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Encoding o f Analog Signals for 
Binarv Symmetric Channe ls 

A. J. BERNSTEIN, MEMBER, IEEE, K. STEIGLITZ, MEMBER, 

Absfracf-Various encoding schemes are examined from the point 
of view of minimizing the meau  magni tude error of a  signal caused 
by  transmission through a  binary symmetric channel.  A necessary 
property is developed for optimal codes for any  binary symmetric 
channel  and  any  set of quantization levels. The  class of optimal 
codes is found for the case where the probability of error is small 
but realistic. This class of codes includes the natural number ing and  
some unit distance codes,  among  which are the Gray codes.  

I. INTRODUOTI~N 

w 

ITH THE INTRODUCTION of PCM systems 
for telemetry and voice communication, the prob- 
lem of transmitting samples of an analog signal 

over a binary channel has become increasingly important. 
The natural way to code 2” signal levels for an n-bit 
binary code is to use the binary expansion of i-l for the 
ith signal level (the natural numbering). This is usually 
the code used, and it is often tacitly assumed [l]-[3] that 
this is optimum in some sense, with respect to the signal 
error caused by bit errors in the binary channel. On the 
other hand, it is argued that the unit distance codes [4], 
with their adjacency properties, are particularly well 
suited for coding analog signals. It is not clear which, if 
either, of these is best for different channel error rates 
and for different arrangements of signal levels. 

It is the purpose of this paper to establish the optimal- 
ity of a  class of codes which includes the natural codes 
and some unit distance codes (among which are the Gray 
codes) under practical levels of error rate in the binary 
channel and for a  mean magnitude error criterion. This 
complements recent results [5],’ [6] which show the opti- 
mality of these codes when only single errors in a word 
are considered. 

II. DERIVATION OF THE MEAN MAGNITUDE ERROR 

We will assume that the 2” quantization levels of the 
signal 

are equally probable, and that an n-bit binary word is 
used to code each of these levels. This is a reasonable 
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assumption in many cases and ensures that the source 
has maximum entropy. We  will call the 2” levels, k,, a  
k-vector. 

Now consider the process of assigning each number ki 
to a vertex of the n-cube, starting with k, and working se- 
quentially to k,“. Call the vertex assigned ki the ith vertex. 
Let rii be the number of vertex assigned to signal levels 
which are j-distant neighbors of the ith vertex when 
only the first i signal levels have been assigned. This rii 
matrix (1 5 i 5  2”, 1 < j 5  n) characterizes the code 
completely for our purposes, since, as we shall see, it 
can be used to calculate the mean magnitude error. 

Since each of the previous i-l vertex enters into the 
ith row of the ri i matrix by adding a 1 to exactly one 
column, it follows that 

$Ti’ = i - 1. 

It also follows that the sum of the jth column of the rii 
matrix will be the total number of j-connections on the 
n-cube: 

Now consider the component of the mean magnitude 
error caused by j-errors. In the final assignment, the ith 
vertex has rii j-neighbors which are not greater than kc, 

and [(?) -Tii] j-neighbors which are not smaller than 

k,. It follows that, in the computation of the mean magni- 
tude error due to j-errors, k, will have the coefficient 

rii - [c) - lij] =  2rii - ("j)' 

Hence the average value of a  j-error will be the sum of 
all the I& with this weight, divided by the total number 
of j-connections on the n-cube: 

1 2” 2”-’ 0 3 CL i-1  2rii - 01 3 ki. 

Assuming that the channel is a  binary symmetric channel 
with probability of error p, we see that the probability 
of a  j-error occurring in an n-bit word is 

0 3  p’(1 - py-‘. 
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Hence the mean magnitude error caused by all errors is 

which reduces to 

- ~ [l - (1 - ~)“I ~ ki. (2) 
i-1 

When p = 0, the mean magnitude error is zero. Ex- 
panding E in a power series in p about p = 0 yields 

higher order terms in p. 

For sufficiently small p, the first-order term determines 
the mean magnitude error. Since this linear term in- 
volves only the rit, one can think of this as the component 
of the error caused by single errors only. 

