
Journal of VLSI Signal Processing, 2, 139-148 (1990)
�9 1990 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Bubbles Can Make Self-Timed Pipelines Fastt

MARK R. GREENSTREET AND KENNETH STEIGLITZ
Department of Computer Science, Princeton University, Princeton, NJ 08544

Received November 23, 1988, Revised November 16, 1989.

Abstract. We explore the practical limits on throughput imposed by timing in a long, self-timed, circulating pipeline
(ring). We consider models with both fixed and random delays and derive exact results for pipelines where these
delays are fixed or exponentially distributed random variables. We also give relationships that provide upper and
lower bounds on throughput for any pipeline where the delays are independent random variables. In each of these
cases, we show that the asymptotic processor utilization is independent of the length of the pipeline; thus, linear
speedup is achieved. We present conditions under which this utilization approaches 100%.

1. Introduction

Many problems are amenable to solution by a one-
dimensional pipeline. Such an architecture has the prop-
erty that, in principle, the pipeline can be made arbi-
trarily long, with a proportionate increase in throughput
on problems of the same size, and with no increase
either in the complexity of the processor or the com-
munication bandwidth. Examples of such designs in-
clude systolic arrays for signal processing applications
[1], chips for matching subsequences in DNA strings
[2], and a machine [3] for the lattice-gas model of
Frisch, Hasslacher, and Pomeau [4]. Each of these
designs is a simple concatenation of identical stages,
and the system has linear speedup--n stages have n
times the throughput of one.

To realize linear speedup, the period of computation
(the time for each processor to complete a computation)
must be independent of the length of the pipeline. In
traditional, synchronous designs, the period of compu-
tation is determined by the period of the clock. One
important practical limit of synchronous designs is the
need to distribute a clock so that the timing require-
ments for inter-processor communication are satisfied.
Typical methods of clock buffering do not guarantee
that a clock pulse can be propagated reliably through
an arbitrarily long chain of buffers (see Appendix 1).
Unless the clock period is increased as the pipeline is
made longer, accumulation of local variations can ulti-

ffhis work was supported in part by NSF Grant MIP-8705454, U.S.
Army Research Office--Durham Contract DAAG29-85-K-0191, and
DARPA Contract N00014-82-K-0549.

mately produce violations of the clocking requirements.
Self-timed signaling [5], [6] as described in this paper,
ensures reliable communication with a period of com-
putation that is independent of the pipeline length.

Section 2-4 provide background material on self-
timed designs. In Sections 5-8, we consider the through-
put of a circular, self-timed pipeline with several models
for processing and storage times. We consider fixed
times and random times with bounded and exponential
distributions. Under each of these distributions, asymp-
totic linear speedup is realized. However, different con-
stant factors are realized for the different distributions.
For several, utilization approaching 100% can be ob-
tained for arbitrarily long pipelines.

2. Self-timed Pipelines

In self-timed pipelines, the flow of computation is con-
trolled by completion and acknowledge signals. As we
will show, this form of control does not suffer from
the asymptotic throughput limitations of synchronous
designs described in Appendix 1. When Stage i com-
pletes a computation, it sends a completion signal to
Stage i + 1 (modulo n, the number of stages in the
ring). When Stage i receives new input data, it sends
an acknowledge signal to Stage i - 1. Figure 1 shows
the self-timed pipeline that we will analyze in this paper.

The boxes labeled fperform the computation; the
circles labeled C store the results and control the flow
of data. In this figure, data flows to the right on the
upper branches, and acknowledge signals flow to the
left on the lower branches.

140 Greenstreet and Steiglitz

Fig. 1. A self-timed pipeline. The processors are labeled f and the
C-elements C.

Register 6~- is the output register forj~ and simulta-
neously the input register for j~+l. What this means iS
that a new result cannot be stored in Cj+ 1 until3~+l has
completed its computation using the old result and
stored it in Cj+ 1. The contents of Cj cannot change until
two things happen: (1)fj completes its computation of
a new result, and (2) Cj+I acknowledges receipt of a
result (which means that the old result from Cj has
been used and can be overwritten).

