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1. Introduction 

A k-dimensional dynamic graph is 

obtained by repeating a basic: cell in a k- 

dimensional orthogonal grid. The nodses in 

each cell are connected to a finite number of 

nodes in other cells, and, furthermore, the 

pattern of the inter-cell connections is the 

same for each cell. Thus, a dynamic gra.ph is 

a finitely described infinite graph, w:ith a 

periodic structure. In this paper we study the 

problem of deciding whether a given two- 

dimensional dynamic graph has a directed 

cycle. 

A k-dimensional dynamic graph can be 

represented by a finite graph with k- 

dimensional labels on each edge, which is 

called a static graph. See Fig. 1 for an exam- 

ple. The cycle problem then becomes that of 

finding whether there is a (not necessarily 

simple) cycle in the static graph with 
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component-wise sum of labels equal to 

( 0, 0, . . . , 0 1. 

Many VLSI applications involving a reg- 

ular structure can be modeled with two- 

dimensional dynamic graphs, For example, 

the above cycle problem in two-dimensional 

dynamic graphs is associated with the prob- 

lem of whether a VLSI circuit is free of a sig- 

nal “circuit loop”. 

Our basic approach is to construct a 

semiring defined on the set of convex polygons 

in the plane. The two operations of the semir- 

ing are vector summation ( l 1, and taking 

convex hull of union ( + ). The Kleene closure 

algorithm on this semiring then essentially 

solves the problem. 

Our main result is that for certain 

classes of static graphs, this Kleene closure 

algorithm is polynomial. One such class is a 

generalization of two-terminal series-parallel 

graphs obtained by allowing a backedge from 

node j to i if there is a path from i to j, what 

we call backedged two-terminal series-parallel 

graphs. We also show polynomiality when 

the labels are bounded, and when the 

dynamic graph is undirected or one- 

dimensional. Bounded gmphs arise in VLSI 

applications where interconnections between 

regular basic cells are made locally, as in sys- 
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tolic arrays. Polynomiality of zero-cycle test- 

ing for general static graphs is open. 

We also show that the problem of 

whether there is a decomposition of a given 

convex polygon a into two convex polygons p 

and y such that a = p 9 y is NP-complete, 

while computing l product can be done in 

linear time with respect to the number of 

edges involved. 

In this extended abstract, we will omit 

proofs of lemmas and theorems unless they 

are specially related to the further discussion. 

We use n (resp. m) to denote the number of 

vertices (resp. edges) in a graph. 

2. Two operations and a semiring 

In this section, we define two operations 

on the set of convex polygons which form a 

closed semiring (Mehlhom 1984a). 

Let S = { a+ 1 a t 2”’ } where a+ 

indicates the convex hull of 0~. That is, S is 

the set of all convex polygons whose vertices 

are integer points. We regard a point or a 

line segment as an element of S. Let 

E = { ( 0,o ) } c s. For a, P c s, let 

a+/3=(aU/3>+, that is, a I- /3 is the 

convex hull of the union of a and jl. Let a l p 

be the polygon obtained by the vector summa- 

tion of a and /?, that is, 

a l /3 = { ( x, y ) ) 3 ( ux, ay ) < a, 3 ( b,, by ) C /3 

such that x = a, + b,, y = ur + by }. 

3y convention, we define a * 0 = 0 l a = 0. 

See Fig. 2 for an example of a l /?. Note that 

we can easily show that a l j3 is a convex 

polygon, and thus S is closed under the l 

operation, 

Theorem 2.1: The system ( S, +, * , 0, E ) is 

a closed semiring. 

Proof: The following are the five defining pro- 

perties of semirings: 

1) ( S, +, 0 ) is a commutative monoid. 

2) ( s, l , E ) is a monoid. 

3) Multiplication l distributes over finite 

and countably infinite sums +. 

4) Let I = { il, iz, . . . , ik } be a finite 

non-empty index set. Let ai 6 S for all 

i 6 I. Then 

where 2 ai is defined by ( il;‘I ai )+. 
iCl 

We also have I ?a oli = 0 for empty 

index set I = 0. 

