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1 A Continuous-time, all-cash, no-escrow model

To get started we consider a very simple continuous-time model, an all-cash model with no escrow.
Balloon payments are made from revenue. The flow variables are functions of continuous time t,
and all the money that flows is cash. Figure 1 shows the corresponding flow graph.

Figure 1: The credit flow transfers in the model. All flow rates are in dollars-per-unit-time.

Plain Latin letters, like S, C, d etc., will now represent flow rates, in dollars-per-unit-time.
Absolute values in dollars will be denoted with a hat, like the Household account Ŝ(t), the supply
of loanable funds Ŝlf (t), and the demand for loanable funds D̂lf (t). The total amount of cash in
the system, the monetary base, is denoted by G0, and is constant throughout any simulation of the
flow graph, except when the Fed explicitly injects or extracts cash. The monetary base is also an
absolute dollar amount, as is the total cash in the banking sector, B̂c. We loosely speak of “cash
at the bank”, and similarly for the consumer-good, capital, and household sectors.

The dimensions of every quantity must be correct. A variable like the loan flow, L, for example,
has units dollars-per-unit-time, and must be multiplied by something with the units of time to yield
an absolute amount in dollars, and so on.
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We adjust the loan rate r to the difference between the demand and supply of loanable funds:

ṙ(t) = kr · (D̂lf (t)− Ŝlf (t)) , (1)

where kr is the rate adjustment parameter.
We assume for now that the loans are paid off in full with interest at maturity (a balloon

payment), and that the rate is determined contractually at the time the loan is initiated. That is,
we treat the loans as fixed-rate zero-coupon bonds. Total loans L(t) will be distributed according
to a discrete distribution where the weight wi ≥ 0 is associated with loans of term τi,

∑ν
i=1wi = 1.

An infinitesimal loan Li(t)dt initiated at time t when the rate is r(t), and pays Li(t) exp
(
r(t)τi

)
dt

at time t + τi as a balloon payment. The continuous-time flow corresponding to total capital
expenditures is therefore

Kc(t) =

ν∑
i=1

Li(t− τi)er(t−τi)τi , Kc{L(t)} , (2)

a linear functional of the loan flow L(t). This is the sum of all balloon payments that come due at
time t.

To relate absolute cash values to flows and vice-versa, we need to establish a time scale. To do
this, let the total credit X̂(t) at time t be defined as the total of all outstanding loans:

X̂(t) =

ν∑
i=1

∫ t

t−τi
Li(t) dτ , X̂ {L(t)} . (3)

In equilibrium,
X̂ = τ · L , (4)

where we define

τ ,
ν∑
i=1

wiτi , (5)

the weighted average term of a loan. We denote the equilibrium value of a state variable by omitting
explicit dependence on time t. When we write X̂ = τL we are converting from the equilibrium flow
rate L to the absolute equilibrium cash value X̂. The time τ thus represents the effective time scale
for the “average lifetime of credit”, and we can also write, for example, Ŵc = τ ·Wc, and similarly
for other state variables.

We will also need the equilibrium value of Kc, which is

Kc = ω · L , (6)

where we define

ω ,
ν∑
i=1

wie
rτi . (7)

Whereas τ has the dimensions of time, ω is dimensionless; it represents the average appreciation of
a loan.

The flow of interest that is paid by the CG sector, I(t), is

I(t) = Kc(t)− L(t)−Bc(t) , I{L(t)} , (8)

where Bc(t) is the net flow of cash into the Bank reservoir of cash, B̂c(t). We can move between
flow and absolute Bank cash simply by integrating or differentiating:

B̂c(t) =

∫ t

−∞
Bc(t) dt (9)

Bc(t) =
˙̂
Bc(t) , (10)
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and similarly for other variables. In equilibrium, B̂c(t) is a constant, which implies that Bc = 0.
The supply of loanable funds is the difference between the Bank cash and the required reserve:

Ŝlf (t) = B̂c(t)− fŜ(t) , (11)

where Ŝ(t) is the Household Savings, a demand-deposit account that accrues interest at the rate
s(t), meaning that

I(t) = s(t)Ŝ(t) . (12)

2 All-cash equilibrium

We will Solve for the state variables in terms of known functions of r and s, looking for two equations
in those two unknowns.

Ŝlf = B̂c − fŜ = D̂lf = τL , (13)

or, normalizing by L,

Ŝlf/L = τ/λ− fŜ/L = D̂lf/L = τ , (14)

where we choose the dimensionless parameter λ , τL/B̂c < 1. From this we can solve for Ŝ/L:

Ŝ

L
=

τ/f

1/λ− 1
. (15)

From I = Kc − L we get

I/L = ω − 1 , (16)

and, since I/L = sŜ/L,

s = f(1/λ− 1)(ω − 1)/τ ...Condition 1 , (17)

a relation between r and s.
We next stipulate that the CG Firms allocate h(βK , βL)C of their revenue to capital; in other

words, Kc = hC. That determines C = Kc/h and, from credit flow-balance, Wc = C − Kc =
(1/h− 1)Kc. (When h = 1/2, revenue is split equally between wages Wc and capital expenditures
Kc.) We aim for Ŝ = g(s)W, where the Wealth is defined by

Ŵ = τWc + τWk + Ŝ , (18)

scaling the income flows to totals using τ . With the Savings/Consumption split determined by
g(s), this implies

Ŝ =
τ

1− g
(Wc + L) , (19)

using L for Wk and using g to denote the function g(s) evaluated at equilibrium s. Finally, using
Ŝ = (ω − 1)L/s and Wc = (1/h− 1)ωL gives a second condition relating r and s:

s =
(1− g)(ω − 1)/τ

[ω(1/h− 1) + 1 ]
...Condition 2 . (20)
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2.1 Numerical example

Figure 2.1 shows the predicted equilibrium values r and s vs. f in the continuous-time all-cash
case. The parameters are e1 = 200, τmax = 200, λ = 0.35.

Figure 2: Predicted equilibrium values r and s vs. f in the continuous-time all-cash case; e1 = 200,
τmax = 200, λ = 0.35.

Dummy reference [1].
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