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INTERNATIONAL ECONOMIC REVIEW 
Vol. 11, No. 2, June, 1970 

ESTIMATION OF DISTRIBUTED L A G S *  

BY PHOEBUSJ. DHRYMES,LAWRENCER. KLEIN 
AND KENNETHSTEIGLITZ' 

1. PRELIMINARIES 

THE USE OF DISTRIBUTED LAGS in econometric research is quite old. However, 
the current. intensive interest in the subject dates back to the relatively re-
cent work of Koyck [9]. Since then, a number of extensions have been made 
t o  the basic geometric lag distribution and the associated method of estima- 
tion taken up by Koyck. A number of such studies a re  summarized in 
Amemiya and Fuller [I]. More recently a search technique has been proposed 
by Dhrymes [2] for the case of a geometric lag distribution occurring in a 
relation chara,cterized by a first order Marlrov process in i t s  error term. 

Jorgenson [7] has employed in empirica,l. resea,rch rational distributed lags 
although he has not given a full treatment of the estimation problems of the 
parameters involved. Dhrymes [3] suggested a technique of estimating in a 
consistent and asymptotically etSicient fashion the parameters of a rational 
distributed lag by the use of spectral techniq.~.les thus extending the results 
obtained by Bannan [5] in the case of the simple geometric lag structure. 

At .the same time, however, electrical engineers have been interested in 
much the same problems. In many insts;nces they have produced the ele-
ments of 8, sa,tisfactory solution to the problem of estimating the parameters 
of the rational distributed lag although their approach has not always been 
explicitly grounded on a statistical formulation and thus the properties of 
the resulting estimator were not clear. The present paper builds on an idea 
pl;uposed Ly Zi.eiglitz and NcBrids [I31 in ar, engineering ccntest. 

Our purpose here is  to give a rigorous formulation and solution to the prob- 
lem of estirnatiny, by maximum likelihood techniques, the parameters of 
a general lag structure, to  point out the lines of research and terminology 
followecl in the literature of electrical engineering and thus to make avail- 
able this literature to econometricians. We believe that  such contact will prove 
quite fruitful. 

2. 	 ENGINEERING MOTIVATION AND SOME FORMAL ANALOGIES 

I N  ENGINEERING AND ECONOMETRIC RESEARCH 

The determjnation of the dynamic characteristics of an electrical or me-
chanical system from observation records has been of interest to engineers for 
some time, especially with regard to the construction of adaptive or learning 
control systems. Most of the work in electrical engineering has been con-
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cerned with the linear stationary case, since many physical systems a re  
operated in a fixed environment with relatively small excursions from quies- 
cence. 

Thus, assume that  the postulated l i n e a ~  stationary system can be described 
completely a t  any time t by an n-dimensional vector zot, called state vector 
a t  time t .  Assume also that  the system is excited by a single ucalar variable 
r e t ,  called the inpzit, and that  the system response is determined by the valuc 
of the scalar variable yl, called the o v t ~ , u t . ~  We may associate xt with 2n 

exogenous or explanatory variable and zct,yt with elldogenoils vaciables, the 
general point of view being that  mi is determined outside the system aild 
affects (or detelnlines) t c t  a i ~ dy t  in a cnlrsal way. 

Finally i t  will be assumed that output is a li?7ear combinatio?~of fize L r ~ ? r ~  
pone.izts of the state vector and a scalar ranclo?)~ variable z i t ,  which reprebents 
the effect on the system of nonmeas~~rable vari+tbles01. unl<nown e x o g e n o l ~ ~  
We many thus write 

7l ' t  = Azi~t-1i b? i 
( 1 )  

yt = C ' Z U ~- 141 . 
In (1)A and b are  respectively an (?z x n )  matrix and n x 1 vector of cons~ants ,  
the assumption being that the transition from zu t - ,  to zut is aecomplishecl in 
a simple Markovian scheme, under the excitalion induced by bz,. For this 
season the matrix A is called the transition m c i i r i ~of the systcni, though it 
need not be a probability matrix. 

