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Parallel counters (unary-to-binary converters) are the principal component of a Dadda multiplier. We 
specify a design first for a pipelined parallel counter, and then for a complete multiplier. As a result 
of its structural regularity, the layout is suitable for use in a VLSI implementation. 

We analyze the complexity of the resulting design using a VLSI model of computation, showing 
that it is optimal with respect to both its period and latency. In this sense the design compares 
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1. INTRODUCTION 

T h e r e  has  b e e n  cons ide rab le  in t e re s t  in  app ly ing  VLSI  t echno logy  to the  task  of 
in teger  mu l t i p l i c a t i on  [21]. Lower  b o u n d s  for th is  p r o b l e m  have  b e e n  p r e s e n t e d  
on  the  a rea  [24], a r ea - t ime  p roduc t  [1, 4], a n d  da t a  ra te  [24]. U p p e r  b o u n d s  have  
also appea red  for the  a r ea - t ime  p r o d u c t  (e.g., [4, 13, 17, 18]). 

T h e s e  b o u n d s  are asympto t ic ,  a n d  before we go fu r the r  we shou ld  po i n t  ou t  
t h a t  i t  is i m p o r t a n t  to cons ider  careful ly  the  m e a n i n g  of such  b o u n d s  in  our  
context ,  and  especial ly  the  effect of us ing  e i the r  the  Fas t  F ou r i e r  T r a n s f o r m  
(FFT)  or the  Discre te  Four i e r  T r a n s f o r m  (D F T)  as a s u b a l g o r i t h m  for mul t ip l i -  
cat ion.  Des igns  t h a t  do use the  D F T  or F F T  can  have  good a s y m p t o t i c  proper t ies ,  
b u t  are genera l ly  prac t ica l  on ly  for very  long word  lengths .  U p p e r  b o u n d s  
ob t a ined  this  way  are viewed as be ing  m a i n l y  of theore t i ca l  in te res t .  T h e  des ign  
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proposed in this paper does not use the FFT or DFT, and appears to be quite 
practical in the sense that the constants in the asymptotic upper bounds are 
relatively small. 

The following remark appears in [4]: "We do not know if there is any practical 
design having A T  2" = o(n 1+2") for ~ ~ [0, 1]." Brent and Kung go on to present 
a design and show that their lower bound is tight to within log factors, but they 
deem their design to be primarily of theoretical interest because it multiplies via 
the DFT. Preparata and Vuillemin [18] give an A T  2 optimal (O(n2))  multiplier 
using the cube-connected cycles topology; it uses the FFT. Preparata [17] im- 
proves this theoretical result by achieving the A T  2 lower bound with a simpler 
topology: the two-dimensional mesh. This design is interesting because such a 
mesh can be embedded in the plane without long edges, but the design uses the 
DFT. It m a y  be practical for sufficiently large integers. Jackson, Kaiser, and 
McDonald [11] and Lyon [14], on the other hand, describe a practical multiplier, 
but its area is O(n) and its time is O(n) so that  its A T  2" = O(n  '+2") ~ o(n~+2"). 

Luk, in direct response to the remark of Brent and Kung for a = 1, presents a 
multiplier layout with T = O(log2n) [13]. He states: "The A T  2 measure of this 
multiplier layout is nearly optimal, being O(n21og4n); so it answers the question 
posed by Brent-Kung that  the existence of a practical multiplier having A T  2 = 
o(n 3) measure." The multiplier design presented by Luk is recursive, performing 
an n-bit multiply via four n/2-bit multiplies and two additions. Its A T 2 complexity 
is O(n21ogGn). His design employs the shuffle-exchange network. Reference was 
made to an alternate design where an n-bit multiply would be obtained by 
recursively performing three n/2-bit multiplies (see [2]). Luk stated that  this 
design had an A T  2 complexity of O(n21og4n). It was not presented, however, 
because the layout is less regular. 

