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ESTIMATION OF DISTRIBUTED LAGS*

By PHOEBUS J. DHRYMES, LAWRENCE R. KLEIN
AND KENNETH STEIGLITZ'

1. PRELIMINARIES

THE USE OF DISTRIBUTED LAGS in econometric research is quite old. However,
the current intensive interest in the subject dates back to the relatively re-
cent work of Koyeck [9]. Since then, a number of extensions have been made
to the basic geometric lag distribution and the associated method of estima-
tion taken up by Koyck. A number of such studies are summarized in
Amemiya and Fuller [1]. More recently a search technique has been proposed
by Dhrymes [2] for the case of a geometric lag distribution occurring in a
relation characterized by a first order Markov process in its error term.

Jorgenson [7] has employed in empirical research rational distributed lags
although he has not given a full treatment of the estimation problems of the
parameters involved. Dhrymes [3] suggested a technique of estimating in a
consistent and asymptotically efficient fashion the parameters of a rational
distributed lag by the use of spectral techniques thus extending the results
obtained by Hannan [5] in the case of the simple geometric lag structure.

At the same time, however, electrical engineers have been interested in
much the same problems. In many instances they have produced the ele-
ments of a satisfactory solution to the problem of estimating the parameters
of the rational distributed lag although their approach has not always been
explicitly grounded on a statistical formulation and thus the properties of
the resulting estimator were not clear. The present paper builds on an idea
proposed by Steiglitz and McBride [13] in an engineering context.

Our purpose here is to give a rigorous formulation and solution to the prob-
lem of estimating, by maximum likelihood technigues, the parameters of
a general lag structure, to point out the lines of research and terminology
followed in the literature of electrical engineering and thus to make avail-
able this literature to econometricians. We believe that such contact will prove
quite fruitful.

2. ENGINEERING MOTIVATION AND SOME FORMAL ANALOGIES
IN ENGINEERING AND ECONOMETRIC RESEARCH

The determination of the dynamic characteristics of an electrical or me-
chanical system from observation records has been of interest to engineers for
some time, especially with regard to the construction of adaptive or learning
control systems. Most of the work in electrical engineering has been con-
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236 P. J. DHRYMES, L. R. KLEIN AND K. STEIGLITZ

cerned with the linear stationary case, since many physical systems are
operated in a fixed environment with relatively small excursions from quies-
cence.

Thus, assume that the postulated linear stationary system can be described
completely at any time ¢ by an n-dimensional vector w., called state wvector
at time ¢t. Assume also that the system is excited by a single scalar variable
x:, called the input, and that the system response is determined by the value
of the scalar variable y,;, called the output.? We may asscciate z; with an
exogenous or explanatory variable and wu:, y: with endogenous variables, the
general point of view being that z, is determined outside the system and
affects (or determines) ; and y: in a causal way.

Finally it will be assumed that output is a linear combination of the com-
ponents of the state vector and a scalar random variable u,, which represents
the effect on the system of nonmeasurable or unknown exogencus variables.
We many thus write
(1) wy = f}w,_l + bay

Y =cw, + Uy .
In (1) A and b are respectively an (n X »n) matrix and n X 1 vector of constants,
the assumption being that the transition from w,-; to w; is accomplished in
a simple Markovian scheme, under the excitation induced by bx;. For this
reason the matrix A is called the transition matriz of the system, though it
need not be a probability matrix.

Let 2z be complex, of unit modulus, and define

(2) W@ =S wet, X2) = Sz, V) = Sy, Us) = Siue .
=0 t=0 =0 t=0

The first system of equations in (1) may now be written as

(2a) W(2) = Az*W(z) + bX(z) .
Solving, we obtain
(2b) W(z) = (I — Az~ X(2) .

