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Abstract

Using simulation and analysis we show that agent-based auction-cleared automated markets can
be stabilized usingnly completely myopic agents (without value traders), if theseeagents are
provided with a price signal that reflects order book information. This demonstrates that information
in the order book is extremely valuable, that prediction can be replaced by better instantaneous
information about others’ bids, and suggests new, more stable algorithms for market-based control.
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1. Introduction
1.1. The problem of market stability

The stability of prices in asset markets is clearly a central issue in economics. From a
systems point of view markets inevitably entail the feedback of information in the form of
price signals and, like all feedback systems, may exhibit unstable behavior. Under varying
circumstances we might expect convergence to some fundamental value, more or less regular
oscillations, chaotic oscillations, sharp rises or falls followed by crashes or recoveries, and
so on. Many writers have studied the effects of trading institutions, trader behavior, and
feedback signals on such complex dynamic behavior, but the general problem remains
poorly understood. A classic dialogue about this issue can be seen, for example, in the
views of Friedman (1953)vho argues that rational profit-seeking trading will always tend
to stabilize a free market, and a long succession of others (see, for ex&apiaol, 1957
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andde Long et al., 1990who present models and accompanying arguments supporting
the idea that speculating traders who seek to maximize their profit can in some natural
circumstances destabilize a market.

In this paper, we study an agent-based simulation and focus on one particular question:
How is dynamic behavior affected when the price signal supplied to the agents is changed?
Briefly stated, our main result is that a signal that is apparently only slightly richer in
information than the ticker price can dramatically stabilize our market—even when traders
operate with no planning or foresight whatsoever.

In the next subsection we will briefly summarize the methods of attack on general ques-
tions of market stability and review previous work using what are called agent-based (or
microscopic) simulations. We will then describe the construction and general characteristics
of our own model.

1.2. Review of related work

The study of price movements in asset markets is remarkably complex: it combines
the problems of modeling human behavior with those of predicting the dynamic behavior
of very large, very nonlinear systems. Current approaches to the problem can be roughly
classified as follows:

(a) Theoretical (analysis of mathematical models, usually using difference and differential
equations, and usually using aggregate variables).

(b) Empirical (econometric studies using real data).

(c) Experimental (laboratory studies using human subjects).

(d) Computational (simulations modeling the actions of individual agents—the approach
of the present paper).

Each has its advantages and disadvantages, and in some sense they are complementary,
contributing different and overlapping pieces to the puzzle. We next briefly summarize
previous work in these areas with the goal of putting our own work in context.

Theory, the first approach, is the oldest and most traditional in economics. It has the
important advantages of generality, and as all theory, it can guide intuition as well as provide
special tools for prediction and institutional design. The limitations of theory are equally
clear. Itis all too easy to formulate reasonable equations that are beyond the reach of current
solution techniques. This is especially the case when studying markets with heterogeneous
agents and highly nonlinear trading rules. It is often necessary to simplify and aggregate
behavior to get results. The work Gaginalp and Balenovich (1994, 199@hich uses a
set of coupled nonlinear differential equations, is representative of this approach applied to
the study of market dynamics.

The second approach, empirical studies of asset prices, uses both conventional statistical
approaches and nonlinear dynamic models. The work centers on testing for the existence
of predictable structures in all kinds in time series. For a good review, especially of the
work on chaotic models, s&rock et al. (1991)Specifically, a number of studies in econo-
physics (for examplelMantegna and Stanley, 200Bave used concepts from statistical
physics and critical phenomena to study self-similarity and fat-tail distributions in empirical
data.
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The third approach, experimental economics, has the advantage of addressing more di-
rectly questions of human behavior. However, it is expensive, time-consuming, and it is
difficult to ensure that people behave the same way under laboratory conditions as they do
in real markets. Perhaps the most influential work is that of Smith, Plott, and their coworkers
(Forsythe et al., 1982; Smith et al., 1988; Smith, 1989; Porter and Smith, 1994; Caginalp
et al., 1998, which centers on the reproducibility of price bubbles. Along the same lines,
the collection of papers edited Byiglitz (1990)on price bubbles is revealing in its diversity
of perspectives on just how a price bubble might be defined and whether in fact one can
exist at all.

