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Time-gated Manakov spatial solitons are computationally universal

Ken Steiglitz
Computer Science Department, Princeton University, Princeton, New Jersey 08544

~Received 31 July 2000; published 21 December 2000!

We prove that time-gated Manakov~111!-dimensional spatial solitons can perform arbitrary computation in
a homogeneous medium with beams entering only at one boundary.
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I. INTRODUCTION

It was shown in Ref.@1#, using explicit solutions of
Radhakrishnanet al. @2#, that collisions of bright Manakov
solitons can be described by transformations of a comp
valued state which is the ratio between the two Manak
components. A NOT operation was described there, an
was suggested that it might be possible to use these li
light interactions to do general computation in a bulk m
dium, without interconnecting discrete components. T
would result in a ‘‘gateless’’ computer, one without spatia
fixed gates, and with no physically interconnected logi
elements. We show in this paper that this is possible if
use~111!-dimensional spatial solitons that are governed
the Manakov equations and if we are allowed to time g
the beams input to the medium.~For a recent review of op
tical spatial solitons and their interactions, see Ref.@3#.!

We should emphasize that although the model we us
meant to reflect known physical phenomena, at least in
limit of ideal behavior, the result is a mathematical on
Practical considerations of size and speed are not consid
here, nor are questions of error propagation. In this sense
program of this paper is analogous to Fredkin and Toffoli@4#
for ideal billiard balls, and Shor@5# for quantum mechanics
There are, however, several candidates for physical ins
tiation of the basic ideas in this paper, including photorefr
tives @6–10#, and semiconductor quantum well wave guid
@11#. Very recently, ideal Manakov solitons were also pr
posed in quadratic media, via optical rectification cascad
and the electro-optic effect@12#.

Although we are describing computation embedded i
homogeneous medium, and not interconnectedgatesin the
usual sense of the word, we will nevertheless use the t
gatesto describe prearranged sequences of soliton collis
that effect logical operations. We will in fact adopt oth
computer terms to our purpose, such aswiring to represent
the means of moving information from one place to anoth
andmemoryto store it in certain ways for future use. We w
proceed in the construction of what amounts to a comp
computer in the following stages: First we will describe
basic gate that can be used for FANOUT. Then will sh
how the same basic configuration can be used for NOT,
finally, NAND. Then we will describe ways to use time ga
ing of the input beams to interconnect signals. The NAN
gate, FANOUT, and interconnect are sufficient to implem
any computer, and we conclude with a layout scheme fo
general-purpose, and hence Turing-equivalent computer.
1063-651X/2000/63~1!/016608~7!/$15.00 63 0166
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general picture of the physical arrangement is shown
Fig. 1.

The all-optical computation described in this paper join
growing list of candidate alternatives to the paradigm
silicon-based chips, at least for specialized applications,
cluding quantum computing@5#, DNA computing@13#, and
dynamics based computing based on chaos@14,15#.

II. THE MODEL

The Manakov system consists of two coupled 3-N
equations

iq1t1q1xx12m~ uq1u21uq2u2!q150, ~1!

iq2t1q2xx12m~ uq1u21uq2u2!q250,

whereq15q1(x,t) andq25q2(x,t) are two interacting op-
tical components,m is a positive parameter, andx and t are
normalized space and time. Note that in order fort to repre-
sent the propagation variable, as in Manakov’s original pa
@16#, our variablesx andt are interchanged with those of Re
@2#. Furthermore, in our picture of spatial solitons, the va
ablesx and t will represent the horizontal and vertical coo
dinates of the medium, witht being the direction of beam
propagation.

The system admits single-soliton, two-component so
tions that can be characterized by the complex numbek
5kR1 i •kI , wherekR determines the energy of the solito
andkI is the velocity, all in normalized units, and a comple
stater, constant between collisions, which is the ratio b
tween theq1 andq2 components. The two components c
be thought of as components in two directions of polari
tion, but in the case of a photorefractive crystal are in f
two different uncorrelated beams.

Consider a two-soliton collision, and letk1 andk2 repre-
sent the constant soliton parameters. Letr1 and rL denote
the respective soliton states before impact. Suppose the
lision transformsr1 into rR , andrL into r2 ~see Fig. 2!. We
associatek1 with the right-moving soliton, andk2 with the
left-moving soliton.