Let x be complex, of unit  modulus, and define 

The first system of equations in (1) may nonr be written as 

@a) W(x)= Ax-l$V(z)+ bX(a) . 
Solving, we obtain 

(2b) W(x)= ( I- Ax-I)-lbX(z). 
Finally substituting in the last equation of (1) we have 

( 3 )  Y(z )= c l ( l- Ax I)-lbX(x) t U(x). 
Clearly c f ( I-- Ax-')-% is a rational function of z-l and; as  such il;_ ma,y be 
represented 

where A(x-l) and B(x-l) are  polynonlials of suitable order. Clearly, tlie poles 
( I -- An-l)-l are  the zeros of B(x-l). Indeed, if 2, are  the roots of A then it 
can be easily seen that 

What follows can easily be estended to  the  multivariate case; i.e.. we can easily 
deal with the case in which xt ancl yt are vectors of suitable dimensions. 
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where c: arc  suitable constants obtained through the process of expansjon of 
the left hand side of (4) by partial fractions. Since the A,, i = 1,2, - a ,  n are  less 
than unity in absolute value and z lies on the unit circle, we may expand 

Thus the system in (3a) can be written as  

where the last member of (4b) is obtained by putting 7 = t f k .  Equating 
like powers of z-I on both sides we find 

which shows that  the system in (3a) represents a lag distribution. Moreover, 
this is  a wcighted sum of n simple geometric lag distributions with parame- 
ters I , ,  i = 1 , 2 ,  n. Further,  from (4b) we note that  x - I  plays exactly . a ,  

the same ole in engineering literature as  the lag operator L in econonletric 
and statistical literature. 

In what follo~,vs we shall therefore use the  lag operator exclusively. By 
definition 

Lk%t= xt-k , Lo= I ,  J x ~= xt , k = 0 , 1 , 2 ,  ; 

therefore, in virtue of (4) and (4a) we can write (4c) as 

where A(L,\ ancl B(L) a re  polynomials of degree a t  rnost n - 1 and ?z respec-
tively. This is, of course, the  notation of the  standard rational distributed lag 
rnodel discussed in the literature of econometrics. I t  is particularly striking, 
fo i  example, that  Jorgenson [7] and Stejglitz and McBride [13] use, in entirely 
diffel.ent and unrelated contexts, exactly the same model (4e). This is an  
extreme instance of research convergence in econometrics and electrical 
engineering ancl should suggest to econometricians and electrical engineers 
the benefits to be derived from familiarity with certain aspects of the research 
in the two disciplines. 

We conclude this section by giving a table of equivalent ~erminology. 
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Engineering ,Vconornetrics 

White-Gaussian error  Nonantocorrelated, normally distributed 
error  

Colored-Gaussian Autocorrelated, normally distributed error  
Plant Nonstochastic model 
Record Sample 
Rational z t ransform Rational lag  distribution 
Prefiltering exponential weighting 
Identification Specification and estimation of a model 

3. ESTIMATION OF THE GENERAL RATIONAL LAG MODEL 

A. Formulation.  In this section we shall deal with the  problem of estlmat- 
ing the parameters of 

.cvhere L is the  lag  operator defir~ed in (;id) a,11cl 

The independent varia,ble 16 is asaurnec? to be nonstoehsstic or, if xtochastic, 

uncorrela,ted with the ran.c!om term z h t .  The I.a.i;lei. !Ian the sgecifi~ai;ioi? 