We can visualize this sequence of events by placing
tokens on the signal lines. Figure 2(a) shows a situation
at time tl: The token at the upper left input of Cj is the
completion signal from3~; the token at the lower right
input is the acknowledge signal from Cj+ 1. At time t2
(figure 2(b)), Cj stores the new result, transferring the
completion token to its upper right output and the ack-
nowledge token to its lower left output, the lower right

input of Cj_ I. At time t3, fj+l computes a new result,
transferring the completion token to the upper left input
of Cj+ 1 .

What we have described in this section summarizes
well known ideas from the literature of self-timed cir-
cuits and sets the stage for the analysis of such pipelines.
The token-passing view of the pipeline is a simple in-
stance of a Petri Net [7]. The storage element Cj func-
tions as a Muller C-element [5] insofar as control is
concerned. In [8] it is shown that three-stage pipelines
of this form function correctly regardless of the delays
of thefand C elements. In [9] this result is generalized
to pipelines of any number of stages (> 3).

3. Basic Properties of the Self-Timed Pipeline

From the rules governing the pipeline, it is easy to see
that the number of tokens is invariant and equal to the
number of stages. Let loopj be the cycle (input of 3~)

(upper left input of Cj) ---" (lower right input of
Cj-0 as indicated in figure 3. Each loop contains ex-
actly one token, and it is either a completion or an ack-
nowledge token. We say that each such loop is in one
of the three states left, right, or down, according to the
location of the token. By the rules governing the flow
of data and signals, the number of loops in the down
state is invariant.

We call the processor j~ active if loopj is in state
left. This corresponds to the intuitive notion of active:
3~ begins a new computation when the token (i.e., new
data) arrives at its input, and transfers the token from
left to right when the computation is completed. In the
same spirit, we say that Cj is active when loopj is in
the right state and loopj+l is in the down state. This
means that Cj is allowed to fire, sending an acknowl-
edge back to Cj-1 and data forward to fj+l.

If all loops were in the left state, all processors would
be active. However, once these computations were com-
pleted, all loops would be in the right state, and the
pipeline would be deadlocked. For progress to be made,

Fig. 2. Tokens in a self-timed pipeline. Part (a) shows the state when
C-element Cj is about to fire; (b) shows the state after firing; and (c)
shows the state after processor fj+l has completed its computation. Fig. 3. Definition of loopj.

Bubbles Can Make Self-Timed Pipelines Fast 141

C-elements must be enabled to fire; this requires that
there be loops in the down state.

We refer to a loop in the down state as a bubble.
Let n be the number of loops in the pipeline, and b
be the number of bubbles. The number of active proc-
essors is bounded from above by n - b. The number
of active C-elements is bounded from above by min
(b, n - b) because every active C-element must have
a loop in the down state to its right (and there are b
such loops) and a loop in the right state to its left (and
there are at most n - b such loops).

4. Performance of Self-Timed Pipelines

We describe the performance of a pipeline with two
related quantities: throughput and utilization. The
throughput is the total rate of computations made by
all processors, ff the throughput is proportional to the
number of processors in the limit as the number of proc-
essors goes to infinity, we say that the pipeline has the
linear speedup property. The utilization U of a proc-
essor is the fraction of the time that the processor
spends computing. In the cases considered here, all
processors have the same utilization. A utilization of
100 % indicates that every processor is computing all
of the time. The pipeline has linear speedup if the util-
ization is bounded from below by a positive constant
as the number of processors goes to infinity. In the anal-
ysis of the following sections, we will derive exact
values and bounds for utilization under various
conditions.