Large-scale agent-based simulation, the fourth approach and the one used in this paper,
has become possible only relatively recently with the advent of fast, cheap, and readily avail-
able computers. It has been championed by physicists using the paradigm of computational
statistical physics. For examplie Oliveira et al. (199%eview several papers over the past
few years that exemplify the methodology, especially the workesfy et al. (1994) The
reader is also referred to the recent papémBaron et al. (1999which also contains many
references to other work in this emerging field. The defining characteristic of the method-
ology is that the actions afdividuals are simulated, explaining the temicroscopic. This
opens the door to the study of the interaction of large numbers of heterogeneous, interacting
agents.

An important theme that runs through much of the work in market dynamics is the
interaction between two kinds of traders: those who trade on “fundamentals” and those
who trade on “technical” information. The former are often calatlie traders, and the
latter noise traders, which include trend chasers (also called chartists). This interaction
accounts for the appearance of price bubbles in the simulatiohewf et al. (1994)
Youssefmir et al. (1996)and Steiglitz and his coworkerStgiglitz et al., 1996; Steiglitz
and O’Callighan, 1997; Steiglitz and Shapiro, 198r example, as well as the aggregate
models ofCaginalp and Balenovich (1994, 1996)

We mention important applications of agent-based simulations that are not directly eco-
nomic in nature: they can be translated literally into algorithms for distributed control of
resources (see, for example, the book edite@learwater, 1996 In these cases the agents
may well be distributed software agents instead of humans. Examples include computing
cycles Waldspurger et al., 1992network bandwidth, computer memory, electric power
(Ygge, 1998, or even thermal energy in a building. These applications need not necessarily
model realistic markets, but stability is obviously a key issue. More recd€gfyhart et al.
(1998)anticipate the emergence of an open, free-market information economy of automated
agents buying and selling a rich variety of information goods and services on the Internet.
To characterize and understand the dynamic behavior of such information economies, they
very naturally employ agent-based simulation, and also use game theoretic analysis to in-
vestigate strategies and competition of software agents. As before, these markets do not
necessarily behave the way human markets do, but an understanding of stability is crucial.

1.3. Description of our model

The simulation model we use in this paper is a direct descendant of those described in
Steiglitz et al. (1996)and we outline its features in this section. The philosophy is to build
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the simplest possible system that can reasonably be thought afoasgpkete economy: in
some sense minimal economy. Trade requires at least two commodities, so we use the
minimum of two, which we calfood andgold. Gold plays the role of numeraire, and the
price of food is therefore measured in units of gold.

In general situation there are three types of agents: regular agents, value traders, and trend
traders. Regular agents can produce food or gold and consume food; value traders and trend
traders are solely speculators and play the roles of value and noise traders mentioned above.
The regular agents are completetyopic; that is, they exercise no foresight or planning.

One trading period of the market simulation is executed as follows. The central market
sends to each agent a Request For Bid (RFB) containing price signals. Consider first the case
when the price signal is simply the previous closing price. Based on this signal, the regular
agents decide on their levels of production for that time step, the value traders update their
estimate of fundamental value, and the trend traders update their estimates of price trend.
The agents then send bids to sell or buy according to their food inventory (regular agent),
the difference between the market price and estimated fundamental price (value trader), or
the direction of the trend (trend trader). Finally, the market treats the submitted bids as a
sealed-bid double auction and determines a single price that maximizes the total amount of
food to be exchanged. This institution is sometimes calleléaxing house or call market
as opposed to aspen-outcry market (Friedman and Rust, 1993rhe market-clearing price
(ticker price) becomes the next signal in the RFB. Note thetigiglitz and O’Callighan
(1997)and Steiglitz and Shapiro (1998he auctioneer determines the price to maximize
the total amount of gold to be exchanged. However, in practice this difference has little
effect on the overall qualitative resultsig. 1 shows the derivation of the supply—demand
curves and market-clearing price in such an auction.

Consider next the regular agents. They follow a simple dichotomous algorithm: in each
trading period they can produce either food or gold. They make this production decision to
maximize profit, but in a shortsighted way, based only on the current price. Heterogeneity
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Fig. 1. Generation of the supply and demand curves and market-clearing price in the double auction.
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is introduced by endowing agents with different “skills"—the amount of food and gold they
can produce per period. In a similarly shortsighted way they determine their bids to maintain
a fixed food inventory, based only on their current inventory. The regular agents therefore
have no memory or foresight. Their strategy is so simple and myopic that it often throws
the market into confusion, in a way reminiscent of the cobweb mdaziligon, 196Y.

We note that our model has a natural equilibrium price, or fundamental value, determined
by the equilibrium condition that total food produced is equal to the total food consumed.
This is one way that our model is distinguished from thadt@fy et al. (1994)which gives
agents a choice between investments with certain and uncertain returns.

