter as the origi-
FIG. 1. The general physical arrangement considered in th'?ﬁal a condition that will hold in our application.
paper. Time-gated beams of spatial Manakov solitons enter at the

top of the medium, and their collisions result in state changes that
reflect computation. Each solid arrow represents a beam segment in Ill. FANOUT

a particular state. . . o .
Figure 3 shows the usual picture of colliding solitons,

where in our case the two dimensions are spatial. It is con-

_ * *
_[(1=9)/p1+pilp+9pa/p] ' (2)  Venient for visualization purposes to turn the picture and

P2 gpLt+(1—g)p1+Lp7 adjust the scale so the axes are horizontal and vertical, as in
Fig. 4. We will use binary logic, with two distinguished,
where distinct complex numbers representing TRUE and FALSE,
K K* called 1 and 0, respectively. In fact, it turns out to be pos-
g=0g(ky ,kp) = 11Ky _ 2kir _ 3) sible to use complex 1 and O for these two state values, and
' Ko+ ki  kirtkpr—iA’ we will do that throughout this paper, but this is a conve-
nience and not at all a necessity. We will thus use complex
whereA=k,, —k,, is the velocity difference and states 1 and 0 and logical 1 and O interchangeably.
We construct the FANOUT gate by starting with a COPY
_[(@=h*)/p{ +p Ips+h*p /pf gate, implemented with collisions between three down-
PR= h* p1+(1—h*)p +1/pF ' (4) moving vertical solitons and one left-moving horizontal soli-
ton. (This was anticipated by a two-collision “MOVE" gate
where in Ref.[17]. The use of three collisions and a fixed actuator
makes more flexible gates possiblBigure 5 shows the ar-
h* =h*(kq,ky) =g(k,,k;). (5) rangement. The soliton state labeled in will carry a logical

value, and so be in one of the two states 0 or 1. The left-
We assume here, without loss of generality, thgt,kog moving soliton labeled actuator will be in the fixed state 0, as

>0. will be the case throughout this paper. The plan is to adjust
the (so fap arbitrary stateg andy so that out= in, justifying
Pl, k1 P;, k2 the name COPY. It is reasonable to expect that this might be
data
—} (,2
S
-l (E
8
p2 ) k2 pR’ kl - [9)
FIG. 2. A general two-soliton collision in the Manakov system. v v v
The complex numberp,, p_, po, andpg indicate the variable
soliton statesk, andk, indicate the constant soliton parameters. FIG. 4. Convenient representation of colliding spatial solitons.
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z y in To make a FANOUT gate, we need to recover the input,
which we can do using a collision with a soliton in the state
which is the inverse of 0, namely, [1]. Figure 6 shows the
complete FANOUT gate. Notice that we indicate collisions
with a dot at the intersection of paths, and require that the
continuation of the inverse soliton not intersect the continu-
ation ofzthat it meets. We indicate that by a broken line, and
out —— postpone the explanation of how this “wire crossing” is ac-
garbage complished. It is immaterial whether the continuation of the
inverse operator hits the continuationgfbecause it is not
FIG. 5. COPY gate. used later. We call such solitoggrbagesolitons.

actuator

garbage state=0

possible, because there are four degrees of freedom in the
two complex numberg andy, and two complex equations to IV. NOT AND ONE GATES

Values that satisfy these four equations in four unknowng v ) to produce a COPY and FANOUT gate, we can find
were obtained numerically. We will call them andyc. It 5 pair z,,y,) to get a NOT gate, mapping 0 to 1 and 1 to O;
appears that it is not always possible to solve these equgpng g pair £,,y,) to get ONE gate, mapping both 0 and 1 to
tions, and just when they do and do not have solutions re; These t,y) values are given in the Appendix.