Finally substituting in the last equation of (1) we have
(8) Y(2) = c¢'(I — Az")0X(2) + Ulz) .
Clearly ¢/(I — Az~')~'b is a rational function of z~! and' as such it may be
represented
1y Al
3 I — Azt th = ="~
(3a) c'( z1) Blz D)

where A(z™!) and B(z') are polynomials of suitable order. Clearly, the poles
(I — Az~Y)~! are the zeros of B(z!). Indeed, if 2; are the roots of A then it
can be easily seen that

2 What follows can easily be extended to the multivariate case; i.e.. we can easily
deal with the case in which »; and y; are vectors of suitable dimensions.
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AR _ & e

where ¢ are suitable constants obtained through the process of expansion of
the left hand side of (4) by partial fractions. Since the 2;,7=1,2, .-+, n are less
than unity in absolute value and z lies on the unit circle, we may expand

z

Thus the system in (3a) can be written as

Syet = el St 3wt + 3wt
t=0 =1 t=0 k=0 t=0
= i ( S C;‘ (i xr—kzl';)[—r) “]' Z u’l‘z_t ’
1 k=0

T=0 \i= t=0

(4b)

where the last member of (4b) is obtained by putting ==t + k. Equating
like powers of z-! on both sides we find

(4¢) ?/¢=Zc§‘il'{xz~k+uf, t=1,2 -+, T,
i=1 k=0a

which shows that the system in (3a) represents a lag distribution. Moreover,
this is a weighted sum of n simple geometric lag distributions with parame-
ters A, 2 =1,2, .-+, n. Further, from (4b) we note that z~! plays exactly
the same role in engineering literature as the lag operator L in econometric
and statistical literature.

In what follows we shall therefore use the lag operator exclusively. By
definition

(4d) Lk{h:xg—k, LOZI, th:{m, k=0,1,2,"';
therefore, in virtue of (4) and (4a) we can write (4¢) as

4 = ;k 21,1:.' k. —i— - .»___c.l",. e
(de) Y @Z_‘fc /Zé( Y, + e Z:{ T D)

-+ U = ggi‘; Ty + Uy,
where A(L) and B(L) are polynomials of degree at most » — 1 and n respec-
tively. This is, of course, the notation of the standard rational distributed lag
model discussed in the literature of econometrics. It is particularly striking,
for example, that Jorgenson [7] and Steiglitz and McBride [13] use, in entirely
different and unrelated contexts, exactly the same model (4e). This is an
extreme instance of research convergence in econometrics and electrical
engineering and should suggest to econometricians and electrical engineers
the benefits to be derived from familiarity with certain aspects of the research
in the two disciplines.

We conclude this section by giving a table of equivalent terminology.
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Engineering Feonometrics

White-Gaussian error Nonautocorrelated, normally distributed
error

Colored-Gaussian Autocorrelated, normally distributed error

Plant Nonstochastic model

Record Sample

Rational z transform Rational lag distribution

Prefiltering exponential weighting

Identification Specification and estimation of a model

3. ESTIMATION OF THE GENERAL RATIONAL LAG MODEL

A. Formulation. In this section we shall deal with the problem of estimat-
ing the parameters of

(5) yt=%%%wt+ut, t=1,2, .., T,

where L is the lag operator defined in (4d) and

VAN
-

(52) AL =S ali, BL=SbL, h=1, =
1=0 3=0

The independent variable x is assumed to be nonstochastic or, if stochastie,
uncorrelated with the random term wu,. The latter has the specification

(5b) u ~ N0, 1), U = (Uy, Ua, =, Up) ,

and is assumed to be independent of x for all ¢. We shall employ maximum
likelihood methods. Thus the .log) likelihood function of the observations
in (5) is given by

. T, o. T i A(L) \/ A(L)
( 2., = = - 2 =gy B, —. AL,
(6) Lla,b,o?y, x) 2 In (2r) 5 Ino 208 ( B(L)%> (y B(L)®>

where
Y=Y, Yz **, Yr) @ = (¥, Tz, * >, 1)’
a:(ao,al,---,ag)’, b:(bhbg,"",bp),.