The purpose of this paper is to present and analyze a VLSI layout for a 
multiplier that also has A T  2 = o(n3).  The model we use here is the one used by 
[4, 13, 17, 18], the s y n c h r o n o u s  model of VLSI [3, 4, 23]. The design we present 
has time and period that are asymptotically optimal (T = O(log n) and P = O(1)); 
its A T  2 measure is O(n21og3n). Because its period is O(1), it is potentially useful 
in applications that require both fast response and high throughput. A VLSI 
measure that favors fast response and high throughput without ignoring area is 
A P 2 T  2. Under this measure, a lower bound for n-bit multiplication is ~2(n21og2n), 
and the scheme presented has complexity O(n21og3n). Moreover, the architecture 
falls under the rubric of a Dadda scheme [8]. Such architectures are already used 
in some high-speed computers, attesting to their practicality in demanding 
situations. The layouts given for the parallel counter and overall multiplier are 
structurally regular, and so are suitable for a VLSI implementation. Table I 
summarizes the practicality and asymptotics of the designs mentioned above. 

The remainder of the paper is organized as follows. Section 2 defines some 
terms used in the paper. Section 3 presents a design for a parallel counter (which 
we call a unary-to-binary converter). In Section 4 we review the Dadda scheme 
for K-ary addition. Then we present a Dadda design for K-ary addition that 
employs the unary-to-binary design presented in the previous section. In Section 
5 we present a layout for a multiplier using the K-ary adder of Section 4. This is 
followed by some historical and concluding remarks. 
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Table  I. S u m m m a r y  of Mult ipl ier  Designs  

159 

Design Note  Period T i m e  Area  A P 2 T  ~ 

Lower bound  (~) -- 1 log n n n210g2n 
[4] D F T  n'/210g n nl/2log n n log n n~log 5 n 
[18] F F T  logZn log2n (n/ log n) 2 nZlog4n 
[17] D F T  n ' /2 n ]/2 n n ~ 

[14] - -  n n n n '~ 
[15] -- 1 n n 2 n 4 
[ 13] - -  1 log 2n n Clog 2n n 2log 6n 
Th i s  paper  - -  1 log n n 2log n n 21og:~n 

Note: Designs  tha t  mult iply via a D F T  computa t ion  are generally regarded as being practical  only for 
large values  of  n. 

Fig. 1. 

FLOW DIRECTION 

WORD-SERIAL I I I I •,, I I 

BIT-SERIAL 

sE, ,AL [ I... I 
BIT - PARALLEL 

WORD - PARALLEL 
BIT-SERIAL I 

I 

WORD- PARALLEL T 
BIT-PARALLEL .L 

Use of the  following terms:  word-serial, word-parallel,  bit-serial, and  bit-paralleL 

2. TERMS 
In this section we introduce some terminology.  The  t e rms  word-serial,  word- 
parallel, bit-serial, and bit-parallel  will be used in the  obvious ways, as shown in 
Figure 1. 

We deal with classes of functions (and circuits) tha t  are paramete r ized  by  a 
vector,  7r. For  example,  when we consider addit ion of K operands  of word size B, 
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the parameter  vector  is ~r = (K, B). Asymptotic  complexity will be measured with 
respect  to a parameter  vector, % throughout  this paper. 

We want to make clear impor tant  distinctions among three t ime measures of 
interest: 

Definition. The  functional latency (or t ime [24]) of a circuit is the amount  of 
t ime separating the appearance of the first input  bit on some port  f rom the 
appearance of the last ou tput  bit on some port, for one computa t ion  of the 
function, f, denoted Tf. This  corresponds to the usual use of the t e rm speed of 
operation. A "100-nanosecond" multiplier, for example, means  tha t  100 nanose- 
conds elapses between the appearance of the first input bit of the multiplicands 
and the last ou tput  bit of the product.  The  t e rm does not  take pipelining into 
account. 

In order  to define a circuit 's cycle time we appeal  to a finite s tate  machine 
model of computat ion [10]. A circuit C can be defined as follows: 

C = ( Q , Z , A ,  8, qo) 

where 

Q is a set of states, 
E is an input  alphabet,  
A is an output  alphabet,  
q0 is distinguished as the machine 's  initial state, and 
8 is a {state transition) function tha t  maps a state and an input  to a new state 
and an output,  8:Q × Z --* Q × A. 

Definition. The  cycle time of a circuit is T8 (the latency of the circuit with 
respect to its transit ion function, 8). 