mains a subject for future study. However, explicit solutions  \ye shouid point that the ONE gate in itself, considered as
h_ave peen found for_aII the cases used in this paper, and age one-input, one-output gate, is not invertible, and could
given in the Appendix. _ _ never be achieved by using the continuation of one particular
To more specific about the design problem, write &).  sqjiton through one, or even many collisions. This is because
as the leftmoving producp,=L(p1,p.), and similarly  g,ch transformations are always nonsingular linear fractional
write Eq. (4) aspr=R(p1,p). The successive left-moving {ransformations, which are invertiblé]. The transformation
products in Fig. 5 ard(in,0) andL[y,L(in,0)]. The out  of state from the input to the continuation ofs, however,
state is therR{z,L[y,L(in,0]}. The stipulation that 0 maps much more complicated and provides the flexibility we need
to 0 and 1 maps to 1 is expressed by the following twotg get the ONE gate. It turns out that this ONE gate will give
simultaneous complex equations in two complex unknownsys a row in the truth table of a NAND, and is critical for

realizing general logic.
R{z,L[y,L(0,0)]}=0, (6)

V. OUTPUT/INPUT CONVERTERS, TWO-INPUT GATES,

R{z,L[y,L(1,0]}=1. AND NAND

Using the symbolic manipulation programapLE it turns out To perform logic of any generality we must of course be
to be possible to solve for as a function ofy and then able to use the output of one operation as the input to an-
eliminatez from the equations, yielding one complex equa-other. To do this we need to convert logic (0/1) values to
tion in the one complex unknowy. This is then solved some predetermineriandy values, the choice depending on
numerically by grid search and successive refinement. Therne type of gate we want. This results in a two-input, one-
is no need for efficiency here, since we will require solutionsoutput gate.
in only a small number of cases. As we mention above, there As an important example, here is how a NAND gate can
is no guarantee that there are solutions, or that solutions atee constructed. We designzaconverter that converts 0/1
unigue; but using this method has yielded solutions in all thevalues to appropriate values af using the basic three-
cases needed for the constructions in this paper. collision arrangement shown in Fig. 5. For a NAND gate, we
map 0 toz;, thez value for the ONE gate, and map 12g,

Z¢ Ye in the z value for the NOT gate. Similarly, we constructya
converter that maps O tg; and 1 toy,. Thesez andy
converters are used on the fanout of one of the inputs, and
the resulting two-input gate is shown in Fig. 7. Of course
thesez andy converters requirg andy values themselves,

. which are again determined by numerical seafsbe the
mnverse :
state = €O Appendix.

The net effect is that when the left input is 0, the other
input is mapped by a ONE gate, and when it is 1 the other
input is mapped by a NOT gate. The only way the output can
be 0 is if both inputs are 1, thus showing that this is a
NAND gate. Another way of looking at this construction is
that the 2<2 truth table of(left input) X (right inpud has as

FIG. 6. FANOUT gate. its 0 row a ONE gate of the columri% 1), and as its 1 row

actuator
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from output other input data data

fanout g 1 g ; 1

actuator actuato}‘

z converter y converter S _1_l_t_,
} { i — (a) (b)
z

y in FIG. 8. (a) When entered from the right and properly timed, the

1 actuator actuator pulse hits all three data pulses, as indicated in the projec-
¢ tion at the bottom(b) When entered from the left and properly

i timed, the actuator pulse misses two data pulses and hits only the
V rightmost data pulse, as indicated in the projection at the bottom.

out We can overcome this difficulty by sending the actuator
FIG. 7. A NAND gate, using converter gates to couple copies Ofpulse from _the left instead of th_e right. _Timing it appropri-
one of its inputs to itz andy parameters. ately garly it can be made t(_) miss the f|_rst two data pulses,
and hit the third, as shown in Fig(l8. It is easy to check
a NOT gate of the columnél 0). that if the velocity of the right-moving actuator solitons is

The importance of the NAND gate is that it imiversal algebraically above that of the data solitons by the same

[18]. That is, it can be used with interconnects and fanouts tg¢mount that the velocity of the data solitons is algebraically

construct any other logical function. Thus we have showrfP0Ve that of the left-moving actuator solitons, the same
that with the ability to “wire” we can implement any logic state transformations will result. For example, if we choose

using the Manakov model. the velocities of the data and left-moving actuator solitons to

We note that other choices of input converters result i€ *1 and—1, we should choose the velocity of the right-
direct realizations of other gates. Using input converters thaf?oVing actuator solitons to be 3. This is really a conse-
convert 0 and 1 toZ,,y,) and (z,,y,), respectively, results duence of the fa_tct that thg and h parameters in the trans-
in a truth table with first row(0 1) and second rowl 0), an  formation equations depend only on the difference in the
XOR gate. Converting 0 and 1 ta{,y.) and (z;.yy), re- velocities of the colliding solitonfsee Eqs(3) and(5)].
spectively, results in an OR gate, and so on.