The remainder of the paper is organized as followsSéction 2ve describe the results
of simulations using the original model, with market-clearing price as the signal, illus-
trating the stabilizing effect of value traders and the destabilizing effect of trend traders.
In Section 3we describe the effects of using other price signals, specifically stabilization
without traders using unweighted and inversely weighted bid averages. Then, after some
concluding remarks, we presenippendix Asimplified model and its analysis, confirming
the results of the simulations.

2. Simulations

Markets with only such simple regular agents exhibit large price oscillation$-{ge®.
In these markets there is low trading volume, and most of the time there is a large overall
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Fig. 2. Price vs. trading period with regular agents only and using closing price as a signal.
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Fig. 3. Average food inventory vs. logarithm of price in the same simulation as the previous figure, illustrating the
oscillation.

surplus or shortage of food. This oscillation can be visualized effectively by plotting a
two-dimensional graph of average food inventory versus log-price. The resultis a diamond-
shaped cycle whose center is the ideal (equilibrium) price and ideal (desired) reserve (see
Fig. 3. This cycle starts close to the center and rotates counterclockwise with gradually
increasing radius. We cannot expect efficient resource allocation in such markets.

Fig. 4 shows a typical cycle of the oscillation, sketched diagrammatically in the food
inventory—price plane. We divide the cycle into four regions. In region I, the low price
prevents agents from producing food and the resulting deficiency of food causes the price
torise. In region Il, when the price gets high enough, agents begin to produce food, but the
price keeps rising since there still is not enough food to satisfy demand. In region Ill, agents
now have enough food and the price begins to fall. However, they continue to produce food
because the price remains high for a time. In region IV, agents stop producing food because
the price finally becomes low. But the price continues to fall because of food surplus. It is
therefore the delay between the price movement and the size of the food inventory that brings
the system into oscillation, as in the cobweb model. However, this intuitive explanation only
goes so far and does not enable us to predict, for example, the radius of the cycle or in fact
whether a given system will be stable or unstable. One way to stabilize this market is to
introduce value traders who estimate the fundamental p8teidlitz et al., 1995 thus
bringing a kind of foresight to market operations ($&6g. 5. As discussed above, the
introduction of trend traders can produce price bubbles, as illustrateid.i6.
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Fig. 4. Diagrammatic representation of price oscillations in an unstable market in the plane of food inventory vs.
price.
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Fig. 5. Price vs. trading period with value traders, showing how speculators can stabilize the market. Value traders
are introduced after 100 trading periods.
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Fig. 6. Price bubble caused by the introduction of trend traders. The fundamental value is exogenously driven up
and down to produce a trend. Value traders are introduced at period 100, after which the trading price remains
close to the fundamental value until bubbles appear near trading periods 530 and 610.

Until now we have described simulations with previous models, which made available to
the agents only the auction market-clearing price (ticker price) as a signal. This evidently
does not communicate enough information to stabilize the market without some memory
and foresight, which is invested in the value traders, who use an exponentially smoothed
estimate of fundamental value. We next consider the possibility of using signals other than
the market-clearing price to achieve stability.

3. Using other pricesignals

Consider again the market with only regular agents. After consuming one unit of food,
each agent sends a lpgdand a quantity, to be traded, both depending on the price signal
as well as the difference between the agent’s food inventory and his desired reserve. This
bidding process generates at any given trading periatdan book, comprising the agents’
bid pricesp; and amounts;. This order book contains considerably more information about
market conditions than simply the most recent closing price. This suggests that we can derive
signals from the order book that can be more effective in stabilizing prices than the closing
price. In practice it is this information that gives commaodity traders in the pit an advantage
over remote traders.
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Fig. 7. Price vs. period with no traders, but using averagefydas the signal.

Consider first the simplest possibility: define the new sighiato be the unweighted
average of all the bid prices:

B=>p @

Fig. 7 shows that the price is stabilized quite well, although the time to convergence is
longer than with value traders.
Having observed the effectiveness of the mean bid as a signal, it is natural to try to

improve it further, and a natural choice is the average of the bids weighted by the amounts
Pli