III. HARPER CODES 

Consider thecfollowing algorithm for numbering the 
vertexes of the n-cube. 

Algorithm 

Let the first vertex be arbitrary. Having numbered 
vertexes 1, 2, . = . , 2, let the 2 + 1st vertex be an un- 
numbered vertex which has the most numbered one 
distant neighbors. 

Those codes generated by assigning k, to the ith vertex 
numbered by the algorithm will be called Harper codes. 
These include the natural code mentioned in the Intro- 
duction. The following results concerning this algorithm 
will be needed. 

Lemma 1 
An array consisting of the first 1 vertexes numbered 

by the algorithm contains more one connections between 
vertexes within the array than any other array of 1 
vertexes, where 1 < 2”. 

Proof: The proof is exactly the same as in [5], except 
that a strict inequality is verified at each step. 

Lemma 2 

All Harper codes have the same rii matrix, and hence 
the same mean magnitude error. 

Proof: This is obvious for the first column of the rii 
matrix by the nature of the algorithm. Let I (1 < I 5 2”) 
have the binary expansion 

1 = 2”’ + 2”’ + . . . + 2”’ (s* > s2 > * - * > s,) . 

Then Harper [5] has shown that the array consisting of 
the first 1 vertexes numbered by the algorithm consists 
of a sequence of subcubes of dimension s, to s,, such that 
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each subcube is in the shadow of every larger subcube. 
A shadow of a subcube is any adjacent subcube. Since 
this structure determines the rii matrix, the lemma 
follows. 

Theorem 

Harper codes minimize the linear coefficient of (3). 
Proof: See [5] and [6]. 
From the above theorem one can draw the conclusion 

that, for a given n, the Harper codes have minimum mean 
magnitude error for all p < E for some E > 0. Let $(n) 
be the largest such value of E. for a code of n dimensions. 
G(n) will then be the largest value of p for which there 
does not exist a code C, and a k-vector such that C has a 
smaller mean magnitude error than a Harper code for the 
given k-vector. One of the main purposes of this paper 
is to find a lower bound on $(n) that corresponds to 
practical error rates, and hence to justify the use of Harper 
codes for p that are not vanishingly small. 

IV. PROPERTIES OF OPTIMAL CODES 

Consider an array V of 1 vertexes vl, v2, * . . , v, of the 
n-cube. The origin A of such an array of vertexes is that 
vertex whose ith coordinate ai is zero if the majority of 
points have a zero in that coordinate, or one if the majority 
of points have a one in that coordinate. If the number of 
zeros and ones are equal, ai will arbitrarily be chosen 
to be zero. Let the ith dimension xi divide the n-cube into 
two half-cubes. Then the array is said to be one-di- 
mensionally stable if, and only if, for each vertex vi in 
the half-cube xi = di, the corresponding vertex in the 
half-cube xi = ai (i.e., that vertex whose coordinates 
differ from those of vi in only the ith position) is also a 
member of the array where 1 < i < n. A code is said to 
be one-dimensionally stable if its first I vertexes form a 
one-dimensionally stable array, where 1 _< I _< 2”. It is 
easily shown that the origin is always contained in a one- 
dimensionally stable array. Since we are interested only 
in the mutual distances between points, and since these 
distances remain the same if the ith coordinate of every 
point in the array is complemented, it is clear that, by 
appropriate complementations, we can cause the origin 
of the array to be specified by aj = 0 for 1 5 i 5 n. We 
will denote this vertex by A’. In this special case, the 
structure of a one-dimensionally stable set of points is 
easily visualized. If vi is a member of such an array, then 
every vertex obtained by setting ones to zeros in the 
coordinates of vj is also a member of the array. 