VII. WIRING

VL. TIME GATING Having shown that we can perform FANOUT and

We next take up the question of interconnecting the gate)/AND. it remains only to show that we can “wire” gates so
described above, and begin by showing how the continuatiof'@t any outputs can be fed to any inputs. The basic method
of the input in the COPY gate can be restored without affect-
ing the other signals. In other words, we show how a simple Memory
“wire crossing” can be accomplished in this case.

The key flexibility in the model is provided by assuming &
that input beams can be time gated; that is, turned on and off.

When a beam is thus gated, a finite segment of light is cre- ‘ Y ’
ated that travels through the medium. We can think of these
finite segments as finite light pulses, and we will call them
simply pulsesin the remainder of this paper. l V

Figure 8a) shows the basic three-collision gate imple- L
mented with pulses. Assuming that the actuator and data f:"
pulses are appropriately timed, the actuator pulse hits all .--~~ ™~
three data pulses, as indicated in the projection below the #ctvater |
space-space diagram. The problem is that if we want a later
actuator pulse to hit the right-most data pu(se invert the FIG. 9. The frame of this figure is moving down with the data
state, for example, as in the FANOUT gat# will also hit  pulses on the left. A data pulse in memory is operated on with a
the remaining two data pulses because of the way they mushree-collision gate actuated from the left, and the result deposited
be spaced for the earlier three collisions. to the upper right.

016608-4
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FIG. 10. A data pulse is copied to the upper right, this copy is
copied to the upper left, and the result put at the top of memory. FIG. 11. The introduction of a second speed makes true
The original data pulse can then be restored with an inverse pulSeANOUT possible. For simplicity, in this and the next figure, data
and copied to the left in the same way. and operator pulses are indicated by solid dots, and thigerator

pulses are not shown. The paths of actuator pulses are indicated by
for doing this is illustrated in Fig. 9. We think of data as dashed lines.

stored in the down-moving pulses in a column, which we can

think of as “memory.” Th.e observer moves with this frame, 3 COPY operation for FANOUT, two diagonals are avail-
so the data appears stationary. able, one from the lower left to the upper right, and the other
Pulses that are horizontal in the three-collision gate$rom the lower right to the upper left. Thus, two copies can
shown in previous figures will then appear to the observer te made, as was just illustrated. However, when a data pulse
move upward at inclined angles. It is important to notice thag deposited in the memory column as a result of a logic
these upward diagonally moving pulses are evanescent in O@eration, the logical operation itself uses at least one diag-
picture (and hence their paths are shown dashed in the figonal, which leaves at most one free. This makes a FANOUT
ure). That is, once they are used, they do not remain in they the outputof a gate impossible with the current scheme.
picture with a moving frame and hence cannot interfere with  a simple solution to this problem is to introduce another
later computations. However, all vertically moving pulsesspeed, using velocities 0.5, say, in addition ta- 1. This
remain stationary in this picture. effectively provides four rather than two directions in which
Once a diagonal trajectory is used for a three-collisiony py|se can be operated on, and allows true FANOUT and
gate, reusing it will in general corrupt the states of all thegeneral interconnections. Figure 11 shows such a FANOUT;
stationary pulses along that diagonal. However, the originajhe data pulse at the lower left is copied to a position above
data pulse(gate input can be restored with a pulse in the jt ysing one speed, and to another position, above that, using
state inverse to the actuator, either along the same diagonghother.
as the actuator, provided we allow enough time for the result Finally, a complete NAND gate is shown in Fig. 12. The
(the gate output, a stationaryulse to be used, or along the  gate can be thought of as composed of the following steps.

other diagonal. _ _ _ Input 2 is copied to the upper left, and that copy trans-
Suppose we want to start with a given data pulse in the

memory column and create two copies above it in the v, g
memory column. Figure 10 shows a data pulse at the lower \“"3utput
left being copied to the upper right with a three-collision
COPY gate, initiated with an actuator pulse from the left. ,,e?’ %,
This copy is then copied again to the upper left, back to a N ooff" %
waiting z pulse in the memory column. After the first copy is 1' <
used, an inverse pulse can be used along the lower left to ( A P
upper right diagonal to restore the original data pulse. The & N
restored data pulse can then be copied to the left in the same e (\4/0/ ,,’\
way, to a height above the first copy, say, and thus two “S, \\0?/ e
copies can be created and deposited in memory above the OOQ’}/
original. in2\,‘0'\: )
v, .
VIIl. A SECOND SPEED, AND FINAL FANOUT AND in 6‘3,»
NAND i NCY