(,6b: u -* N O ,  03rj,%L = ia~ , ,  2h2 ,  ,, a .,u ~ ) ', 

and is a,ssumed to be indepe-ildeai; 01.i; for all t .  We shall employ niaximum 

likelihood methods. Thus the  ,log! likelihood function of the ohse~vat ions  

ia (5) is given by 


where 

y = ( ~ 1 ,y2.9 ' " ': yT)' % = (XI, %2, ' ' ', $7)' 

a = (a,, a , ,  - s  a,? , 
9 

b - ib,, bu, b,)' .a O ,  

The first order conditions for a maximum a r e  given by 

We observe tha t  while the  equations in (6a) a r e  highly nonlinear in the  ai 
and b j ,  they a r e  linear in ai for given bj and they a r e  linear in a2. We can 
search the parameter space for estimates of a{, given bi or  we can i terate 
for all parameter estimates simultaneously. Once we have estimates for ai 
and b j ,  however, an  estimate for will be easily obtained. 1 , -



In what follows we shall concentrate our attention solely on the first two 
sets of equations which would correspond to the normal equations of least 
squares, although under the  assumption of normality the resulting estimators 
would he maximum likelihood ones as  well. 

The strategy of our estimation procedure is to determine a consistent solu-
tion of the  equations in (6a). 

Since by a theorem of Huzurbazar [61, for large T there exists a unique 
consisteilt solution, and by a theorem of Walcl [15] i t  corresponds to the  
global maximum of the  likelihood funclion, we would then have found the 
maximum liltelihood estimators of the parameters aj, b,, j =. 0 , 1 , 2 ,  . , p, 
s - 1,2 ,  . . ., v ,  which are  asymptotically normal, unbiased, and efficient. 

B. An iterative algorithm. Define 

and note that  the first two systems in (6a) may be written as  

The equations in (7a)and (7bl a re  linear in the parameters provided we deal in 
the transforn~edvariables y*, x*, x**. But this suggests how we can solve the 
system: if an initial (consistent) estimator is given for B(L)and A ( L ) ,  say Bo(L), 
AfJ(L ) ,  i t  can be used to construct the variables yt*, xt*,xt**; then the system 
in ( 7 ; ~ 'alicl (711)can be solvecl to provide another estimator B1(L) ,A1(L), etc., 
until the iteration converges, say a t  the k-th step; this would mean that  for 
prescribed E > 0 

Let us see precisely what this algorithm entails. For computational conve-
nience only, the various cross products involved will not contain the  observa-
tions a t  times r - 1,2, .. a ,  Y .  To this effect, let 
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With the aid of the notation in (81, (8a) ancl (8b), the system in (7aj and (7b) 
may be written compactly as  

( 9 )  W*d = c4: 

Remark 1. We shoulcl observe that  the definitions in (7), involving what 
engineers call prefiltering, a re  not as  cumbersome a s  they appear. In par-
ticular, they need not involve power series expansions of the operators I/B(L). 
To see this, note that  by virtue of the convention in 15a1, we can write 

Thus, the first equation in (7) implies 

m a )  .yI" - yt + B'"Qg: . 
If initial conditions for y: are  specified, we see that  y;" can be computed 
recursively, given b, for a s  many values o j '  the i n d e z  as  y t  is available. 

Similar comments apply to a:. In the case of z: ' we see that  since &s 
defined over the same range of index values as  z,, then clearly :$" is defined 
Scr t = + 1,p :-2, . a s .  Thus, y:.x:,x:* are  all defined for t = v ,  ?i -t1,..*,T 
which is the range of index values appearing in the matrices Y:",X* and 
X a S .  Finally, a convenient initial condition for and 2:: is 

x;.-, 
'(Lob) , -- & L  - 0 ,  i - - 0I 1J 2, ..., Y o  

Since 

il3lo) is equivalent to stating that  

This is not a serious handicap if the sample size T is large. 
Remark 2. Observe that  W* and c" a re  functions of d. In what follows 

we ~ h a l i  assume tha t  for any admissible value of d ,  W* is nonsiagular, Now, 
it is clear from (9) that  if an initial consistent estimator of cl exists, say 
do, then W* and c* can be computed, sa,y TP;, t:, where the tilde is used to 
denote the fact that  W* is obtained on the basis of a consistent estimator 
of d and not on the basis of the t rue  value of the parameter vector d. 