The first order conditions for a maximum are given by

aL . 1 L _A(L}. ﬂ,. — ¥ coo, 41
da; 02z=/§+|< ! B(L)’“> B =" 7=0L 2
aL 1 T A(L) A(L)
6 = =2 a S, = = ey
(6a) b " 2 ( ‘ B<L>’”‘> BLp =0 s=hEB iy,
1

oL T 1 Z . ALY N AL N
20 o Z<y B<L>x"> (v B<L;)“’> =0

We observe that while the equations in (6a) are highly nonlinear in the a;
and b;, they are linear in a; for given b; and they are linear in ¢%. We can
search the parameter space for estimates of a;, given b; or we can iterate
for all parameter estimates simultaneously. Once we have estimates for a;
and b;, however, an estimate for »- will be easily obtained.
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In what follows we shall concentrate our attention solely on the first two
sets of equations which would correspond to the normal equations of least
squares, although under the assumption of normality the resulting estimators
would be maximum likelihood ones as well.

The strategy of our estimation procedure is to determine a consistent solu-
tion of the equations in (6a).

Since by a theorem of Huzurbazar [6], for large T there exists a unique
consistent solution, and by a theorem of Wald [15] it corresponds to the
global maximum of the likelihood function, we would then have found the
maximum likelihood estimators of the parameters a;, b, §=0,1,2, -+, p,
8 =1,2, ---,v, which are asymptotically normal, unbiased, and efficient.

B. An iterative algorithm. Define

R R i wx _ AL) - e T
(7) Yr = B‘L)yt, Ty = B(L)wh &t B(L)xf. , t=1,2, , T,

and note that the first two systems in (6a) may be written as

.

(Ta) >, [BlLy! — AL)af iy =0, j=0,1,2 -, p,
tes ety 41

h) S (BLw! — ALyt lett =0, s=1,2 1,0,
t=ptu+1

The equations in (7a) and (7b) are linear in the parameters provided we deal in
the transformed variables y*, «*, £**. But this suggests how we can solve the
system: if an initial (consistent) estimator is given for B(L) and A(L), say B%L),
A'L), it can be used to construct the variables y:, ', #*; then the system
in (7a) and (7h) can be solved to provide another estimator B!(L), AY(L), etec.,
until the iteration converges, say at the k-th step; this would mean that for
prescribed ¢ > 0

(Te) max |af —af™| <e, max|b; —bit'| <.
7 8

Let us see precisely what this algorithm entails. For computational conve-
nience only, the various cross products involved will not contain the observa-
tions at times » — 1,2, ---,v. To this effect, let

* * * * * * -
Yuetvs  Yptro-1y =t Yt Letvily Bpty, =00, Lot
* * * * * *
Yutvery, Yptvy, 0y Yuse Lptrv+e, Lp vty =0, Lt
vr=|"" X* =
P . , === ° © )
* * * * * %
( 8) Yr—1y Yr—2, ey Yr—y Xt L1 —1, sy XT—p

k% 3k % k%
fvyt‘n Lpgr—1, *°°y Tpti
* % * 3%

Lutvtry Bptyy g Bpiz

X ** —

* %k * % * %
LTty X7 2y 00, BT oy
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T

a=(%), e=@h, = 3 uiety, =012 e p
—b J=ftu+1

(8a) r ® ok

= 2 YeLtrp—j, J=p+1Lu+2 0 pty

t=fitutl

X*X* XHY*

X *¥ X * X**'Y*]

With the aid of the notation in (8), (8a) and (8b), the system in (7a) and (7b)

may be written compactly as

(9) WH*d = ¢* .

Remark 1. We should observe that the definitions in (7), involving what
engineers call prefiltering, are not as cumbersome as they appear. In par-
ticular, they need not involve power series expansions of the operators I/B(L).
To see this, note that by virtue of the convention in (5a), we can write

(3b) W*=[

(10) BLy=1I+ >\b,Li =I—B%L), B*L)=-—S\bLi.
j=1 i=1

Thus, the first equation in (7) implies
(10a) yi =y + BYLy! .

If initial conditions for y. are specified, we see that y; can be computed
recursively, given b, for as many values of the index as y, is available.