It turns out that the state change undergone by each
liding soliton takes on the very simple form of a linear fra
tional transformation~LFT! ~also called bilinear or Mo¨bius
transformation! @1#. The coefficients are simple functions o
the state of the other soliton in the collision. Explicitly, th
LFTs are
©2000 The American Physical Society08-1
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r25
@~12g!/r1* 1r1#rL1gr1 /r1*

grL1~12g!r111/r1*
, ~2!

where

g5g~k1 ,k2!5
k11k1*

k21k1*
5

2k1R

k1R1k2R2 iD
, ~3!

whereD5k1I2k2I is the velocity difference and

rR5
@~12h* !/rL* 1rL#r11h* rL /rL*

h* r11~12h* !rL11/rL*
, ~4!

where

h* 5h* ~k1 ,k2!5g~k2 ,k1!. ~5!

We assume here, without loss of generality, thatk1R ,k2R
.0.

FIG. 1. The general physical arrangement considered in
paper. Time-gated beams of spatial Manakov solitons enter a
top of the medium, and their collisions result in state changes
reflect computation. Each solid arrow represents a beam segme
a particular state.

FIG. 2. A general two-soliton collision in the Manakov syste
The complex numbersr1 , rL , r2, and rR indicate the variable
soliton states;k1 andk2 indicate the constant soliton parameters
01660
Several properties of these transformations are derive
Ref. @1#, including the characterization of inverse operato
fixed points, and implicit forms. In particular, when viewe
as an operator every soliton has aninverse, which will undo
the effect of the operator on state. Note that this requires
the inverse operator have the samek parameter as the origi
nal, a condition that will hold in our application.

III. FANOUT

Figure 3 shows the usual picture of colliding soliton
where in our case the two dimensions are spatial. It is c
venient for visualization purposes to turn the picture a
adjust the scale so the axes are horizontal and vertical, a
Fig. 4. We will use binary logic, with two distinguished
distinct complex numbers representing TRUE and FALS
called 1 and 0, respectively. In fact, it turns out to be po
sible to use complex 1 and 0 for these two state values,
we will do that throughout this paper, but this is a conv
nience and not at all a necessity. We will thus use comp
states 1 and 0 and logical 1 and 0 interchangeably.

We construct the FANOUT gate by starting with a COP
gate, implemented with collisions between three dow
moving vertical solitons and one left-moving horizontal so
ton. ~This was anticipated by a two-collision ‘‘MOVE’’ gate
in Ref. @17#. The use of three collisions and a fixed actua
makes more flexible gates possible.! Figure 5 shows the ar
rangement. The soliton state labeled in will carry a logic
value, and so be in one of the two states 0 or 1. The l
moving soliton labeled actuator will be in the fixed state 0,
will be the case throughout this paper. The plan is to ad
the~so far! arbitrary statesz andy so that out5 in, justifying
the name COPY. It is reasonable to expect that this migh

is
he
at
t in

FIG. 3. Colliding spatial solitons.

FIG. 4. Convenient representation of colliding spatial soliton
8-2
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possible, because there are four degrees of freedom in
two complex numbersz andy, and two complex equations t
satisfy: that out be 1 and 0 when in is 1 and 0, respectiv
Values that satisfy these four equations in four unknow
were obtained numerically. We will call themzc andyc . It
appears that it is not always possible to solve these e
tions, and just when they do and do not have solutions
mains a subject for future study. However, explicit solutio
have been found for all the cases used in this paper, and
given in the Appendix.

To more specific about the design problem, write Eq.~2!
as the left-moving productr25L(r1 ,rL), and similarly
write Eq. ~4! asrR5R(r1 ,rL). The successive left-moving
products in Fig. 5 areL(in,0) andL@y,L(in,0)#. The out
state is thenR$z,L@y,L(in,0#%. The stipulation that 0 map
to 0 and 1 maps to 1 is expressed by the following t
simultaneous complex equations in two complex unknow

R$z,L@y,L~0,0!#%50, ~6!

R$z,L@y,L~1,0!#%51.

Using the symbolic manipulation programMAPLE it turns out
to be possible to solve forz as a function ofy and then
eliminatez from the equations, yielding one complex equ
tion in the one complex unknowny. This is then solved
numerically by grid search and successive refinement. Th
is no need for efficiency here, since we will require solutio
in only a small number of cases. As we mention above, th
is no guarantee that there are solutions, or that solutions
unique; but using this method has yielded solutions in all
cases needed for the constructions in this paper.

FIG. 5. COPY gate.