In some circuit architectures,  the cycle t ime depends on the size of the function 
being implemented.  For  example, an n-bi t  array multiplier [19] m ay  have cycle 
time, ~ = nTc + nTs, where rc and Ts are the carry and sum bit  t imes of a 1-bit full 
adder. Such a circuit archi tecture  has a cycle t ime of O(n). 

Definition. The  functionalperiod of a circuit is the number  of cycles separating 
corresponding bits of successive inputs {outputs) of function f, denoted  Pf. Per iod 
is the reciprocal of th roughput  rate. This  te rm does take pipelining into account.  
Note tha t  P8 = Ts; 8 is an indivisible function with respect  to these t ime measures.  

Definition. A circuit is completely pipelined with respect  to function f when 
Pf  = 1 and its cycle t ime is O(1) (see Proposi t ion 2 of [6]). 

Note. We consider in this paper only completely pipelined circuits (Pf = O(1) 
seconds). 

For example, in our  B-bit  {parallel) multiplier, E = (0, 1} 2s and A = (0, 1} 2B. In 
our K-cry  B-bit  (parallel) adder, E = {0, 1} KR and h = {0, 1} B+logg. (See [15] for 
a variant  of the array multiplier tha t  is pipelined). Thus  in these architectures,  
any combinational  logic tha t  can be performed in one cycle has dep th  O(1). Th e  
chip's actual bandwidth is then  within a constant  factor  of its maximum band- 
width as determined by the I /O  delay of She technology. 
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Fig.  2. A u n a r y - t o - b i n a r y  c o n v e r s i o n  ( U B C )  s t r u c t u r e  for  B = 15. 

3. PARALLEL COUNTING 

Parallel counting lies at the heart of all the algorithms presented in this paper. In 
this section we present a parallel counting scheme. First, we state the problem, 
which we refer to as unary-to-binary conversion (UBC). 

Problem: Unary-to-binary conversion (UBC) 
Input: B bits 
Output: [log BJ + 1 bits-- the binary representation of the number of 1 values 

among the input bits 

We now give the UBC design. 1 Figure 2 illustrates a structure for UBC. Each 
square (I-3) in the figure represents a latched 1-bit full adder (FA}. The triangles 

W e  a s s u m e  B = 2 A" - 1 fo r  s o m e  i n t e g e r  K w i t h o u t  loss  o f  g e n e r a l i t y  as  f a r  a s  a s y m p t o t i c  c o m p l e x i t y  
is c o n c e r n e d .  
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: i 
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I i 

Fig. 3. A more compact UBC structure for B = 15. 

(A) are delay elements. The  computat ion proceeds as follows. Input  enters  the 
leaves of the b o t t o m  tree. The  d a s h e d  output  line t ransmits  the carry bit (as 
depicted in the figure). The  s o l i d  output  line t ransmits  the sum bit. Thus,  the 
sum bit t ransmit ted  from the root  node of the b o t t o m  t ree is the low-order bit of 
the answer. The  dashed lines emanat ing from the bo t tom tree, the carry bit  lines, 
enter  a second, smaller tree. The  sum bit t ransmit ted  from tha t  tree 's  root  node 
is the next-to-low-order bit of the answer, and so on. Th e  number  of such trees 
needed to perform the entire UBC is log n. If the design was such tha t  one tree 
finished its computat ion before its successor tree began, then  the t ime complexi ty 

1 

T ( n )  = ~ i = O(log2n). 
i=log( (n+ l) /2) 

If the s t ructure had the layout  of Figure 2, then  the area complexity 

A ( n )  = n x F~ i = O ( n  log2n). 
i=log( (n+ l) /2) 

The  trees nest  into each other,  however, as depicted in Figure 3, and so do the 
computations.  We do not  have to finish computing in one tree before starting in 
the next. Thus,  

TvBc(n) = log((n + 1)/2) + log((n + 1)/4) = O(log n) 

AvBc(n) = n[log((n + 1)/2) + log((n + 1)/4)] = O ( n  log n). 

The  structure,  in fact, has an A ( n )  = O(n)  layout  since it has an O(log n)- 
separator  (see [12]). Such a layout  would be useless though; it would not  place 
the inputs on the layout  boundary.  Figure 4 illustrates the UBC design with one 
set of input bits. Each successively higher level in the s t ructure  gets values at  
successively later  cycles (as indicated by the cycle labels of Figure 4). This  

A C M  T r a n s a c t i o n s  o n  C o m p u t e r  S y s t e m s ,  V o l .  1, N o .  2, M a y  1983.  
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Fig. 4. An example computation on a UBC-network for B = 15. 