1
P =— iDi 2
L= Xi:a p 2)
Fig. 8shows the result, which is perhaps surprising: weighting the bids by the amounts has
the effect of destabilizing, rather than further stabilizing the market.
Finally, this suggests moving in the opposite direction: weighting the prices by some
function that varies inversely with the corresponding amount. We therefore dRefinde
1 1
Py = i 3
2 21/(C+ai)ZC+aip 3

i

wherec is a scaling parameter that determines the extent of inverse weighting. The value
¢ = 1 was used in the simulations in this pageg. 9shows that the market with sign
converges faster and better than wW#h
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Fig. 8. Price vs. period with no traders, using the weighted averag@4ids the signal.
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Fig. 9. Price vs. period with no traders, using the inversely weighted average bidRyies, the signal.
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The fact that weighting the bids with the amounts is destabilizing can be explained
intuitively as follows: the agents bidding for large quantities are generally farther from their
desired reserves, and their bids are therefore farther from equilibrium—farther above for
buyers who have a severe deficiency, and farther below for sellers who have a severe surplus.
Their bids are therefore more likely to be far away from the actual equilibrium than agents
bidding for small quantities.

4. Concluding remarks

In this paper, we have considered the effects of different price signals on market stability
using agent-based, microscopic simulations. Our models are practical for simulations of
many hundreds of time steps, allow arbitrary, heterogeneous trading strategies and agent
characteristics, and use a closed economy with a naturally defined equilibrium price that
equates production and consumption. The simulations presented here were implemented
using both Java and Java mobile agéxgiets (Lange and Oshima, 1998mplementations
in C run many times faster and make simulations for thousands of time steps practical if
necessary.

Our results show that the average bid price sighastabilizes the market price effec-
tively, and stable resource allocation is approached as well, all without predictive traders.
What is perhaps counterintuitive is that supplying the agents with the weighted average
P1 neither increases stability nor improves resource allocation, but in fact achieves little
improvement over using the closing price. Moreover, the inversely weighted avesage
yields the greatest improvement in stability and resource allocation. It is noteworthy that
this method for stabilization and control requires no increase in traffic, computation, or
number of agents. These results suggest stabilization strategies for any applications that use
agent-based technology, such as market-based distributed resource allocation or automated
e-commerce on the Internet.

We have also investigated analytically the dynamics of a simplified model that con-
centrates on out-of-equilibrium price movements with small liquidity @&ppendix A).

Figs. 11-13show the reduction of the cycle after one period versus initial radii. The re-
sults are consistent with our simulations, showing that weighted, forward weighted, and
inversely weighted price signals result in slowly converging, unstable, and strongly stable
behavior, respectively. This analysis has so far been able to verify these results only for
the two-agent case with idealized dynamics and price signals. Although these models are
extremely simplified they still exhibit the complex behavior of the full system and retain its
qualitative stability properties. More accurate analysis for more agents and more realistic
versions of the weighted and inversely weighted price signals is left for future work. Finally,
we can try to derive some insight into market mechanism from the qualitative results, one of
the main motivations for agent-based simulation. It is somewhat surprising that an artificial
market with no memory or foresight on the part of its agents can in some sense “learn” the
equilibrium price and find an efficient equilibrium with only a slight amount of information
beyond the most recent closing clearing price. This underscores the crucial importance of
information flow in all markets, a fact well recognized of course by real-world traders. The
fact that inversely weighting the bid information by quantity increases stability may be a
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consequence of our particular market structure: those agents who bid to buy or sell small
quantities are closer to their desired reserves, so their bids may reflect the true equilibrium
price more accurately. Perhaps also there is a sense in which the new signal prices represent
gradients when the market is viewed as an optimization problem, an idea related to the work
of Ygge (1998)hat deserves further study.

Appendix A

Exact theoretical analysis of the markets studied here is very difficult because of the
highly nonlinear nature of the agent interactions mediated by the auction. Still, it would be
helpful to verify to any extent possible the general results we have obtained by simulation.
To this end we present in this section an analysis of a highly simplified model that despite
its simplicity retains the essential properties of interest.

A.l. The simplified model

In this appendix, we consider the following dynamical equations for log-price-signal
and the centered food inventory variabte®f two agents:

q(t+1) — q(H) = —bEw(a;(0);

a1 = | ST Fa® (if ao()ax(t) > 0) -
i | Ssie+ (if ao(Hay () < 0), ]

where the food production and consumpt®iis given by

o (ifgt+21) =0
SUFD =Y 1 Gt +1) <o0). (A-2)

andEy, denotes the weighted average corresponding to the particular definition of signal.
For concreteness we assume the condtaatlog(16)/17.5, but the results do not depend
onb because we can eliminate it by scaliqpg

This simple dynamic model was obtained using a number of approximations and assump-
tions:

e We omit any dependence of the bidding function and auction on gold inventories.

e We consider only two regular agents in the market, and define the centered inventory
variablesg; to be the difference between actual inventory and the desired reserve. Thus,
a; > 0 ora; < 0 depending on whether agengéxperiences an excess or shortage of
food. In each trading period ageintan either produce; units of food (his “skill”) or
consume one unit of food.

e Agents trade as follows: g < 0 anda; > 0, there is a trade and we sgt=a; = 0.

e Finally, we sebgp < o1, and choose the initial condition so that< a;.