In view of the above, we may iterate on d by solving, to obtain 

(11) dl = Jq;-'z; , 

We may now evaluate W* and c* a t  2,and complete a second iteration 
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Two questions arise with respect to this procedure. 
i. if di is a consistent estimator of d ,  is i t  also the case that  Ji+l is a 

consistent estimator of d? 
ii. does the iteration process converge, and, if so, under what circum- 

stances? 
To this effect we prove 

LEMMA1. U n d e r  the  hypotheses  o f  the  model  a s  exhibi ted in (5), (5a) a n d  
(5b), if & i s  a consis tent  e s t i m a t o r  o f  d t h e n  so i s  the  l a t t e r  being de- 
3 n e d  b y  

-*-I . 
(12) di+l = wi' ti" . 
PROOF.We note that by definition 

the starred quantities in (12a) having the obvious meaning. Thus 

(12b) y* = x**.+. U:K 

where U* is constructed in exactly the same fashion as Y*. Define 

Since 

(12d) 

then 

since xt  9nonstochastic (or independent of ut). 
Sirlce cli is a. consistent estimate of d j  i t  follo~vs that 

We also note that, by the same argument, 

where 
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we conclude 

The model obeys 

Putt ing 

(15a) yY = (21",-I,Y Y C B ,  ., y?j1 , uY= (IC~~I,uIt2, .., 21, 
we can write (15) in the slightly altered form 

(15bj ( X * ,  Y*)d  = yY- UY 

Let 

( 1 5 ~ )  Z = ( X * ,X**) 

and consider 

115~1) Z 1 ( X * ,Y*)d= Z f y Y- Z'uu 

We note 

lim Z'(X*LY * )  - lim w** 
I -W T r-- T ' 

E'rorri (,15tl)we therefore obtain 

Comparing (14a) and (16b) we conclude 

plim d,+l = d . 
T-rn 

Q.E.D. 

The question of convergence for this procedure is rather difficult to settle 
definitively. Since asymptotically W *  converges to a positive definite matrix 
for every admissible d one would surmise that  the iteration process will con-
verge, a t  least for large T. Assuming that  the process above is convergent, 
we are  thus able to locate the consistent root of the rnaxitl~ulri likelihood 
equations. Ey the theorem of Huz,nubazar 161 we have therefore found, for 
large T, the global maximum of the likelihood funct,ion. Since the probability 
structure of the error term in (5) is regular, we conclude that  such estimators 
are  conflistent, asymptotically efficient, and distributed as  
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One can hand1.e rather easily the case of autocorrelated error t e r n ~ s  por- 
vided the autocorre1.ation is first order Markov. Thus, if 

where 

then one can employ a scanning (search) technique. As shown by Dhrymes 
[21 in a slightly different but relevent context the resulting estimators of 

(%),obtnin~d by the procedure above coupled with a search on p, are con- 

I t  is interesting that the techniques of the previous discussion are easily 
applicable to the model 

which has bee11 fcuLld intractable in previous economic applications. When 
the number of lags is small, say two, then the search technique given in 
Dhrymes [2] can easily be extended to produce maximum likelihood estimators 
il: a re!xt;~~ely simple manner. If, how~evw,n7 > 2,  then the search technique 
is, realistically, nonapplicable and should resort to the estimation scheme 
discussed above. 

Let us see precisely what this entails. As before we shall assume 

and that the zi,i = l , 2 ,  o . .  , m are either nonstochastic or eventually inde- 
pendent of the error terms of (18). The (log) likelihood function of the 
observations is 

The maximizing equations with respect to the ni and Ai are  given by 

If we now define 

the system in (19) may be written as 
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Two aspects of (19b) should be pointed out: first a s  an identity we may write, 
for any k, 

Second, although the summation over t has the range (1, T) we take got= 
x& = 0 all k so that no problem arises. 