{/* The algorithm starts with a pile of the K numbers to be added. */ 
Do sequentially from low order columns to high order columns: 

( 
Add the digits in the column; 
Post  the low order digit of this sum in the sum digit for this column; 
Post  the remaining (carry) digits in the appropriate columns; 
/* to be included in the summation of those columns */ 
) 

) 
Fig. 5. Elementary school addition algorithm. 

illustrates, as well, an impor tant  aspect of the design: it is pipelined, so a new set 
of inputs can be accepted every cycle. 

The  design has complexity APZT~Bc(n) = O(n log 3 n). Using the techniques of 
[24] we argue tha t  AP~sc (n )  = ~2(n). Tvsc(n) = ~2(1og n) due to bounded fan-in. 
So A p 2 T ~ c ( n )  = ~2(n log 2 n). 

In sum, the design is within a log factor of asymptot ic  optimali ty and has a 
simple, regular structure.  

4. K-ARY ADDITION 

In this section we present  a K-ary adder (for adding K B-bit  numbers)  tha t  is 
based on UBC. We begin by reviewing the K-ary  addition algori thm taught  in 
e lementary school, given in Figure 5. The  algori thm presented is a paraUelized 
version of this. 

A parallelized version of this algorithm (reported in [8]) proceeds roughly as 
follows. 

First we do in para l l e l  the following (for all columns): 

1. Add the "digits" in the column. 
2. Distr ibute the log K "digits" to the appropriate  columns. 

ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983. 



164 P.R. Cappello and K. Steiglitz 

COLUMN 
6 5 4  3 2 I 

5 = 0 0 0 0 I 0 I 
- I0  - I I I 0 I I 0 

I m 0 0 0 0 0 0 I 
-13 -= I I I 0 0 I I 

12 " 0 0 0 I I 0 0 
3 0 "  0 0 I I I I 0 

COLUMN 

6 5 4 3 2 1 0 

ANSWER 0 0 1 I 0 0 

BINARY ADD I I[ ,i II ,] I' I' I 

BIT ~ ~ ~ ~ 
DISTRIBUTION OI OI II O0 OI I0 I 

UBC A A A A A A A 

010 010 OII I00 010 OII O0 I O,ST., UT, I 

OBC A A A A A A A  
INPUT BITS 01OIOO OIOIOO 01OIOI OOOOII I10OII 01OIOI IOIIOO 

6 5 4 3 2 1 0 

Fig. 6. K-ary addition for K = 6, B = 7, sum = 25~() =- 0110012. 

{ 
r e p e a t  un t i l  columns contain 2 bits 

d o  for all columns 
{ 
perform UBC on the column; 
Distribute the sum bits; /* create new columns */ 
} 

sum (-- carry-lookahead binary-addition; 
} 

Fig. 7. A parallel K-ary addition algorithm. 

T h e s e  "d ig i t s "  n o w  c o n s t i t u t e  new c o l u m n s  to  be  a d d e d .  W e  h a v e  r e d u c e d  o u r  
K - a r y  a d d i t i o n  p r o b l e m  to a log K - a r y  a d d i t i o n  p r o b l e m .  T h e  p r o c e s s  is 
r e p e a t e d  un t i l  a b i n a r y  a d d i t i o n  p r o b l e m  r e m a i n s .  W e  use  a c a r r y - l o o k a h e a d  
b i n a r y  a d d e r  for  t h e  f ina l  add i t i on .  

W e  p r o p o s e  t h a t  a V L S I  i m p l e m e n t a t i o n  of  th i s  a l g o r i t h m  e m p l o y  t h e  U B C -  
n e t w o r k  des ign  of  t h e  p r e v i o u s  sec t ion ,  a n d  t h e  a d d e r  o f  B r e n t  a n d  K u n g  [5]. 
F i g u r e  6 shows  t h e  s t r u c t u r e  a n d  an  e x a m p l e .  F i g u r e  7 is a r e s t a t e m e n t  o f  t h e  
a l g o r i t h m  t h a t  a s s u m e s  a b i n a r y  n u m b e r  r e p r e s e n t a t i o n .  
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We now analyze the period, latency, and area complexity of this design using 
the synchronous model of VLSI computation [3, 4]. 