There is one problem still remaining with a true  FIG. 12. Implementation of a NAND gate. A second speed will
FANOUT: When an original data pulse in memory is used inbe necessary to use the output.
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output
T | Lo "~ %0,
FIG. 13. Conventional diagrammatical representation of the ““\\ Al ‘::—
NAND gate. e
formed by az converter to the upper right, placing thpulse IR /,—"'
for the NAND gate at the top of the figure. inputs _|.--~
After the copy of input 2 is used, input 2 is restored with
an inverse pulse to the upper left. FIG. 14. Implementation of an XOR gate with NAND gates and
Input 2 is then transformed to the upper right by @on- ~ COPY operations. The results are deposited above the inputs in the
verter. data column. Two speeds are necessary to achieve the fanout.
Input 1 is copied to the upper right, to a position colinear
with the z- andy-converted versions of the other input. portional to the square of the number of gates.
A final actuator pulse converts tlagulse at the top to the The “program” consists of down-moving andz opera-
output of the NAND gate. tor pulses, entering at the top with the down-moving data,
Figure 13 shows a diagrammatic representation of thisnd actuator pulses that enter from the left or right at two
gate using the usual logic symbol for NAND. different speeds. In the frame moving with the data, the data

Note that the output of the NAND has used two diago-and operator pulses are stationary and new results are depos-
nals, which again shows why a second speed is needed if wted at the top of the memory column. In the laboratory
are to use the NAND’s output as an input to subsequenframe the data pulses leave the medium downward, and new
logical operations. Thg operator pulses, middle components results appear in the medium at positions above the old data,
in the three-collision COPY and converter gates, are noat the positions of newly enteringpulses. Figure 14 shows
shown in the figure, but room can always be made for thena concrete example of a composite logical operation, an
to avoid accidental collisions by adding only a constantXOR gate—the SUM bit of a half adder—implemented in
amount of space. the conventional way with NAND gatg¢49] and COPY op-

erations.

IX. UNIVERSALITY

- X. DISCUSSION
It should be clear now that any sequence of three-collision

gates can be implemented in this way, copying data out of We have shown that in principle any computation can be
the memory column to the upper left or right, and performingperformed by shining time-gated lasers into a completely
NAND operations on any two at a time in the way shown inhomogeneous nonlinear optical medium. This result should
the previous section. The computation can proceed in &e viewed as mathematical, and whether the physics of vec-
breadth-first manner, with the results of each successiv®r soliton collisions can lead to practical computational de-
stage being stored above the earlier results. Each additionaices is a subject for future study. As with all idealized con-
gate can add only a constant amount of height and width tstructions, we have left to consider questions of cumulative
the medium, so the total area required is no more than preerrors, the possibility of signal restoration, and the precise

TABLE |. Parameters for gates when soliton speeds are 1.

Gate z y
COPY —0.248967310.6215821x | 2.28774216-0.0131815% |
NOT —0.17620885-0.3817063 | 0.07888703 1.2645065X |
ONE —0.4550147% 1.3763422%K | 1.43987094-0.6406134% |
Z-CONV 0.31838068 0.4307873% | —0.04232346-2.1753661X |
Y-CONV 1.37286955-0.8849550K | —0.58835758-0.1802693% |

016608-6
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TABLE Il. Parameters for gates when soliton speeds are 0.5.

Gate z y

COPY —0.37207373- 0.3358669% | 2.37693200-0.0532533& |
NOT 0.94553089- 0.1889368X | —1.03849583- 0.0042373% |
ONE —0.69063643-0.8605022& | 1.43963916-0.4688667X |
Z-CONV —0.25624747 0.3894700% | 2.7151426% 0.9813491% |
Y-CONV 0.30654598-1.0769131%K | —0.31697772 0.7570514& |

enough physical realization of the model itself. Both experi-B. Chazelle, C. DeBassio, M. Jakubowski, D. Lewis, A. Sa-
mental and theoretical work are needed to answer these qudsai, and especially M. Segev and R. Squier.

tions. With regard to the economy of the model, the question
of whether time gating is necessary, or even whether two
speeds are necessary, is open.