Similar comments apply to @/. In the case of %" we see that since af is
defined over the same range of index values as x,, then clearly ™ is defined
fort=p+ 1,42 ---. Thus, ., a, 2" are all defined for t =v,v +1, -+, T
which is the range of index values appearing in the matrices Y*, X* and
X**. Finally, a convenient initial condition for y/ and ! is

(10b) tli=yli=0, 1=0,1,2, 00,0,

Since

(10c) y*~:--I-~-y ; x*:———x . 13=0,1,2 oc0, v
—1 B(L) -1y - B(L) '~ B 9 ’ 3 ’ ’

(10b) is equivalent to stating that

10d) Ty =Y-=0, 1==0,1,2, 00, 9.

This is not a serious handicap if the sample size T is large.

Remark 2. Observe that W* and c¢* are functions of d. In what follows
we shall assume that for any admissible value of d, W* is nonsingular. Now,
it is clear from (9) that if an initial consistent estimator of d exists, say
do, then W* and c¢* can be computed, say Wi, é, where the tilde is used to
denote the fact that W* is obtained on the basis of a consistent estimator
of d and not on the basis of the true value of the parameter vector d.

In view of the above, we may iterate on d by solving, to obtain

(11) dy = Wier .

We may now evaluate W* and c* at d; and complete a second iteration
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(11a) d, = Wi'et .

Two questions arise with respect to this procedure.

i. if d; is a consistent estimator of d, is it also the case that dis is a
consistent estimator of d?

ii. does the iteration process converge, and, if so, under What circum-
stances?
To this effect we prove

LEMMA 1. Under the hypotheses of the model as e_whib'ited wn (5), (ba) and
(5b), if d; is a consistent estimator of d them so is diyi, the latter being de-
fined by

- ~*_1 *
(12) divi= Wi é; .
PrOOF. We note that by definition
) _ I TAW) T *
(12a) Ye —B(L>yt = B(L)[B(L)M + u;] =X+ U

the starred quantities in (12a) having.the obvious meaning. Thus
(12b) Y*=X**+ U*

where U¥* is constructed in exactly the same fashion as Y*. Define

) e TXHX® X XHE
klZC) W = [X*’”X‘ X**’X**]
Since
(12d) XHY* = XM XH* o X*[T*
then

i KEYE iy XX
aze glim 5 = slim

since @ is nonstochastic (or independent of w).
Since d; is a consistent estimate of d, it follows that

—_ it} kK
@ glim WE = lim 77
We also note that, by the same argument,
(13a) phm ~-cl = lim lc"‘*
T—oo T T—oo
where
cx* =;(0.1 ;fc;"*__ Z xe ac?‘_,-, 7=0,1,2 -+, p,
(lgb) J=yv+1
r kK skok .
=Zwt Lt 4-p~j o .7=/'5+17/l+2y"';/5+9-
J=v+1

Since
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5 T\ —1 ¥
we conclude
(14a) plim diyy = lim [( ‘fi)—l c*_*_] _
T T—w T T
The model obeys
(15) B(Ly! = A(La! + w, t=1,2---
Putting
(15a) Y= Uty Yoizy o0 Yr) U= Uty Unig, =07, U

we can write (15) in the slightly altered form

(15b) (X*, Y*d =9y — u..
Let
(15¢) Z = (X*, X**)
and consider
(16d) Z(X*, Y*d =Z'yw— Z'u> .
We note

im 2 XN YY) W
4o RO O

LYY i Lk AL
(16a) plim = =jmgpe™.  plim=-=0.
From (156d) we therefore obtain
i W 4 = i Lo#*

(16v) SN LY
Comparing (14a) and (16b) we conclude
(16c) plimd;y = d .

T —oco

Q.E.D.