Since the UBCs and binary adder [5] are completely pipelined, the entire K- 
ary B-bit adder is completely pipelined: Pg-add  = 1 cycle. 

The latency of this algorithm is the sum of the time to do the following. 

1. Repeat block, which is the sum of the time for doing UBCs and bit 
distribution ("column" recreation). 

2. B-bit parallel binary addition. 

The asymptotic latency is 

0 ( ~  ) log ~¢. log K)  (UBC) Tadd(K, B ) =  

fl(K) 

+ ~ O(1) (Bit distribution) 
i~l 

+ O(log B) (Binary addition) 

= O ( l o g  KB) 

where fl(n) is a function that grows slower than log n, but is not a constant. See 
Appendix. 

The area complexity is taken as the product of the width and length of the 
structure: 

A a d d ( K ,  B) = O(KB) (Base) ~_F /~(~) ~ ) 
X / O ~  i__~ 1 log log K (UBC) 

+ O |  ~ log log K (Bit distribution) 
-1 

+ O(log B) (Binary addition) 

= O ( K B  log KB) 

The design has complexity AP2T2add(K, B) = O(KB log a KB). Using the 
techniques of [24], we argue that AP~dd(K, B) = ~(KB). Tadd(K, B) = ~2(log KB) 
due to bounded fan-in. So AP2T~dd(K, B) = £(KB log 2 KB). 

Again, the design is within a log factor of asymptotic optimality and has a 
simple, regular structure. 

5. BINARY MULTIPLICATION 

In this section we present a binary multiplier. The algorithm, based on K-ary 
addition, is suggested by the following definition of binary multiplication. 2 

B--1 
x X  y =  Y, 2 b X x b X y  (1) 

b=0 

We work with positive n u m b e r s  wi thout  loss of generality, a s suming  two's  comp lemen t  ar i thmet ic .  
The  s t ruc tures  described here  require a smal l  modification to compute  a product  with 2B correct  bits. 
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y3 X X:l y2 X X:I y ,  × x:~ y[) × x:~ 

y:~ X x~ y2 × x.-, y ,  × x2 y .  × x._, 

y:~ × x~ y2 X x,  y~ X x~ 

y:~ x xo y., x x .  

yo x x~ 
y~ x x .  

Fig .  8. The summands of  eq.  (1). 

y .  x xo 

(a) ~ 0 0 

"I o °o 

0 

0 0 

0 0 

0 0 

(b) 

Y 

(c) t t ~ ~ ~ t t 
J log B-ory 2B-bit odder T 

0 (log IogB ) 

O(B) 

A_ 
., O( B logB) ~] 

Fig.  9. The multiplication structure is the superposition of the above structures: (a) a s t r u c t u r e  fo r  

distributing x values (B = 4); (b) a s t r u c t u r e  fo r  d i s t r i b u t i n g  y v a l u e s  (B = 4); (c) a s t r u c t u r e  fo r  

performing the B-ary addition (B = 4). 

Figure 8 depicts the summands of eq. 1 for B = 4. The  multiplication algorithm 
is simple: 

1. Distribute x and y values. 
2. B-ary add the resulting pile of numbers. 

Figure 9(a, b, c) illustrates the structures for distributing x values, y values, and 
B-ary addition. The multiplication structure is the superposition of these struc- 
tures. 
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We now analyze the VLSI complexity of this UBC-network Dadda multiplier 
with respect to its period, latency, and area. Since the input distribution and 
AND operation can be completely pipelined into the B-ary B-bit adder which is 
also completely pipelined, the entire multiplier is completely pipelined: Pmuit  - -  1 
cycle. 

The latency of this algorithm is the sum of the time to do the following. 