Consider a one-dimensionally stable array V of 1 vertexes 
VI, 212, * * * , vI with origin A. Let dimensions i and j divide 
the n-cube into quadrants. Let V’ be the subset of V 
consisting of those vertexes in the quandrant xi = ai, 
xi = di, and let V” be the subset of V consisting of those 
vertexes in the quadrant xi = ai, xi = 6;. Then V is 
two-dimensionally stable in coordinates i and j if, and 
only if, either the subset obtained by complementing the 
ith and jth coordinate of each vertex in V’ is contained 
in V”, or vice versa. V is two-dimensionally stable if, 
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and only if, it is two-dimensionally stable in every pair 
of coordinates. A code is said to be two-dimensionally 
stable if its first I vertexes form a two-dimensionally stable 
array, where 1 5 1 I 2”. 

If the origin of V is A’, the above condition can be 
modified so that the structure of a two-dimensionally 
stable array is easily visualized. In this case, if vi is a 
member of such an array, then every vertex obtained by 
shifting ones to the right in the coordinates of vi is also 
a member of V. Thus, if a two-dimensionally stable array 
contains the vertex (1 0 0 1 0), then the following set of 
points must also be in the array. It should be remembered 
that a two-dimensionally stable array is, by definition, 
also one-dimensionally stable. 

(0 1 0 1 0) (1 0 0 0 0) 
(0 0 1 1 0) (0 1 0 0 0) 
(1 0 0 0 1) (0 0 1 0 0) 
(0 1 0 0 1) (0 0 0 1 0) 
(0 0 1 0 1) (0 0 0 0 1) 
(0 0 0 1 1) (0 0 0 0 0). 

For any code which is not two-dimensionally stable, 
it can be shown’ that there exists a code with smaller 
mean magnitude error for any k-vector and any p, 0 < 
p < 0.5. Thus the code which gives the smallest mean 
magnitude error for a given k-vector and a given p must 
be a two-dimensionally stable code. It can be shown that 
every Harper code is two-dimensionally stable. 

An example of a code which is two-dimensionally stable 
but which is not a Harper code is the code which assigns 
the vertexes of the n-cube to the k-vector as follows: k, 
is assigned to the vertex of weight zero, k, through k,+l 
are assigned to the vertexes of weight one in numerical 
order (i.e., to 1, 2, 4, . . . , 2”-‘, respectively), k,+z through 

“e,+n+1 
are assigned to the vertexes of weight two in 

numerical order (i.e., to 3, 5, 6, 9, . * . , 2”-’ + 2”-‘, re- 
spectively), etc. This code has been called the star code. 
In addition to the star code, there exists a large class of 
two-dimensionally stable codes which essentially fall 
between the star and the Harper codes in their encoding 
schemes. 

It has been shown that, for p small enough, the Harper 
codes minimize the mean magnitude error for all k- 
vectors. It is not true, however, that the Harper codes 
are optimal in all situations. For example, consider the 
k-vector with 256 elements satisfying 

kj = 0 l<i<9 

kj = 1 10 5 i i 256. 

It can be shown that, for p 2 0.37, the star encoding 
gives a smaller mean magnitude error. Although the above 
k-vector is rather degenerate, it points to the existence 
of many other nondegenerate k-vectors for which the 
star code is better than the Harper code for large p. It 
should be noted that the authors have found no counter- 

2 See Appendix. 

example to the optimality of the Harper codes for n less 
than 8. Harper codes have been proven optimal for all p 
and all k-vectors for n < 4. 

V. A LOWER BOUND ON l;(n) 

We will now determine a lower bound on P(n). For all 
p less than this bound, the Harper codes will minimize 
the mean magnitude error for any k-vector. In order to 
obtain the bound, the expression for the mean magnitude 
error using a code C is rewritten as 

d on ran n 
EC = & mg Ak,[ 2 2 rFipi(l - P)‘-~ 

-i=m j=l 

where 

- 3(2” - m  + l)(l - (1 - p),>“) 1 (4) 

Ak; = k, - k,-1 i#l 
(5) 

Ak, = k,. 

A typical term in this summation:is 

$3 g p’(1 - p)‘-’ 2 rFj 
i=m+1 

- gi (2” -&m)(l - (1 - p),>“>, (6) 

and this is seen to be the mean magnitude error which 
results when C is used to encode the k-vector 

ki = 0 l_<iim 
(7) 

ki = 1 m  < i < 2”. 