5) The result of summation does not depend 

on the ordering of the factors. 

The proof is technically detailed but 

straightforward. 1) can be shown by using the 

fact that (a+ Uj?)=(aU/3)+ for any 

a, /3 C 2zxz. 2) is straightforward. 4) can be 

proved by induction on k. We can prove 5) by 

using the fact that ( iyl a,’ )+ = ( iyl ai )+ 

for iXi C 2’ “, i C I where I is a countable 

index set. Note that if x is a point in the 

union of countably many convex polygons, 

then x is either a point in a finite sum of con- 

vex polygons, or the limit point of a sequence 

of points, each of which is in some convex 

polygon. Using this idea, we can prove 3). 0 

Let EC a ) be the edge set of the convex 

polygon a. We regard an edge e C E ( a 1 as a 

vector e which is directed in such a way that 

a lies on the right-hand-side of that edge. Two 

edges are equivalent if their directions are the 
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same. Let avrcror = { e 1 e C Et a ) }. Let 

A = { ai } be a set of convex polygons. Then 

we define 

1 A 1 = the number of distinct vectors 

in o c;‘A ( ai Lctor. 
I 

Theorem 2.2: (Lozano-Perez 1983; Guibas, 

Ramshaw, and Stolf 1983) Suppose two con- 

vex polygons a, j? 6 S are not points. Then 

every edge in E( a l @ 1 is equivalent to an 

edge in E ( a ) U E ( /3 1, and vice versa. This 

enables us to define an onto function 

f=g,(e)fromE(a)UE(B)toE(al*B). 

( See Fig. 2. ) 

For a convex polygon a, we define a con- 

vex polygon am for nonnegative integer m as 

follows: 1) a0 = E and 2) a” == a * am -- ' for 

m > 1. _ Since a system ( S, +-, I, 0, E > is a 

closed semiring, we can define the convex 

polygon a* by a0 + a' + * * * = i a'. 
i=o 

The following theorem shows how l and 

+ operations affect the number of distinct 

vectors. 

Theorem 2.3: Let a, j3, Ui, fli C S for 

i = 1, 2, . . , , k. Then we have 

la*Bl~ltaJW 

44+lPl7 (2.1) 

la+Bl=lal+lBI, (2.2) 

and 

I i$I ai l PI I 5 I iiI (xi I + 1. (2.3) 

Proof: (2.1) is immediate from Theorem 2.2. 

Let a < S and let p 1, ps, . . . , ph be points. 

Then we have 

Ia+pl-~,,,+p~IrIcrI+k. (2.4) 

(2.2) is straightforward from (2.4). We can 

also show that 

a1 l /3; it -0. + a, l /IL 

= (aI +*-a + a, )*/I; l -*+*#?*n (2.5) 

for ai, pi C S, i = 1, 2, . . . , n. Then we 

have (2.3) immediately from (2.5) and 

la*#I’I:Slal+l.~ 

Theorem 2.4: Let I a I + I #I 1 = m. Then 

the operations l , + and * can all be done in 

0 ( m log m ) steps. 

Proof: From Theorem 2.2, we know that the l 

operation takes 0 ( m ) time. We have an 

algorithm which takes 0 ( m log m ) time for 

computing the convex hull of two convex 

polygons (Mehlhorn 198423). The * operation 

can be done in 0 ( log m > time by an algo- 

rithm which computes a+(p) in 

0 ( log ( 1 a 1 ) ) steps where a is a convex 

hull and p is a point (Mehlhom 1984b). 0 

A convex polygon a is said to be decom- 

posable if and only if there exist two convex 

polygons p and y such that a = /3 9 y and 

neither #I nor 7 is a point and there are no 

equivalent edges in E ( /3 > and E( 7 ). As 

illustrated in Fig. 3, a decomposition into 

irreducible convex polygons is not necessarily 

unique. The decomposability problem has 

been well studied (Kallay 1984; Shephard 

1963; Meyer 1974). In contrast with the l 

operation, the following theorem shows that 

decomposition of a convex polygon is in gen- 

eral difficult. 