1. Distribute x and y values. 
2. AND(xi, yj) for every i, j .  
3. B-ary add the result. 

Thus the asymptotic latency, dominated by the UBC-network latency, is 

is 

T mul t (B )  = O ( 1 )  -I- O ( 1 )  -4- O(log B) = O(log B )  

The asymptotic area complexity, also dominated by the UBC-network areas, 

A m u l t ( B )  = O(B z log B) 

as indicated by Figure 9e. 
The design has complexity APZT2olt(B) = O(B 2 log3 B). Regarding VLSI lower 

bounds we note the following. Vuillemin has shown [24] that: 

1. Integer multiplication is a transitive function, and 
2. Any circuit computing a transitive function at data rate D must have wire 

area Aw >- aw x D 2, for some teehnology-dependent constant aw. 

Since the period P = B I D  where B is the number of input bits and D is the rate 
at which they are read in, we have that for transitive functions 

AP2(B) = ~2(B2). 

Tmult(B) = ~(log B) due to bounded fan-in. So APZT2ult(B) = ~2(B 2 log 2 B). 
As in the UBC and K-ary adder the design is within a log factor of asymptotic 

optimality and has a simple, regular structure. 

6. HISTORICAL COMMENT 

We would like to place this VLSI design in some historical perspective. Gelosia 
multiplication methods are those that 

1. Construct a two-dimensional array of componentwise products, and 
2. Take the B-ary sum of these component products. 

The gelosia method (grating method) for multiplication was apparently quite 
popular during the fifteenth and sixteenth centuries. The method, illus- 
trated in Figure 10, was "probably first developed in India, for it appears in a 
commentary on the Lilavati  of Bhaskara (1114 to ca. 1185) and in other Hindu 
works" [9]. 

A Dadda multiplication scheme is a gelosia multiplication scheme where the 
"diagonal" K-ary addition is performed in parallel, as presented in Section 4. 
That is, the K-ary addition problem is reduced to a log k-ary addition problem, 

ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983. 



168 P.R.  Cappel lo and K. Steiglitz 

GELOSIA METHOD 

MULTIPLICAND 

0 
D 

0 
rv" 

6 

0 

7/, 
7 

7 

o /  
/7  
/ ,  

/ 

/ ,  
/ .  
/ ,  
S 

2 

9 

S 
/7 

6 

2 

4 

n -  
w 
_1 
n 

D 

IN GRATING ABOVE, ADDITIONS ARE PERFORMED 
DIAGONALLY 

6789 x 1254= 8377626 

Fig. 10. Gelosia method for multiplication (after [9]). (In the grating illustrated above, addit ions 
are performed diagonally. 

and that is reduced to a loglog k-ary addition problem, and so on, until a binary 
addition problem remains. In order to achieve asymptotic optimality with respect 
to period and latency, this approach requires performing the following: 

1. Unary-to-binary conversions asymptotically optimally, and 
2. Final binary addition asymptotically optimally. 

The adder in [5] does the latter, the UBC-network of Section 3 does the former. 
And, what is important for VLSI implementation, they do them with simple, 
regular, compact layouts. 

7. D ISCUSSION 

VLSI techniques are such that  the time has now or will soon come when the 
performance characteristics of a multiplier can be matched to its intended 
application. For applications where neither fast response nor high throughput are 
crucial, the multiplier in [11, 14] may be a good match; it has an asymptotically 
minimal area and a simple, regular structure. For applications where high 
throughput is crucial but fast response is not, the design in [15] provides an 
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AP2(B) asymptotically optimal multiplier. This simple hex-connected array of 
latched 1-bit full adders is also practical. 

We believe the UBC-network Dadda design presented here is a practical design 
for applications that require both short latency and high throughput. It is flexible 
as well, in that 

1. Latency can be minimized by eliminating all latches and delay elements, 
yielding a purely combinational multiplier of circuit depth (hence cycle 
time) O(log B), 

2. Throughput can be maximized by latching the UBC-networks at every level 
within the UBC-network, as presented in this paper, and 

3. Some trade-off between latency and throughput is possible by latching every 
k level within a UBC-network (for 1 __ k __ O(log B)). 

As long as the UBC-networks are latched every 
asymptotically optimal in both period and latency. 

Finally, it may be that: 

O(1) levels, the design is 

1. B is large. 
2. The technology is such that propagation delay over a wire of length l is 

asymptotically greater than ~(ll/2/log l), a situation not modeled properly 
by the synchronous VLSI model (e.g., [7, 20]). 