Such a k-vector with m  in the range 1 5 m  5 2” will be 
called a (0, l)-vector. It is seen that the expansion (4) 
is a weighted sum of the errors resulting from using C to 
encode all possible (0, l)-vectors. The weights in the 
expansion are t.he Akd of (5). 

It has been shown that, for p sufficiently small, the 
Harper codes provide the best encoding of each such 
(0, l)-vector. Let EC(K) be the mean magnitude error 
which results when C is used to encode the k-vector K. 
Let H denote a Harper code. Let 6(n) be the largest 
value of p for which there does not exist a code C and a 
(0, l)-vector M  such that EC(M) is less than EH(M) 
when p 5 P(n). It then follows from (4) that, for all p 
less than or equal $(n), the Harper codes are best for 
arbitrary k-vectors. Let (7) be the vector M. Since the 
sum of the elements in the jth column of the rii matrix 
is the same constant for all codes, it follows that the 
error (6) depends only on cyD1 rii where 1 5 j 5 n. 
Since EC(M) # EH(M) for some p, it follows that 

for some j. If these sums were equal for j = 1, then 
~~~, r,.: would be maximum by Lemma 1. There is es- 
sentially only one configuration of m  vertexes with this 
property-the configuration of m  vertexes obtained using 
the algorithm. From this it would follow that equality 
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holds in (8) for all j, which is impossible, since EC(M) # 
EH(M). Hence, 

For p less than or equal to 3(n), we have that EC(M) - 
EH(M) 2 0, or, from (6) 

Separating the single from the multiple errors, we have 

But, from (9), 

p(l - py jGg+, (Cl - cl> 2 PO - PY (12) 

which puts a lower bound on the left-hand side of (11). 
We can bound the right-hand side of (11) from above by 
obtaining 

But ’ 

max 
m  

Since ~~~1 r; is fixed for any 112, and since 

(14) 

tighter than (14), to give better values of this bound. 
Since most physical channels, when approximated by a 
binary symmetric model, have a value of p less than 
10e4, and since signals are not generally quantized into 
more than 2’ levels, it follows from Table I that, for 
most practical situations, Harper codes are optimal. 

By noting that Bi < 2”-l 3 and using just the first 
0 

term in the summation of (17), we can approximate the 
lower bound on $(n) by 1/n22”-’ for large n. 

VI. OPTIMAL UNIT DISTANCE CODES 

Since unit distance codes appear to be well suited for 
coding analog signals [4], it is interesting to determine 
the class of unit distance codes which are Harper codes. 
It will be shown below that every one-dimensionally 
stable unit distance code is a Harper code. The proof is 
by induction. Consider the assignment for the first 2’ 
vertexes. For 1 = 1, the assignment for any one-di- 
mensionally stable unit distance code satisfies the algo- 
rithm for a Harper code. Assume that the assignment 
of the first 2’ vertexes for any one-dimensionally stable 
unit distance code satisfies the algorithm for a Harper 
code. This implies that the first 21 vertexes fill an I sub- 
cube X,. The next vertex assigned must be in a subcube 
S, adjacent to X0. The first vertex i, i > 2’ + 1, which is 
not assigned in S, must be in a shadow of S,. But, in 
order that the code be one-dimensionally stable, all 
vertexes in S, must have been previously assigned. This 
implies that the first 2’+l vertexes fill an 1 + 1 subcube. 
Since the order in which the vertexes in S, are assigned 
can be any order which is allowed for S,, and since each 
of these orders satisfies the algorithm for a Harper code, 
it follows that every one-dimensionally stable unit distance 

where [x] is the largest integer smaller than X, we have 
code is a Harper code. 

that 
An example of a one-dimensionally stable unit distance 

code is the Gray code shown in Table II for n = 3. 

m: jg+l (6 - &I} TABLE I 

“3 Low;, &nd on @ (n) 

4 0. Ii6 
The right-hand side of (1.5) can be obtained for all j, 
1 < i 5 n directly from the rii matrix for the Harper 
codes. Let 

Bi = rn: {[T (?)I - zrz}. (16) 

5 0.028 

7” 
0.011 
4.4 x 10-s 