Theorem 2.5: The problem determining 

whether a given convex polygon a is decom- 

48 



posable or not is NP-complete. 

Proof: We can easily show that the decompo- 

sability problem can be formulated as follows: 

Instance I,, : Let I be a finite index. A set of 

two-dimensional integer vectors { ei 1 i c I } 

such that ei * q for any i, j E I with i ;e j 

and 2 ei = ( 0, 0 1. 
it1 

Question: Is there a proper subset J of I 

such that 2 ej = ( 0, 0 ) ? 
jC3 

It is obvious that the problem DC is in 

NP, since we can guess a proper subset J C I 

then we can check whether or not 

z ej = ( 0, 0 > in polynomial time. 
jCJ 

We reduce the following variation of the 

subset sum problem SS1, which is NP- 

complete (Papadimitriou and Steiglitz 19821, 

to the problem DC. 

Instance Issl : {akCZ+ 1 K CK} where K 

is a finite index and ah’s are different from 

each other. B C Z +. 

Question: Is there a subset L of K such that 

x q=B? 
1CL 

We reduce SS1 to DC as follows: given 

the above instance Issl, we construct an 

instance IDC with the property that 19~~ has a 

solution if and only if1~~ has a solution. Let 

K= {1,2,..., n} 

and 

I = { 0, 1, . . . , 2n + 3 }. 

Let 

A= xak 
kZK 

and 

M=(n+l)(A+B). 

Then we define a set of vectors 

{ ei 1 i = 1, 2,. . . , 2n f 3 } 

as follows: 

eo = ( -B, 11, 

ei = ( ai, 1 ) for i = 1, 2, . . . , n, 

e n+i = ( M, -i > for i = 1, 2, . . . , n, n + 1, 

eb + 2 = ( -M, 0 1, and 

2n + 2 

en+3 = -( x ei) 
i=O 

= ( -nM+ B - A, n( n + 1 )/2 1. 

The rest of the proof is straightforward. 0 

3. Application of the closed semiring 

( s, +, l , 0, E ) 

From now on, we discuss a doubly 

weighted graph G = ( V, E > with a two- 

dimensional labeling T such that 

T( e ) = ( e,, eu > for e 6 E. We can naturally 

extend the definition of T to a path 

W = eleZ “‘ek with ei E E in such a way 
k 

that T ( W ) = x T ( ei 1. A (not necessarily 
r=l 

simple) cycle W is called a zero-sum cycle if 

T ( W ) = ( 0, 0 1. Then the zero-sun cycle 

problem is to ask whether there exists a zero- 

sum cycle in a given doubly weighted graph. 

Note that a doubly weighted digraph G can be 

regarded as a static graph. Hence we have 

the two-dimensional dynamic graph G2 

induced by the static graph G as illustrated in 

Fig. 1. Then the zero-sum cycle problem in G 

corresponds to the problem of whether the 

dynamic graph G2 has a cycle or not. 

Having established that the structure 

( s, +, l , 0, E ) is a closed semiring, we can 

solve the zero-sum cycle problem with the 
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Ullman 1974) as follows: 

For a given digraph G, the algorithm 

ZSC answers “Yes” if the digraph G has a 

zero-sum cycle, otherwise it answers “No”. 

We compute the convex hull ofj for 

1 5 i, j I n and 0 5 It 5 n. The convex hull 

a$ is the convex hull of the lengths of all 

paths from ui to Uj such that all vertices on 

the path, except possibly the endpoints, are in 

the set { ul, u2,. . . , ok ). 

The algorithm ZSC is as follows: 

procedure Zero-Sum Cycle 

begin 

l.for 15 i, j 5 ndo 

0 - 

I 

{ 2’ ( (uir Uj) 1 } if ( pi, uj > E E 
aij- (2) otherwise 

2. for k = 1 to n 

do 

3. for 1 5 i, j 5 n do 

4. 

4. Special cases of the zero-sum problem 

In th:is section, we discuss the special 

cases of th.e zero-sum problem where 1) the 

graphs have one-dimensional labels, 2) the 

graphs are undirected, 3) the graphs have 

labels with magnitude at most M ( we call 

these graphs the M-bounded graphs ), and 4) 

we discuss the zero-sum simple cycle problem. 