FIG. 6. FANOUT gate.
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To make a FANOUT gate, we need to recover the inp
which we can do using a collision with a soliton in the sta
which is the inverse of 0, namely,̀ @1#. Figure 6 shows the
complete FANOUT gate. Notice that we indicate collisio
with a dot at the intersection of paths, and require that
continuation of the inverse soliton not intersect the contin
ation ofz that it meets. We indicate that by a broken line, a
postpone the explanation of how this ‘‘wire crossing’’ is a
complished. It is immaterial whether the continuation of t
inverse operator hits the continuation ofy, because it is not
used later. We call such solitonsgarbagesolitons.

IV. NOT AND ONE GATES

In the same way we designed the complex pair of sta
(zc ,yc) to produce a COPY and FANOUT gate, we can fi
a pair (zn ,yn) to get a NOT gate, mapping 0 to 1 and 1 to
and a pair (z1 ,y1) to get ONE gate, mapping both 0 and 1
1. These (z,y) values are given in the Appendix.

We should point that the ONE gate in itself, considered
a one-input, one-output gate, is not invertible, and co
never be achieved by using the continuation of one partic
soliton through one, or even many collisions. This is beca
such transformations are always nonsingular linear fractio
transformations, which are invertible@1#. The transformation
of state from the input to the continuation ofz is, however,
much more complicated and provides the flexibility we ne
to get the ONE gate. It turns out that this ONE gate will gi
us a row in the truth table of a NAND, and is critical fo
realizing general logic.

V. OUTPUT ÕINPUT CONVERTERS, TWO-INPUT GATES,
AND NAND

To perform logic of any generality we must of course
able to use the output of one operation as the input to
other. To do this we need to convert logic (0/1) values
some predeterminedz andy values, the choice depending o
the type of gate we want. This results in a two-input, on
output gate.

As an important example, here is how a NAND gate c
be constructed. We design az converter that converts 0/1
values to appropriate values ofz, using the basic three
collision arrangement shown in Fig. 5. For a NAND gate, w
map 0 toz1, thez value for the ONE gate, and map 1 tozn ,
the z value for the NOT gate. Similarly, we construct ay
converter that maps 0 toy1 and 1 toyn . Thesez and y
converters are used on the fanout of one of the inputs,
the resulting two-input gate is shown in Fig. 7. Of cour
thesez and y converters requirez and y values themselves
which are again determined by numerical search~see the
Appendix!.

The net effect is that when the left input is 0, the oth
input is mapped by a ONE gate, and when it is 1 the ot
input is mapped by a NOT gate. The only way the output c
be 0 is if both inputs are 1, thus showing that this is
NAND gate. Another way of looking at this construction
that the 232 truth table of~left input!3~right input! has as
its 0 row a ONE gate of the columns~1 1!, and as its 1 row
8-3
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KEN STEIGLITZ PHYSICAL REVIEW E 63 016608
a NOT gate of the columns~1 0!.
The importance of the NAND gate is that it isuniversal

@18#. That is, it can be used with interconnects and fanout
construct any other logical function. Thus we have sho
that with the ability to ‘‘wire’’ we can implement any logic
using the Manakov model.

We note that other choices of input converters result
direct realizations of other gates. Using input converters
convert 0 and 1 to (zc ,yc) and (zn ,yn), respectively, results
in a truth table with first row~0 1! and second row~1 0!, an
XOR gate. Converting 0 and 1 to (zc ,yc) and (z1 ,y1), re-
spectively, results in an OR gate, and so on.

VI. TIME GATING

We next take up the question of interconnecting the ga
described above, and begin by showing how the continua
of the input in the COPY gate can be restored without affe
ing the other signals. In other words, we show how a sim
‘‘wire crossing’’ can be accomplished in this case.

The key flexibility in the model is provided by assumin
that input beams can be time gated; that is, turned on and
When a beam is thus gated, a finite segment of light is c
ated that travels through the medium. We can think of th
finite segments as finite light pulses, and we will call the
simply pulsesin the remainder of this paper.

Figure 8~a! shows the basic three-collision gate impl
mented with pulses. Assuming that the actuator and d
pulses are appropriately timed, the actuator pulse hits
three data pulses, as indicated in the projection below
space-space diagram. The problem is that if we want a l
actuator pulse to hit the right-most data pulse~to invert the
state, for example, as in the FANOUT gate!, it will also hit
the remaining two data pulses because of the way they m
be spaced for the earlier three collisions.