The question of convergence for this procedure is rather difficult to settle
definitively. Since asymptotically W* converges to a positive definite matrix
for every admissible d one would surmise that the iteration process will con-
verge, at least for large 7. Assuming that the process above is convergent,
we are thus able to locate the consistent root of the maximum likelihood
equations. By the theorem of Huzurbazar [6] we have therefore found, for
large T, the global maximum of the likelihood function. Since the probability
gtructure of the error term in (5) is regular, we conclude that such estimators

are consistent, asymptotically efficient, and distributed as

O 1., 8L
(17) VT(_d—d)~N<O,[——,fEadad] )
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One can handle rather easily the case of autocorrelated error terms por-
vided the autocorrelation is first order Markov. Thus, if

(17a) e = pUs—y + e, t =1,2, +++, T, | p| <1, e~ N0, o)
where
(17b) &= (517 82y 57'), ’

then one can employ a scanning (search) technique. As shown by Dhrymes
[2] in a slightly different but relevent context the resulting estimators of

(d», obtained by the procedure above coupled with a search on p, are con-
p K

sistent.

4. A MODEL WITH SEVERAL DISIINCT GEOMETRIC LAGS

It is interesting that the techniques of the previous discussion are easily
applicable to the model

1) Y =

m o I
i=1 "“/ltL

which has been found intractable in previous economic applications. When
the number of lags is small, say two, then the search technique given in
Dhrymes {2] can easily be extended to produce maximum likelihood estimators
in a relatively simple manner. If, however, m > 2, then the search technique
is, realistically, nonapplicable and should resort to the estimation scheme
discussed above.

Let us see precisely what this entails. As before we shall assume

(18a) u ~ N(0, ¢%I) , U = (U1, Uz, Us, **+, Uz)’

Pei + U . t=1,2,"',T,

and that the x;,7=1,2, -+, m are either nonstochastic or eventually inde-

pendent of the error terms of (18). The (log) likelihood function of the
observations is

T n
(18b) Lia, 2, 0%y, X) = —zln(Zu)— Linet -1 3 <y, by If'iL )2
The maximizing equations with respect to the a; and A; are given by
oL, X ool r
a9 da, tz(y' DYy wa”) N A

a z I I k= 1! 2; e, m,
<l a; —
g:( Ef I— XiLx”> I - ka)zx“"’v' 0.
If we now define
(193) w;'; — I X, x;(;* — __l_‘x;,; y:; _ ’
I—L,L I—'/L.L ’ I—X@L

the system in (19) may be written as

T T T

x % * * * ok

aw > Ceiltek + Ak >, Yio1,kBek = Dy Yekek
t=1 t=1

t=1

(19b)

uM§
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Two aspects of (19b) should be pointed out: first as an identity we may write,
for any k,

TFM%

T T

* * * 3 ¥ k%

Be1k + Ak S, Yot k®e1,k = >, YekTe—1,k -
t=1 t=1

(19¢) ve= T80y = U Lyl = i — da
Second, although the summation over t has the range (1, T) we take yo: =
2, = 0 all k so that no problem arises.

The estimation scheme here is exactly the same as in previous sections;
thus if consistent initial estimators exist for the A, ¢ =1,2, .-+, m, say 1s
then the quantities i, %%, Ju» can be computed from the expressions in (192)
where in lieu of 2; we make use of the 1;.. Hence from (19b) we shall obtain
estimators, say, &, 15 using the 7} we can recompute the quantities %, %',
J& from the expressions in (19a) and from (19b) obtain another set of estima-
tors, say &i, 1: and so on until convergence is obtained, i.e., until at the s-th
step we find

(198 max {| 1} — 17|, lai —aitly<e

where ¢ is a preassigned (small) positive constant.

5. AN ILLUSTRATION

Here we briefly examine the geometric lag distribution which has found
extensive applications in econometrics. In this case

(20) A(L) = al B(L)=1-iL, [A] < 1.