We note that the result described here differs from the 1. Speed 1 operators
universality results for the ideal billiard ball modef], the
Game of Life[20], and lattice gassd®1], for example, in
that no internal mirrors or structures of any kind are use
inside the medium. To the author’s knowledge, whether in
ternal structure is necessary in these other cases is open.

Finally, we remark that the model used is reversible an

APPENDIX

Table | showsz andy parameters that implement the five
asic gates discussed in this paper: COPY, NOT, ONE,
-CONV (thezinput converter used in the NAND gatend

Y-CONV (they input converter used in the NAND gat& he
omplex numbers are given to eight decimal places, which is
dissipationless. The fact that some of the gate operation ufficient to produce the required target values of the gates to

lized tin th | ble | i tradi t least about six decimal places. Throughout we use the
realized are no ”1 emse Yes reversibie 1S not a contra ICéomplex states 1 and O to represent TRUE and FALSE, re-
tion, since extra, “garbage” solitong4] are produced that

save enouah state o run the comoutation backwards spectively kg=5 for all solitons, and the speeds are all 1, so
9 P ' the difference in velocitieg, in collisions isA=2.

ACKNOWLEDGMENTS 2. Speed 0.5 operators

The author is indebted to the following for helpful discus- Table Il gives the same information for speeds of 0.5
sions and suggestions: C. Anastassiou, A. Appel, S. ArorgdA=1).

[1] M. H. Jakubowski, K. Steiglitz, and R. Squier, Phys. Rev. E Science Trends in Optics and Photonics 40, Technical Digest

58, 6752(1998. (OSA, Washington, D.C. 2000p. 46.
[2] R. Radhakrishnan, M. Lakshmanan, and J. Hietarinta, Phyq.11] J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhme-
Rev. E56, 2213(1997). diev, Phys. Rev. Lett76, 3699(1996.
[3] G. I. Stegeman and M. Segev, Sciera®&s6, 1518(1999. [12] V. V. Steblina, A. V. Buryak, R. A. Sammut, D. Zhou, M.
[4] E. Fredkin and T. Toffoli, Int. J. Theor. Phy21, 219(1982. Segev, and P. Prucnal, J. Opt. Soc. Am(t® be published

[5] P. W. Shor, in35th Annual Symposium on Foundations of [13] L. M. Adleman, Scienc®66, 1021(1994.
Computer SciencEEE Press, New York, 1994pp. 20-22.  [14] S. Sinha and W. L. Ditto, Phys. Rev. Le#l, 2156(1998.

[6] M. Shih and M. Segev, Opt. LetR1, 1538(1996. [15] S. Sinha and W. L. Ditto, Phys. Rev. @D, 363(1999.
[7] D. N. Christodoulides, S. R. Singh, M. I. Carvalho, and M. [16] S. V. Manakov, Sov. Phys. JETE8, 248 (1974).
Segev, Appl. Phys. Let68, 1763(1996. [17] M. H. Jakubowski, Ph.D. thesis, Princeton University, 1998.
[8] Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides,[18] M. M. Mano, Computer Logic DesigiiPrentice-Hall, Engle-
Opt. Lett.21, 1436(1996. wood Cliffs, NJ, 1972
[9] C. Anastassiou, M. Segev, K. Steiglitz, J. A. Giordmaine, M.[19] F. J. Mowle,A Systematic Approach to Digital Logic Design
Mitchell, M. Shih, S. Lan, and J. Martin, Phys. Rev. Lé&8, (Addison-Wesley, Reading, MA, 1976
2332(1999. [20] E. R. Berlekamp, J. H. Conway, and R. K. GMYinning Ways

[10] C. Anastassiou, K. Steiglitz, D. Lewis, M. Segev, and J.A. for Your Mathematical PlaygAcademic, New York, 1982
Giordmaine, inConference on Quantum Electrons and Laser [21] R. Squier and K. Steiglitz, Complex Syst. 297 (1993.

016608-7