The first three cases have low order polyno- 

mial algor:ithms, whereas the fourth is NP- 

complete. 

k 
Qij = ab - 1 + afk- 1 l ( akk-- 1 )’ k-l 

’ a kj ; 

5. if 1 I 3 i I n such that ( 0, 0 > t ai 

then exit ( “Yes” 1; 

od 

6. exit ( “No” 1; 

end c] 

Theorem 3.1: Algorithm ZSC works correctly 

and uses 0 ( n 3 ) +, l , and * operations from 

the closed semiring defined above. 

Proof: We can show that there is a zero-sum 

cycle W if and only if there is a vertex oi such 

that ( 0, 0 ) < a:. Line 4 is executed n” times 

in total. q 

Theorem 4.1: The one-dimensional zero-sum 

cycle problem can be solved in 0 ( n3 1 time. ( 

This result is implicit in Orlin 1984. ) 

Proof: We can apply our algorithm ZSC by 

ignoring the second labels. Note that every 

a$ has at most two vertices, and, therefore, 

1 a:! 1 4 2. Hence from Theorem 3.1, the 

algorithm ZSC takes 0 ( n3 ) time. 0 

Theorem 4.2: The two-dimensional 

undirected zero-sum cycle problem can be 

solved in 0 ( m log m ) time. 

Proof: We only have to check whether the 

convex hull of { T( e ) 1 e c E } contains the 

origin or not, which takes 0 ( m log m 1 time. 

Further discussion of the special cases is 

straightforward. q 

In many VLSI applications, the com- 

munication between regular cells is made 

locally: that is, interconnections are made 

only to neighbors. For example, the n X n 

multiplier can be constructed from arrays of 

one-bit full adders with carry and sum signal 

connections to the neighbors of each cell. The 

parallel adder can also be constructed from 
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one-bit full adders with the carry connection 

to the neighbor of each cell. Many systolic 

arrays are also implemented with intercon- 

nections to neighbors. In such VLSI applica- 

tions, the associated static digraphs of the 

regular structure are all l-bounded graphs. 

(Iwano and Steiglitz 1986.) 

Theorem 4.3: The algorithm ZSC takes 

0 ( n4M log( nM ) > time for M-bounded 

graphs. 

Proof: Let Pfj be defined in the same way as 

at except that P$ is defined for simple paths. 

In M-bounded graphs, the length of a simple 

path is at most nM in each dimension, There- 

fore, 1 pt 1 5 4nM + 2, since /36 is bounded 

by the rectangle 

[ -nM, nM 

From Theorem 2.3, 

1xr -nM, nM 1. 

1 a$ 1 5 1 pf, 1 + 1 5 4nM + 3. 

Cl 

Theorem 4.4: The zero-sum simple cycle 

problem ( ZSSC ) is NP-complete. 

Proof: Here we use a variant of Orlin’s reduc- 

tion from the subset sum to the directed path 

problem in one-dimensional dynamic graphs 

(Orlin 1984). The problem SS (Subset Sum) is 

defined as follows: 

Input: B cZ+ and{qcZ+ 1 i El}where 

I = ( 1, 2, . . . , n }. 

Question: Is there a subset J of I such that 

jsJ ai I= B ? 

Given an instance 1s~ of the subset sum 

problem, we construct an instance lzs,, of the 

zero-sum simple cycle problem as illustrated 

in Fig. 4. Then we can show that 1ss has a 

solution if and only if Izssc has a zero-sum 

simple cycle. The zero-sum simple cycle is 

easily shown to be in NP. 0 

5. Backedged two-terminal series-parallel 

multidigraphs. 

The class of Two-Terminal Series- 

Parallel ( TTSP 1 graphs has been well stu- 

died (Valdes, Tajan, and Lawler 1979; Adam 

1961; D&n 1965; Riordan and Shannon 

1942; Weinberg 1971). 