” 

l.!) x IO-3 
0.82 x 10-s 
0.36 x 10-3 

Then, P(n) is greater than the smallest positive value of 
p satisfying 

TABLE II 

kl 000 

p(1 - $-l = & Bd(l - PY.- (17) 
kz 001 
kz 011 
k, 010 

In-Table I, the lower bound on p(n) is given for values 
of n up to n = 10. It should be noted that, for n = 3, 4, 
and 5, a bound on cy-, rFi was used which is slightly 

ks 
ka 
h 
ks 

110 
111 
101 
100 
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VII. CONCLUSION versed. That is, k, is reassigned to v, and k, to v,. 

In this paper, we have examined the effectiveness of 
various encoding schemes in minimizing the mean magni- 
tude error of a signal caused by transmission through a 
binary symmetric channel. A necessary property, called 
two-dimensional stability, that all optimal codes for any 
binary symmetric channel must possess has been de- 
veloped. The binary symmetric channel with small error 
probability has been considered in detail. It has been 
shown that, for this channel, Harper codes are optimal. 
This is a class of codes which is essentially equivalent to 
the natural numbering system, and which includes certain 
types of unit distance codes. A bound on the probability 
of error in the channel has been developed such that, for 
all channels with smaller error probability, the Harper 
codes are optimal. This bound applies to most practical 
situations. 

It should be pointed out that there are a large number 
of problems connected with this work which have not 
as yet been considered. Best codes for other error criteria 
are not known. For example, it can be shown that Harper 
codes do not necessarily minimize the mean square error, 
even when p is arbitrarily small. The use of redundancy 
in signal encoding has not been considered. More generally, 
the problem of finding the best code word length n, given 
the statistics of the signal and the bit rate of the channel, 
has not been considered. The solution of this general 
problem would certainly involve taking into account 
quantization error as well as error caused by channel 
noise. 

APPENDIX 

Consider a typical term (6) of the expansion (4) for the 
mean magnitude error, which results when C is used to 
encode an arbitrary k-vector. It has been pointed out 
that such a term represents the mean magnitude error 
which results when C is used to encode the (0, 1)-vector 
(7). A series of transformations will now be described 
which change C to a two-dimensionally stable code. It 
will be shown that each of these transformations de- 
creases (6), and as a result decreases EC [except in certain 
degenerate situations where (6) and EC are unchanged]. 

Two vertexes v, and v, will be said to form an i-pair if 
they agree in all but the ith coordinate. Consider the 
transformation Ti on C 

Ti : C * C’ w-9 
where C and C’ are both encodings of the (0, l)-vector 
(7). The transformation is defined by the following rule. 
Let v, and v, form an i-pair, and let k, and k, be the 
numbers assigned to them by C. Let vl and v, have ~f;~ 
and ai, respectively, as their ith coordinate. Then, 

1) if k, > k,, the coding of these numbers in C’ is 
unchanged; 

2) if k, < k,, the coding of these numbers in C’ is re- 

It follows that the code which results when the n 
transformations Ti, 1 5 i I n are applied to C is one- 
dimensionally stable with the origin A defined by the 
coordinates (a,, a,, . * . , a,). 

Theorem 1 

Let rii and rlj be the parameters describing C and C’, 
respectively, where C and C’ are related by (18). Then, 

(19) 
j-1 i-1 i=l i=l 

for all k and 1 where 1 < k 5 n and 1 < 1 5 2”. 
Proof: Since we are summing up to 1, only the locations 

of the first 1 vertexes in C and C’ are involved in (19). 
Let these sets be denoted by V and 8’, respectively. v 
can be divided into the four disjoint subsets R,, R,, S, 
and U, as shown in Fig. 1. Here, the n-cube has been 
split into the two half-cubes xi = ui and xi = di. 

The subsets R, and R, are equinumerous and corre- 
spond to those vertexes in V which form i-pairs. Vertexes 