The estimation scheme here is exactly the same as  in previous sections; 
thus if consistent initial estimators exist for the Ri, i = S,2,  . .,m, say I:, 

..*$ - *  
then the quantities z&,xtk ,y t k  can be computecl from the expressions in (19a) 
where in lieu of Ri we make use of the 2:. Hence from (19b) we shal! obtain 
estimators, say, 64, 2; ;  using the 2: we can recompute the quantities Z t k ,  ,tt4i*, 
j&  from the expressions in (19a) and from (19'0) obtain another set of estinla- 
tors, say &?,2: and so on until convergence is obtained, i.e., until a t  the s-th 
step we find 

(19d) max { I  2; - I , 15; -. z?-1! } < &lr-' , 

where E is a preassigned (small) positive constant. 

5. AN ILLUSTRATION 

Here we briefly examine the geometric lag distribution which has found 
extensive applications in econometrics, In this case 

The model in (5) becomes 

The equations in (7a) and (7b) become 

where 

After some rearrangement we can rewrite (20b) as 
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If we take an initial consistent estimator of A and a,  say A",, a,, then we can 
compute the p~efiltered variables y:, st* and xF* recursively as follows: 

* " * *  
(21a) yt* -- y t  + R",y:-, , x: = xt + Aoxt-l , x:* = axt* + Aoxt-l . 
We can then solve the system in (21) to obtain another estimator, say 21, 21. 
We again compute the prefiltered variables in (20c) using the new estimators 
and continue until the iteration process converges, i.e., until 

((21b) max { I  A"i+l - 2i / , I 2i+1- 2i I }  < E , 
where E is some preassigned small quantity. An initial consistent estimator 
for cu and A can be obtained by instrumental variable techniques. In par-
ticular we can take the estimator proposed by Liviatan [I@]which is obtained 
by solving 

Efficient estirnation of the geometric lag distribution has been the subject of ex- 
tensive research; a part of this literature was referred to in the introduction. 
I n  this corinection, i t  should be noted that a recent Monte Carlo study by Morri- 
8on [12] compares a number of proposed estimators of the parameters of the 
model (20a) where the error terms are assumed to have the classical properties. 
He finds that the estimator proposed by Liviatan [lo] and Hannan [ 5 ] ,  as 
interpreted in the time domain by Amemiya and Fuller [I], on the whole do 
not do very well. The estimators proposed by Steiglitz and McBride [13], a 
variant of which was discussed above, does extremely well for large samples 
(50 observations); that proposed by Dhrymes [4], [2] performs relatively heitoi 
than  the Steiglitz and McBride estimator for smaller sample size, although 
for larger samples the two estimators perform equa,lly well. 

Finally, this is a convenient juncture to consider Malinvaud's comments 
TIP] on the estimation of the geometric lag in the face of autocorrelated 
errors. Thus, suppose our model is 

where 

.(%a) E -N(0,021), E = (el, EZ, . . - ,ET)' . 
We note that 

,(22b) Yt -C
k 

piyt-3 = 
a 1  

i=1 I - AL i=l 

We may then put 
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Ma!invaud then claims that  if we estimate n and 1 by the method given in 
Klein [8] with y:, rc:  replacing yt and rc ,  respectively, then the resulting 
estimators of n and R are  inconsistent. The iteration considered by Nalinvaud 
begins with an inconsistent estimator of the parameters a ,  2, p. I t  is simple 
enough to use Eiviatan-type or other consistent estimators to s tar t  the 
interations. 

Suppose that  we have consistent estimators of the p,, say P , o .  Then we 
may define 

If an initial consistent estimator of a and 2 are  also available, then w7e can 
apply the scheme of this section with j{ and 2; replacing yt  and zr  in (20a). 
Thus we obtain estimators n l ,  X1. Using these we can compute 

(23a) zit - Rl,zit-, = y, - 2,y,-l -zlxt. 
From the left hand side of (23a) we can obtain recursively the zit,t = 1,2, . . - ,T, 
on the assumption, say, that  