The model in (5) becomes

(203) Yt = Iv—_(»_IvLa,t—l-u,, t=1,2,---,T.
The equations in (7a) and (7b) become
zT‘, (I — 2Lyyd — awtlat = 0
(20b) :
Z [T — ALy — awflaws? =0,
where
I S P o __al o«
(20c) YWSTIop Y S TS oagp % % =y

After some rearrangement we can rewrite (20b) as

T T T )
aZxé“z + sz?‘y?‘_l = sz*yt*
21) - -

M's

ot as + 2 2 xz—xye—1 = Z e ys .

o~
it
-
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If we take an initial consistent estimator of 1 and «a, say 7,, &, then we can

compute the prefiltered variables y:, i and x* recursively as follows:

(21a) Yt =y + Lyisn,  wf =@+ Lt , @l = an + L.

We can then solve the system in (21) to obtain another estimator, say 1, &.
We again compute the prefiltered variables in (20c) using the new estimators
and continue until the iteration process converges, i.e., until

(21Db) max {| Lo — 4|, @i — asl} <e,

where ¢ is some preassigned small quantity. An initial consistent estimator
for « and A can be obtained by instrumental variable techniques. In par-
ticular we can take the estimator proposed by Liviatan [10] which is obtained
by solving

T T
o S x: + A0S, Tt —Zwt?/c

(21c) f =t
&g ; L%y + Ao ?_Jz Tt—1Yt—1 = Z Le—-1Ye -
Efficient estimation of the geometric lag distribution has been the subject of ex-
tensive research; a part of this literature was referred to in the introduection.
In this connection, it should be noted that a recent Monte Carlo study by Morri-
son [12] compares a number of proposed estimators of the parameters of the
model (20a) where the error terms are assumed to have the classical properties.
He finds that the estimator proposed by Liviatan [10] and Hannan [5], as
interpreted in the time domain by Amemiya and Fuller [1], on the whole do
not do very well. The estimators proposed by Steiglitz and MecBride [13], a
variant of which was discussed above, does extremely well for large samples
(50 observations); that proposed by Dhrymes [4], [2] performs relatively hetter
than the Steiglitz and McBride estimator for smaller sample size, although
for larger samples the two estimators perform equally well.

Finally, this is a convenient juncture to consider Malinvaud’s comments
{11] on the estimation of the geometric lag in the face of autocorrelated
errors. Thus, suppose our model is

{22) y¢=}~fIzth+ut, u;zgpiut—i + e, t=1,2,.--T.
‘where

(22a) e ~ N(0, 0%I) , e = (e, &, **,er) .

“We note that

(22b) Y — é PiYi—i = T—f—IZ ( Eli:, zxt—i> + e .

“‘We may then put

;. al ’ ' k ’ k
{22¢) Y = T2 T+ e, Ye =Yt — >, PilYs-i , Ty = Ly — Z Oile—i .
i=1 =
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Malinvaud then claims that if we estimate a and 1 by the method given in
Klein [8] with yi, #, replacing ¥ and wx, respectively, then the resulting
estimators of a and 2 are inconsistent. The iteration considered by Malinvaud
begins with an inconsistent estimator of the parameters «a, 7, 0. It is simple
enough to use Liviatan-type or other consistent estimators to start the
interations.

Suppose that we have consistent estimators of the p;, say pi. Then we
may define

o k k
@3 Y = Yo — Z BioYi-i , T = - > PioTe—i .
i=1 i=1
If an initial consistent estimator of « and 2 are also available, then we can

apply the scheme of this section with 7; and & replacing y: and 2 in (20a).
Thus we obtain estimators &, Z;. Using these we can compute

(23a) iy — 11%—1 =Yt — zlyt—l — Q% .

From the left hand side of (23a) we can obtain recursively the ., t =1,2, ---, T,
on the assumption, say, that

(231)) Zio =0.