3. High throughput is not as important as short latency. 

For these applications, the design given in [17] merits consideration due to its 
two-dimensional mesh topology and T(B) = O(B 1/2) latency. 

Digital signal processing is one area which stands to gain a great deal from 
VLSI implementation of arithmetic, both with small period (for throughput} and 
small latency (for fast adaptation, for example). Many such applications involve 
K-ary addition and can benefit from the Dadda approach. One important example 
is the second-order section of an Infinite Impulse Response (IIR) filter. This 
computation can be defined as follows [16]: 

y k  <--- a o X k  + a l x k - 1  + a 2 X k - 2  - -  b l y k - 1  - -  b 2 y k - 2  

The Dadda-like design for this "sum of products" involves using: 

1. The gelosia method to create bit arrays for the five products, and 
2. A UBC-network Dadda scheme to sum them directly, computing yh (which 

Swartzlander calls merged arithmetic [22]). 

Figure 11 illustrates the use of a UBC-network Dadda scheme in the design of a 
second-order section. The top part of that figure shows the distribution of the x 
and y bits, and the bottom part shows the collection of the results using UBC 
networks in a way analogous to Fig. 9c. Note that  this structure can not be 
completely pipelined, because we need yk to compute yk+l. The latency of 
O(log B) is asymptotically as small as possible, so one cannot build a second- 
order section with higher asymptotic throughput. Using strictly combinational 
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Fig. 11. The superposition of these structures is a UBC-network Dadda scheme for a second- 
order section (B = 2). 

logic (no latches and no delays) would simplify the control and reduce latency. 
The cycle time would then be O(log B) seconds, as would the latency. 

Figures 12 and 13 show similar designs for convolution and fixed-matrix vector 
product. In these problems there is no feedback, and the structures are completely 
pipelined. Table II summarizes the complexity of several functions designed this 
way. 

Two points are worthy of emphasis here. First, the latency of these designs is 
in all cases asymptotically optimal. It is on the order of the logarithm of the 
input size. Second, these designs are completely pipelined {with the exception of 
the second-order section). That  is, the designs are such that a new set of input 
data can be accepted every cycle and that  the cycle time is independent of the 
parameters of the function (e.g., B-bits in the case of multiplication) being 
implemented. 
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Fig. 12. The superposition of these structures is a UBC-network Dadda scheme for convolution 
(K= 3, B = 2). 

8. C O N C L U S I O N S  

We have  presented a design for complete ly  pipelined multiplication, and we have  
analyzed its period, latency, and area  complexit ies using a VLSI  model  of 
computat ion.  Such a mult ipl ier  is useful for applicat ions where bo th  shor t  la tency 
and high th roughpu t  are very important ;  its complexi ty  is within one log factor  
of asymptot ic  opt imal i ty  with respect  to an appropr ia te  measure:  A P 2 T  2. I ts  
la tency and period are asymptot ica l ly  optimal.  T h e  cell types  are simple, being 
no more  complex than  1-bit full adders, and the layout  has  a regular  s tructure.  
Consequently,  we feel tha t  the design is practical.  
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Fig. 13. The superposition of these structures is a UBC-network Dadda scheme for fixed-matrix 
product (the matrix is 2 x 3, B = 2). 

Table II. Asymptotic Growth Using UBC-Network Dadda Scheme Design 

Area Bound ApeT 2 Bounds 

Function Upper area Lower Upper 

Integer product B Slog B B 210ge B B 210g3B 
Fixed-matrix K2B210g KB (KB)210g2KB (KB)210g3KB 

vector product 
Convolution K2B210g KB (KB)210g2KB (KB)210gaKB 
Matrix product K4B210g KB K2(KB)210g2KB K2(KB)210g3KB 
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Table III. The function fl(n) 

n fi(n) 

2 0 
3 1 
4-7 2 
8-127 3 

128-212s-1 4 

APPENDIX 

f l (n)  is defined as follows. 

{0 if n = 2  
f l (n)  = + fi([log n J) if n > 2 

It is essentially the same as G(n)  [2]: 

{0 if n = l  
G ( n )  = + G(rlog n]) i f  n > 1 

For practical purposes, f l (n) is less than  5, as can be seen from Table  III. 
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