The consequences of this assumption a re  minimal if the sample is a t  all 
1a r .g~  Then we can regress z i +  on 17,- . i = 1. 2 . . .. k, to obtain another set 
p , ~ ,i = 1,2, . ., k ,  and repeat the process. I t  is easily verified tha.t this pro- 
cedure will yield consistent estimators. Actually, in the empirically relevant 
case k = 1, one easily obtains a rather simply executed estimator which is 
consistent, asymptotically unbiased, and efficient. An alternative procedure 
if k > 1 may be as  follows: Disregard the specification on ut in (20) and 
obtain consistent estimators for n and i by searching on i.. This may be 
done by using the form given in Klein [8] 

and employing ordinary least squares. 
The resulting estimators of a, 2,  say 2 0 ,lo, are  consistent. Use the scheme 

of equations (23a) and (23b) to obtain the residuals ill, i lz,.. Z?T.  Then re-a ,  


gress ill on f i t - i ,  i = l , 2 ,  . . ., k, to obtain initial estimators of ,o, say, ,6,0, 
i = 1,2 ,  . . . , k. These a re  consistent estimators. Compute the quantities. 
j : ,  f i  of (23) using the estimator above. Then consider 

This is asymptotically equivalent to 

Thus applying the search technique to (24a) in a least squares context yields 
asymptotically the maximum likelihood est,imators of n and /.. One may, of 



DISTRIBUTED LAGS 

course, iterate the procedure. 

6. A N  EXAMPLE 

Here we shall apply the techniques developed in the previous sections to 
the problem of estimating the parameters of an investment function. Our 
purpose is not to give yet another theory of investment but rather to illustrate 
that the procedures developed have useful applications, and to indicate the 
extent of the variation in empirical results one might expect due to difier- 
ences in estimation procedures. The example also demonstrates feasibility 
and convergence of the computational metliods suggested. To this effect, 
we have chosen the investment function suggested by Jorgenson2 with respect 
to  the durable manufacturing sector. Our data are  somewhat different from 
his, chiefly in that our sample period is 1948 (first qurater) to 1965 (fourth 
quarter) while his begin with 1948 a,rrcl end wit21 1959. Aside from this both 
sets of data are comparable, and o u ~ .  res~rlts should be compared with the 
first row of Jorgenson's Table 2.2 in the work cited above. In Table 1below 
I t  is Jorgenson's variable, investnlent a t  time t minus ,0279 times capital stock 
a t  time t - 1, and Xt is Jorgenson's variable d [ p t x t / c t ] ,i.e., the change in 
the value of output divided by user cost, 

T A B L E  1 


ESTIMATED INVESTMENT FUNCTION DURABLE MANUFACTURING, 1948.1-1965.IV 


OLS: 

Jorgenson*: 

Modified M. L.**+ .0023863 - .0007789L - ,0012922L2
(Instrun~ental variable) It-3 = 
estimators 	 1 - - 1.965438L + .972074L2 xt 

Maximum likelihood+ .0018426 + .0001095L - .0015530L2 
It+3 = estimators 	 1 - 1,9454641; + .952775L2 xt 

* Jorgenson's sample covers only 1948-1959. 
x* We shall explain the  meaning of this below. 
+ 	 The criterion of convergence employed in these computations has been the in-

sensitivity of the  residual sum of squares about its minimum. 

The point estimates of the parameters of the hypothesized model might 
appear from Table 1 to be quite close no matter how we estimate them. 
However, their implications in terms of meaningful economic theoretic con- 
structs are rather substantially different. Before we explore this let us stress 
again that we do not advance our new estimates above as alternative em- 
pirical characterizations of investment behavior, rather as illustrations how 
alternative estimation techniques can lead to substantially differing conclusions. 