Using these simplifications, the use-ebE,, (a;(¢)) for the log-signal can be justified by
simulations as a good approximation, using the exponential bidding function Gtadiitz
etal. (1996)ntroduced, with dependence on gold suppressed. Despite the somewhat drastic
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Fig. 10. Logarithm of price vs. trading period for signBlg P1, andP> in simulations of the simplified model.

simplifications, this model exhibits behavior in simulations that is similar qualitatively to
the full model: the price oscillates f&%, diverges folP;, and converges fd?, (seeFig. 10.

The goal of this analysis is to verify this analytically, and we discuss this in the subsections
below for different price signals.

A2. Smplified model with signal Pg

The price signaPg corresponds to the choice
Ew(a;) = 3(a0 + av), (A.3)
just the average of all bids. The initial conditions for time 1 are chosen as follows:

q(1)=-0 <0,
ap(l) =a1(1) = -1 (A-4)

We next calculate the price and the stock movement for the four periods in the cycle
described irFig. 4. The boundary of each period is given by 11, to, t3, andty. Let the
average productio = (op + 01)/2 and the time interval},=t, — t,_1. Our objective is
to obtain the following state after one cycle:

q(ta+1)=-0—-AQ <0,

agta+1) =ai1(ta+1) = -1 (A.5)
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After straightforward but lengthy calculations we obtain the following conditions; for
T2, T3, andT4:

btZ + bty — 20 > 0,

1
T > —,
T2 4 ;1+ 2 0 1+ Db (2bty — b6(To + 1)T> o (A.6)
st 3+ = 5 - .0
Ty > T300.

Using the minimum positive integers ftr, T», T3, and T, satisfying these conditions,
we obtain the differenca&Q in the log-price after one cycle,

it + Db [2bty — b6(To+ D]T> b6 (T3+ D73
_l’_ i
2 2 2
bTa(T4 + 1
— bT3Tyé + %.

(A7)

The radius of the cycle decreases-ifA QO > 0 and increases FAQ < 0.Fig. 11shows
the dependence of AQ on the initial value ofQ with o9 = 0.3, ando1 = 0.6. For large
values ofQ, the variance tends to decrease. For relatively small valu€s tife variance
may decrease or increase. For very siathe variance tends to increase. Thus, we can say
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Fig. 11. Reduction of the cycle{AQ) vs. initial radius of the cycleQ) using average bid?, as the signal. If
the initial radius is greater than 16, the cycle almost always shrinks. If the initial radius is less than 5, the cycle
almost always expands.
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Fig. 12. Reduction of the cycle{AQ) vs. initial radius of the cycleQ) usingP, as the signal. The predominantly
negative values mean strong divergence.
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Fig. 13. Reduction of the cycle-{(AQ) vs. initial radius of the cycleQ) usingP3 as the signal. The predominantly
positive values mean strong convergence.



250 H. Mizuta et al./J. of Economic Behavior & Org. 52 (2003) 235-251

for the signaPg that the price oscillates to some extent but neither diverges nor converges.
This coincides with the results obtained by simulating the simplified model.

A.3. Smplified model with other signals

We next consideAQ for two other simple signal$,, which corresponds to the closing
market price, ans, a simpler version of the inversely weighted averBgeln particular,
for P, the weighted averagg («;) is defined to bey if |ag| > |a1| anda; otherwise. For
P3, the weighted averagg\,(a;) is defined to bey if |ag| > |a1| andag otherwise. We
also modify the dynamical equations for simplicityalf(r) < 0 < a1(), there is a trade:
we setq;(t + 1) = S; and assume that there is no change in the peicef 1) = ¢(r)).

Simulation results shows that the price diverges with sigpaind converges with signal
P3. We can study the system analytically for these sigRakndP3 in much the same way
as we did forPg. Fig. 12 shows the reduction values efAQ versus the initial valu&.
We see strong divergence from the dominating negative value®zf-thre graph indicates
strong convergence except wh@ns very small (se€ig. 13.
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