FIG. 7. A NAND gate, using converter gates to couple copies
one of its inputs to itsz andy parameters.
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We can overcome this difficulty by sending the actua
pulse from the left instead of the right. Timing it appropr
ately early it can be made to miss the first two data puls
and hit the third, as shown in Fig. 8~b!. It is easy to check
that if the velocity of the right-moving actuator solitons
algebraically above that of the data solitons by the sa
amount that the velocity of the data solitons is algebraica
above that of the left-moving actuator solitons, the sa
state transformations will result. For example, if we choo
the velocities of the data and left-moving actuator solitons
be 11 and21, we should choose the velocity of the righ
moving actuator solitons to be13. This is really a conse-
quence of the fact that theg and h parameters in the trans
formation equations depend only on the difference in
velocities of the colliding solitons@see Eqs.~3! and ~5!#.

VII. WIRING

Having shown that we can perform FANOUT an
NAND, it remains only to show that we can ‘‘wire’’ gates s
that any outputs can be fed to any inputs. The basic met

f

FIG. 8. ~a! When entered from the right and properly timed, t
actuator pulse hits all three data pulses, as indicated in the pro
tion at the bottom.~b! When entered from the left and proper
timed, the actuator pulse misses two data pulses and hits only
rightmost data pulse, as indicated in the projection at the botto

FIG. 9. The frame of this figure is moving down with the da
pulses on the left. A data pulse in memory is operated on wit
three-collision gate actuated from the left, and the result depos
to the upper right.
8-4
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TIME-GATED MANAKOV SPATIAL SOLITONS ARE . . . PHYSICAL REVIEW E 63 016608
for doing this is illustrated in Fig. 9. We think of data a
stored in the down-moving pulses in a column, which we c
think of as ‘‘memory.’’ The observer moves with this fram
so the data appears stationary.

Pulses that are horizontal in the three-collision ga
shown in previous figures will then appear to the observe
move upward at inclined angles. It is important to notice t
these upward diagonally moving pulses are evanescent in
picture ~and hence their paths are shown dashed in the
ure!. That is, once they are used, they do not remain in
picture with a moving frame and hence cannot interfere w
later computations. However, all vertically moving puls
remain stationary in this picture.

Once a diagonal trajectory is used for a three-collis
gate, reusing it will in general corrupt the states of all t
stationary pulses along that diagonal. However, the orig
data pulse~gate input! can be restored with a pulse in th
state inverse to the actuator, either along the same diag
as the actuator, provided we allow enough time for the re
~the gate output, a stationaryz pulse! to be used, or along the
other diagonal.

Suppose we want to start with a given data pulse in
memory column and create two copies above it in
memory column. Figure 10 shows a data pulse at the lo
left being copied to the upper right with a three-collisio
COPY gate, initiated with an actuator pulse from the le
This copy is then copied again to the upper left, back t
waiting z pulse in the memory column. After the first copy
used, an inverse pulse can be used along the lower le
upper right diagonal to restore the original data pulse. T
restored data pulse can then be copied to the left in the s
way, to a height above the first copy, say, and thus t
copies can be created and deposited in memory above
original.

VIII. A SECOND SPEED, AND FINAL FANOUT AND
NAND

There is one problem still remaining with a tru
FANOUT: When an original data pulse in memory is used

FIG. 10. A data pulse is copied to the upper right, this copy
copied to the upper left, and the result put at the top of mem
The original data pulse can then be restored with an inverse p
and copied to the left in the same way.
01660
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a COPY operation for FANOUT, two diagonals are ava
able, one from the lower left to the upper right, and the ot
from the lower right to the upper left. Thus, two copies c
be made, as was just illustrated. However, when a data p
is deposited in the memory column as a result of a lo
operation, the logical operation itself uses at least one d
onal, which leaves at most one free. This makes a FANO
of the outputof a gate impossible with the current schem

A simple solution to this problem is to introduce anoth
speed, using velocities60.5, say, in addition to61. This
effectively provides four rather than two directions in whic
a pulse can be operated on, and allows true FANOUT
general interconnections. Figure 11 shows such a FANO
the data pulse at the lower left is copied to a position ab
it using one speed, and to another position, above that, u
another.

Finally, a complete NAND gate is shown in Fig. 12. Th
gate can be thought of as composed of the following ste

Input 2 is copied to the upper left, and that copy tran

s
y.
se

FIG. 11. The introduction of a second speed makes t
FANOUT possible. For simplicity, in this and the next figure, da
and operator pulses are indicated by solid dots, and they operator
pulses are not shown. The paths of actuator pulses are indicate
dashed lines.

FIG. 12. Implementation of a NAND gate. A second speed w
be necessary to use the output.
8-5
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KEN STEIGLITZ PHYSICAL REVIEW E 63 016608
formed by az converter to the upper right, placing thez pulse
for the NAND gate at the top of the figure.

After the copy of input 2 is used, input 2 is restored w
an inverse pulse to the upper left.