Definition: [ Two-Terminal Series-Parallel 

Multidigraphs I. (Valdes, Tarjan, and Lawler 

1979) 

(1) A digraph consisting of two vertices 

joined by a single edge is in TTSP. 

(2) If Gi and Gz are TTSP multidigraphs, 

so too is the multidigraph obtained by 

either of the following operations: 

(2-a) Two terminal parallel composition: 

identify the source of G1 with the 

source of Gz and the sink of G1 with 

the the sink of Gz. 

(2.b) Two terminal series composition: 

identify the sink of Gi with the 

source of Gz. IJ 

Definition: C Backedged Two-Terminal 

Series-Parallel Multidigraph 1. 

Let G be a ‘ITSP graph. A multidigraph 

GB is called a BTTSP ( Backedged Two- 

Terminal Series-Parallel ) graph if GB is 

obtained from a TTSP graph G by adding any 

number of backedges. An edge ( X, y > is 

called a backedge if there is a path from y to x: 

in G. The graph G is called the underlying 
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TTSP graph of Gg. q 

Let TTSP ( m > ( resp. BTTSP ( m ) j be 

the class of TTSP (resp. BTT8P) multidi- 

graphs which have m edges. Fig. 5 shows an 

example of a BTTSP graph GB which consists 

of a backedge indicated by dotted lines and 

the underlying TTSP graph G. 

For any x, y c V, let ary( T 1 be the con- 

vex hull of all lengths of paths from x to y in 

G with the two-dimensional labeling T. For 

any multidigraph G, let 

A ( G > = XmyT 1 a,( T ) 1 and similarly for a 
1 I 

class of graphs we write A ( { G } 1. That. is, 

A ( G > is the maximum number of edges in 

a,( T ) when x, y, and T are arbitrary and G 

is fixed. 

Theorem 5.1: A ( TTSP ( m ) ) = m. 

Proof: Let G be in TTSP( m ) with source s 

and sink t, and let T be a two-dimensional 

labeling of G. Let X, y be arbitrary vertices in 

G such that ( x, y > f ( s, t >. Then there 

exists a two-dimensional labeling T’ such that 

Thus 

1 a,( T ) 1 5 1 aBt( 2” 1 I. 

Suppose G is obtained from G1 and Gs bly a 

parallel (resp. series) composition, Let si be 

source and ti be sink of Gi for i = 1, 2. Tb.en 

a8t = la s1t1 + a8ZtZ I 

( Or 1 a81tl l a,@2 I > 

5 I asltl I + I aa+2 I * 

(from Theorem 2.3) 

Then by induction on m, we can prove 

A ( TTSP ( m ) ) 5 m. On the other hand we 

have A( TTSP( m ) ) z m, since 

AC&n 1 =m where L,CTTSP(m) is a 

graph consisting of m edges from source to 

sink. 0 

We can show the same result for the 

class of BTIXP multidigraphs. 

Theorem 5.2: A ( BTTSP ( m ) ) = m. 

Proof: Let B,, be an arbitrary s -t path in a 

BTTSP graph Gg. Then we can show that 

every backed.ge in B,, lies on a cycle in B,,. 

Therefore, B,,, can be expressed as union of a 

simple s -t path in G and some cycles. Thus 

from Eq. (2.3), we have 

A(BTTSP(m)) sA(TTSP(m - 1)) + 1 

Since 

= m. 

TTSP( m ) C BTTSP( m ), 

we have 

m =A(TTSP(m))lA(BTTSP(m)). 

cl 

From Theorem 3.1 and 5.2, we have the 

following corollary: 

Corollary 5.1: For BTTSP, the algorithm ZSC 

runs in 0 ( n3 m log m 1 time. 

We are now working on the following 

conjecture about the number of edges of the 

convex polygons which appear in the algo- 

rithm ZSC for general graphs: 

Conjecture. Let G be a general graph and let 

T and aij( T ) be defined in the same way as 

in the text. Then 
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A ( G ) = f,s% 1 a,( T > 1 5 m 
1 , 

where m is the number of edges in G. 

If this conjecture is true, then algorithm 

ZSC runs in 0 ( n3 m log m > time on general 

graphs. 
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