in V which form i-pairs with vertexes not in V are con- 
tained in subsets S and U. Since the ki assigned to 
vertexes not in V are not less than the ki assigned to 
vertexes in V, the first 1 vertexes of C’, which will be 
denoted V’, are as shown in Fig. 2. U’ has been obtained 
by complementing the ith coordinate of all the vertexes 
in U. Eote that the distances between vertexes wit,hin 
U are equal to the distances between corresponding 
vertexes in U’. Also, every j-connection between a vertex 
in U and one in R, is replaced by a corresponding con- 
nection between a vertex in l-J’ and one in R,. A similar 
statement holds concerning connections between vertexes 
in U and R,, on one hand, and U’ and R, on the other. 
Thus the difference between the connectivities of V and 
V’ is that connections between vertexes in U and vertexes 
in S have been replaced by connections between U’ and 
S. Since each vertex in U’ is one unit closer to every 
vertex in S than its image in U, it follows that (19) holds. 

Let C be a one-dimensionally stable code with origin A. 
Two vertexes v, and v, will be said to form an i, j-pair if 
they agree in all but the ith and jth coordinates, and if 
V, has xi = U(, Zj = CFj and V, has xi = tii, xi = aj. Con- 
sider the transformation Tij on C; 

Tii : C + C’ (20) 

Fig. 1. Fig. 2. 
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Fig. 3. 

where C and C’ are both encodings of the (0, 1)-vector 
(7). The transformation is defined by the following rule. 
Let v, and v, form an i, j-pair with coordinates in those 
dimensions as stated above, and let k, and k, be the 
numbers assigned to them by C. 

1) If k, > Ic,, the coding of the numbers in C’ is un- 
changed; 

2) if k, 5 k,, the coding of these numbers in C’ is 
reversed. That is, k, is reassigned to v, and k, to v,. 

It follows that the code which results when Tii is 
performed for each pair i, j is two-dimensionally stable. 

Theorem 2 

Let rii and r:i be the parameters describing C and C’, 
respectively, where C and C’ are related by (20). Then, 

(20 

for all lc and 1 where 1 < k 5 n, 1 5 1 < 2”. 
Proof: Since we are summing up to 1, only the locations 

of the first I vertexes in C and C’ are involved in (21). 
Let these sets be denoted by V and V’, respectively. 
Since Ir is a one-dimensionally stable array, it can be 
broken into disjoint subsets, as shown in Fig. 3. Here, 
the n-cube has been split into four quadrants by co- 
ordinates x, and Xi, with the origin A in the quadrant 
x; = ai, xi = aj. Vertexes in R, form i-pairs and j-pairs 
with vertexes in R, and R,, respectively. Similarly, ver- 
texes in R, form i-pairs and j-pairs with vertexes in R, 
and R,, respectively. Similar statements hold with re- 
spect to S,, S,, and S,, W, and W,, and U, and U,. The 
distribution of vertexes in ‘Ir’, the first I vertexes of C’, 
is shown in Fig. 4. U; has been obtained by complement- 
ing coordinates i and j of all vertexes in U,. By an argu- 
ment similar to that used in Theorem 1, it follows that 
the only difference between the connectivities of V and 
V’ is that connections between vertexes in U, and W, 
have been replaced by connections between Vi and W,. 
Since each vertex in Cl: is two units closer to every vertex 
in W, than its image in U,, we have shown that (21) holds. 

It follows from Theorems 1 and 2 that, if C’ is obtained 
from C by a transformation of the form Ti or Tii, then 
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Theorem 3 

Let EC and EC’ be the mean magnitude error when 
codes C and C’ are used to encode the (0, 1)-vector (7), 
where C and C’ are related by either (18) or (20). Then 
EC’ 5 EC. 

Proof: Let Pi represent ~‘(1 - p)*-‘, where p 2 4. 
Then, 

P,-1 - P, 1 0 
and, from (22), we have that the following set of in- 
equalities hold. 

(pw-l - pw) z i=F+, rij 

w-1 2” 
2 (P,+ - Pw> C C rli l<w_<n. (23) j=l i=rn+l 

Adding the n inequalities (23), we get 

2 Pi i=Z?, rii 2 g Pi jYl rii. 

The theorem follows from (6). 
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