Input 2 is then transformed to the upper right by ay con-
verter.

Input 1 is copied to the upper right, to a position coline
with the z- andy-converted versions of the other input.

A final actuator pulse converts thez pulse at the top to the
output of the NAND gate.

Figure 13 shows a diagrammatic representation of
gate using the usual logic symbol for NAND.

Note that the output of the NAND has used two diag
nals, which again shows why a second speed is needed
are to use the NAND’s output as an input to subsequ
logical operations. They operator pulses, middle componen
in the three-collision COPY and converter gates, are
shown in the figure, but room can always be made for th
to avoid accidental collisions by adding only a consta
amount of space.

IX. UNIVERSALITY

It should be clear now that any sequence of three-collis
gates can be implemented in this way, copying data ou
the memory column to the upper left or right, and performi
NAND operations on any two at a time in the way shown
the previous section. The computation can proceed i
breadth-first manner, with the results of each succes
stage being stored above the earlier results. Each additi
gate can add only a constant amount of height and widt
the medium, so the total area required is no more than

FIG. 13. Conventional diagrammatical representation of
NAND gate.
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portional to the square of the number of gates.
The ‘‘program’’ consists of down-movingy andz opera-

tor pulses, entering at the top with the down-moving da
and actuator pulses that enter from the left or right at t
different speeds. In the frame moving with the data, the d
and operator pulses are stationary and new results are de
ited at the top of the memory column. In the laborato
frame the data pulses leave the medium downward, and
results appear in the medium at positions above the old d
at the positions of newly enteringz pulses. Figure 14 show
a concrete example of a composite logical operation,
XOR gate—the SUM bit of a half adder—implemented
the conventional way with NAND gates@19# and COPY op-
erations.

X. DISCUSSION

We have shown that in principle any computation can
performed by shining time-gated lasers into a complet
homogeneous nonlinear optical medium. This result sho
be viewed as mathematical, and whether the physics of v
tor soliton collisions can lead to practical computational d
vices is a subject for future study. As with all idealized co
structions, we have left to consider questions of cumulat
errors, the possibility of signal restoration, and the prec

e

FIG. 14. Implementation of an XOR gate with NAND gates a
COPY operations. The results are deposited above the inputs in
data column. Two speeds are necessary to achieve the fanout
TABLE I. Parameters for gates when soliton speeds are 1.

Gate z y

COPY 20.2489673120.621582123I 2.2877421010.013181523I
NOT 20.1762088510.381706303I 0.0788870321.264506543I
ONE 20.4550147121.376342273I 1.4398709410.640613493I
Z-CONV 0.3183806820.430787353I 20.0423234012.175366123I
Y-CONV 1.3728695510.884955013I 20.5883575820.180269393I
8-6
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TABLE II. Parameters for gates when soliton speeds are 0.5.

Gate z y

COPY 20.3720737320.335866943I 2.3769320010.053253363I

NOT 0.9455308910.188936813I 21.0384958310.004237333I

ONE 20.6906364320.860502263I 1.4396391010.468866793I

Z-CONV 20.2562474720.389470073I 2.7151426110.981349103I

Y-CONV 0.3065459811.076913173I 20.3169777220.757051483I
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.5
enough physical realization of the model itself. Both expe
mental and theoretical work are needed to answer these q
tions. With regard to the economy of the model, the ques
of whether time gating is necessary, or even whether
speeds are necessary, is open.

We note that the result described here differs from
universality results for the ideal billiard ball model@4#, the
Game of Life @20#, and lattice gasses@21#, for example, in
that no internal mirrors or structures of any kind are us
inside the medium. To the author’s knowledge, whether
ternal structure is necessary in these other cases is ope

Finally, we remark that the model used is reversible a
dissipationless. The fact that some of the gate operat
realized are not in themselves reversible is not a contra
tion, since extra, ‘‘garbage’’ solitons@4# are produced tha
save enough state to run the computation backwards.
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APPENDIX

1. Speed 1 operators

Table I showsz andy parameters that implement the fiv
basic gates discussed in this paper: COPY, NOT, ON
Z-CONV ~thez input converter used in the NAND gate!, and
Y-CONV ~they input converter used in the NAND gate!. The
complex numbers are given to eight decimal places, whic
sufficient to produce the required target values of the gate
at least about six decimal places. Throughout we use
complex states 1 and 0 to represent TRUE and FALSE,
spectively,kR55 for all solitons, and the speeds are all 1,
the difference in velocitieskI in collisions isD52.

2. Speed 0.5 operators

Table II gives the same information for speeds of 0
(D51).
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