The consequences of this assumption are minimal if the sample is at all
large. Then we can regress i on #.-..1=1,2. ..., k, to obtain another set

pi, 1 =1,2,---, k, and repeat the process. It is easily verified that this pro-
cedure will yield consistent estimators. Actually, in the empirically relevant
case k =1, one easily obtains a rather simply executed estimator which is
consistent, asymptotically unbiased, and efficient. An alternative procedure
if £ >1 may be as follows: Disregard the specification on u: in (20) and
obtain consistent estimators for « and 72 by searching on /. This may be
done by using the form given in Klein [8]

t—1
(24) Ye = A + @S, At + e,
=1
and employing ordinary least squares.
The resulting estimators of «, 4, say &, 4o, are consistent. Use the scheme

of equations (23a) and (23b) to obtain the residuals ;, @, ---, #z. Then re-
gress i, on -, t=1,2,---,k, to obtain initial estimators of p: say, p,
©1=1,2, ---, k. These are consistent estimators. Compute the quantities.

$1, & of (23) using the estimator pi above. Then consider

t—1
(24a) Fi= g + aS Mgt + &
=1
This is asymptotically equivalent to
k t—1 t—1
(24b) Y: — ZI PiYt—i = 2‘170 + azl i.‘(x, - Z pix(—i> + &
i=1 i=1 i=1

Thus applying the search technique to (24a) in a least squares context yields
asymptotically the maximum likelihood estimators of « and .. One may, of
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course, iterate the procedure.

6. AN EXAMPLE

Here we shall apply the techniques developed in the previous sections to
the problem of estimating the parameters of an investment function. Our
purpose is not to give yet another theory of investment but rather to illustrate
that the procedures developed have useful applications, and to indicate the
extent of the variation in empirical results one might expect due to diffier-
ences in estimation procedures. The example also demonstrates feasibility
and convergence of the computational methods suggested. To this effect,
we have chosen the investment function suggested by Jorgenson? with respect
to the durable manufacturing sector. Our data are somewhat different from
his, chiefly in that our sample period is 1948 (first qurater) to 1965 (fourth
quarter) while his begin with 1948 and end with 1959. Aside from this both
sets of data are comparable, and our results should be compared with the
first row of Jorgenson’s Table 2.2 in the work cited above. In Table 1 below
I, is Jorgenson’s variable, investment at time ¢ minus .0279 times capital stock
at time t — 1, and X, is Jorgenson’s variable 4[p;x:/c;], i.e., the change in
the value of output divided by user cost.

TABLE 1
ESTIMATED INVESTMENT FUNCTION DURABLE MANUFACTURING, 1948.1-1965.1V

_ 007906 + .007944L -+ .0003197L* _
OLS: Tevs = =0 541705L + 5Ts882Le X

-00096 + .00080.L + .00034L2

Ko =
Jorgenson*: Iits 1 — 1.29501L + 4276412 X
Modified M. L.*** 0023863 — .0007789L — .0012922L2
(Instrumental variable) Tyog = = - - X
estimators 1 — 1.965438L + .972074 L2
Maximum likelihood+ 1., = 0018426 + .0001095L — .0015530L% .
estimators T 1 — 1.945464L + .952775L% !

*  Jorgenson’s sample covers only 1948-1959.

#* We shall explain the meaning of this below.

+  The criterion of convergence employed in these computations has been the in-
sensitivity of the residual sum of squares about its minimum.

The point estimates of the parameters of the hypothesized model might
appear from Table 1 to be quite close no matter how we estimate them.
However, their implications in terms of meaningful economic theoretic con-
structs are rather substantially different. Before we explore this let us stress
again that we do not advance our new estimates above as alternative em-
pirical characterizations of investment behavior, rather as illustrations how
alternative estimation techniques can lead to substantially differing conclusions.

2 Jorgenson, D. W., “Anticipations and Investment Behavior” in J. S. Duesenberry,
G. Fromm, L. R. Klein, E. Kuh eds., The Brookings Quarterly Econometric Model of
the U. S. (Chicago: Rand McNally, 1965).
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First let us ask: What is the long run response of investment to the in-
dependent variable X,;? The answer is obtained by evaluating the rational
functions of the table after replacing L by unity. The conclusions are: OLS:
.05573, Jorgenson: .01583, Modified M. L.: .04749, M. L.: .05458. Without try-
ing to explain the magnitude of these numbers—which in part reflect the
units in which the variables are measured—we observe that simply by changing
the sample period we obtain a more than threefold increase in this quantity.
This is so since our OLS estimator is exactly like Jorgenson’s eatimator, the
only difference being the sample period. On the other hand, OLS, modified
M. L. and M. L. procedures yield roughly comparable quantities.