2 Jorgenson, D. W., "Anticipations and Investment Behavior" in J .  S. Duesenberry, 
G .  Fromm, L. R. Klein, E. Kuh eds., The Brookings Quarterly Econometric Model of 
the U. S. (Chicago: Rand McNally, 1965). 
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Firs t  let us ask: What is the long run response of investment to the in- 
dependent variable Xt? The answer is obtained by evaluating the rational 
functions of the table after replacing L by unity. The conclusions are: OLS: 
.05573, Jorgenson: .01583, Modified M. L.: .04749, M. L.: .05458. Without try- 
ing to explain the magnitude of these numbers-which in pa r t  reflect the  
units in which the variables a re  measured-we observe that  simply by changing 
the sample period we obtain a more than threefold increase in this quantity. 
This is so since our OLS estimator is exactly like Jorgenson's eatimator, t h e  
only difference being the sample period. On the other hand, OLS, modified 
M. 	L. and M. L. procedures yield roughly comparable quantities. 

Now, if the denominator polynomial is written as  

we have the identification 

The four sets of results given in Table 1 imply the following estimators 
for A,, 2, respectively. OLS: .9043, .6347; Jorgenson: .6475 5 .1825i ( 1  2 l L  = 
.4525); Modified M. L.: .9827 t .1234i ( 1  A l 2  = .9809); M. L.: .9727 + .1616i 
( 1  i, l 2  = .9722). These results indicate considerable variation in the con-
clusions to  be derived from the four sets of estimators. First, by enlarging 
the period of the sample we do not have oscillations in the lag coefficients, 
i.e., OLS yields real roots while Jorgenson results yield complex roots. Second 
the modified M. L. and M. L. estimators yield complex roots; moreover their 
modulus is very close to unity. In addition to that,  in the last two sets we 
may well obtain negative Lag coeficients due to the negative point estimators 
in the numerator polynomials. Of course, we have not appraised the statis- 
tical significance of these results, nor have we experimented with the order 
of the numerator polynomial so as  to obtain the "best fitting" result as  was 
the case with Jorgenson's study. 

Finally, if we standardize the lag coefficients so that  they add to unity w e  
can obtain the implied mean lag as follows: Let 

be the lag generating function; i t  is apparent that 

represents the sum of the lag coefficients. If all Lag coejicients are  positive, 
a s  must  be the case in Jorgenson's model, then i t  makes perfectIy good sense 
to  divide the lag coefficients by W ( 1 )  so that  they lie in the interval [ O , l ]  
and sum to unity. Thus, they have all the characteristics of a set of pro- 
babilities, and we may define the mean lag in the same way as  we define t h e  
mean of a random variable. In this case we obtain 
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A'(1) B1(l)Mean lag = -----
A(1) B(1) 

where A1(l), B1(l) indicate respectively the derivatives of A(s), B(s) evaluated 
a t  s = 1. This measure is not useful in the case of the modified M. L. and 
M. L. estimators-at least not in the present case. 

The mean lag for OLS is 15.16 quarters; for Jorgenson i t  is 7.02 quarters. 
This is indeed a very substantial variation and one that we might not expect 
to materialize simply by the enlargement of the sample period. However, i t  
is not our purpose here to comment on this substantive aspect. 

To conclude our discussion let us elucidate two aspects. First, by modified 
M. L. estimators we mean the following. The maximum likelihood (M. L.) 
estimators are obtained by (iteratively) solving the equations (7a) and (7b). 
If,  however, we replace the quantities xt*-*,by yt*-, then, in fact, we lighten 
the computational burden without losing consistency. Indeed, in view of the 
assumptions we make concerning the error term, the quantities y?-, are not 
correlated with the error term and thus the estimators obtained (by itera- 
tion) from 

where X*, Y* are as defined in (8) and 

have an interpretation as instrumental variable estimator^.^ The advantage 
of making calculations with instead of xt*-*, is that the moment matrices 
of unknown coefficients (see equation (27)) are for each iteration symmetric 
and positive definite. 

Second, we may obtain initial consistent estimators by an obvious extension 
of Liviatan-type methods or by using as initial instruments a suitable num-
ber of the principal components of a set of lags i n  the independent variables. 
This will have the effect of ameliorating the multicollinearity problems that 
are induced by using as instruments successive lags of the independent variable 
as Liviatan's method would suggest. 

University of Pennsylvania and Princeton University, USA 
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