Now, if the denominator polynomial is written as

(25) B(L)=I+ bL+ b,L*=(I— 4 L)YI— 2L)
we have the identification
(253) 21 + 12 == '—bl 1112 = bg .

The four sets of results given in Table 1 imply the following estimators
for 2y, 2. respectively. OLS: .9043, .6347; Jorgenson: .6475 = .1825¢ (|| =
.4525); Modified M. L.: .9827+ .1234¢ (| 2]|? = .9809); M. L.: .9727 + .1616¢
(1212 =.9722). These results indicate considerable variation in the con-
clusions to be derived from the four sets of estimators. First, by enlarging
the period of the sample we do not have oscillations in the lag coefficients,
i.e., OLS yields real roots while Jorgenson results yield complex roots. Second
the modified M. L. and M. L. estimators yield complex roots; moreover their
modulus is very close to unity. In addition to that, in the last two sets we
may well obtain negative lag coefficients due to the negative point estimators
in the numerator polynomials. Of course, we have not appraised the statis-
tical significance of these results, nor have we experimented with the order
of the numerator polynomial so as to obtain the “best fitting” result as was
the case with Jorgenson’s study.

Finally, if we standardize the lag coefficients so that they add to unity we
can obtain the implied mean lag as follows: Let

I3

Z a;st
(26) Wig) = =0 — A
2 b,-sf B(S)

be the lag generating function; it is apparent that

A1)
(26a) W) = B

represents the sum of the lag coefficients. If all lag coefficients are positive,
as must be the case in Jorgenson’s model, then it makes perfectly good sense.
to divide the lag coefficients by W(1) so that they lie in the interval [0, 1}
and sum to unity. Thus, they have all the characteristics of a set of pro-
babilities, and we may define the mean lag in the same way as we define the
mean of a random variable. In this case we obtain
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A1) _B1)
A1)~ BQ)

where A’(1), B'(1) indicate respectively the derivatives of A(s), B(s) evaluated
at s =1. This measure is not useful in the case of the modified M. L. and
M. L. estimators—at least not in the present case.

The mean lag for OLS is 15.16 quarters; for Jorgenson it is 7.02 quarters.
This is indeed a very substantial variation and one that we might not expect
to materialize simply by the enlargement of the sample period. However, it
is not our purpose here to comment on this substantive aspect.

To conclude our discussion let us elucidate two aspects. First, by modified
M. L. estimators we mean the following. The maximum likelihood (M. L.)
estimators are obtained by (iteratively) solving the equations (7a) and (7b).
If, however, we replace the quantities ;% by y._. then, in fact, we lighten
the computational burden without losing consistency. Indeed, in view of the
assumptions we make concerning the error term, the quantities y:~. are not
correlated with the error term and thus the estimators obtained (by itera-
tion) from

(26b) Mean lag =

(27) X*IX* X*IY*] _ E*

Y*IX* Y*IY*

where X*, Y* are as defined in (8) and

T
e=@nH, ¢ef= 3 wau, i=0,1,2 - p
(273.) t=p+v+1
T * ok .
= D YtYire—i, J=pe+Lp+2 -, p+v,
t=p+v+1

have an interpretation as instrumental variable estimators.® The advantage
of making calculations with y:~, instead of x:~% is that the moment matrices
of unknown coefficients (see equation (27)) are for each iteration symmetric
and positive definite.

Second, we may obtain initial consistent estimators by an obvious extension
of Liviatan-type methods or by using as initial instruments a suitable num-
ber of the principal components of a set of lags in the independent variables.
This will have the effect of ameliorating the multicollinearity problems that
are induced by using as instruments successive lags of the independent variable

as Liviatan’s method would suggest.

University of Pennsylvania and Primceton University, USA
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