In general, the times for computation and storage
operations are random variables. A realization of a
pipeline is given by an initial state and an infinite set
of values, the times for each operation. As shown in
Appendix 2, Corollary 2.1, this completely specifies
the operation of a pipeline. We assume that the random
variables for computation times are independent and
identically distributed; tf denotes a random variable
with this distribution. Likewise, we assume that storage
times are independent and identically distributed and
write tc to denote one such variable.

To compute the utilization of a pipeline, we must
determine the fraction of the time each processor is ac-
tive. By the strong law of large numbers, the average
time per computation for any processor in a given reali-
zation is E[(r] almost surely [10]. The average waiting
t/me for a processor is the average time between starting
successive computations. For each realization, the aver-
age waiting time is the same for every processor. For
the pipelines considered in this paper, the average wait-

ing time is the same for almost every realization (see
Appendix 2), and we denote it by T. In this case, we
define

u = E[{~]
T

5. Fixed Processing and Storage Times

We first consider pipelines with fixed ty and tc and a
single bubble (b = 1). Each time)~ completes a com-
putation, loopj must cycle through states left, right,
and down. The average waiting time T is the sum of
the average times spent in each of the three states left,
right, and down. The time spent in the left state is always
tf, and the time spent in the right state is at least tc.
Let Tdow~ be the average time spent in the down state.
We have T > tf + tc + Taown. By a simple balancing
argument, nTdo~, = T. Combining these two relation-
ships yields T > [n/(n - 1)](tf + tc). To obtain a sec-
ond bound on T, note that the bubble must travel around
the ring each cycle; so T >_ nt c. We claim that for any
pipeline the greater of these two bounds gives the exact
value for 7~ therefore, the utilization U of the pipeline
is given by

u _ n - 1 tf
n t f + t c ' n < g

=5~ n>_~
n t c '

where Y = tf/t C + 2.
To see this, consider first the case when n _> ~. After

the bubble leaves loopi (to loopj_ O, at least (n - 2)tc
time units elapse before the bubble arrives at loopj+l.
Therefore, processorj~ has completed its computation
by the time the bubble appears at the lower-right input
of Cj. The rate of progress is completely determined~
by the progress of the bubble, and the bubble spends ~
exactly t~ time units in each loop. Thus, T = ntc justi-
fying the throughput in this case. The other case, when
n _< ~, follows by a similar argument. As n ~ 0% the
utilization of the pipeline with a single bubble is f~(1/n).

To improve utilization, more bubbles must be added
to the pipeline. Let s be the average spacing of bubbles,
s = n/b. First consider a pipeline where all the bubbles
are initially equally spaced. Because all processing and
storage times are identical and the initial pipeline con-
figuration is symmetric, each bubble will propagate
identically (see Appendix 2, Corollary 2.1). Since the
bubbles are indistinguishable, the analysis of the single
bubble case applies with n replaced by s. Appendix 2,

142 Greenstreet and Steiglitz

Theorem 3 shows that for a large class of pipelines,
including this case, the initial configuration of bubbles
does not affect the utilization of a pipeline. We conclude

u _ S - 1 t f

s t f + t c ' s < - ~

_ t l
- - - s > _ g

s t c '

In either case, the throughput depends only on the
average spacing of bubbles. In particular, it is indepen-
dent of the length of the pipeline. Thus, for any fixed
spacing, linear speed-up is achieved. Optimal perform-
ance is achieved by choosing s = Y, which yields

t f s = ~
Uopt = tf + 2t~ '

Thus, linear speed-up is achieved by pipelines with fixed
processing and storage times. Furthermore, utilizations
arbitrarily close to 100% can be achieved for tf >> t~.

6. Bounded Process ing and Storage Times

We now consider pipelines where tf and tc are speci-
fied by their means and maxima. We derive lower
bounds for throughput by deriving an upper bound for
T. To do this, consider a pipeline where each computa-
tion requires time exactly max(tf) and each storage re-
quires time exactly max(t~). We will call this the slow
pipeline. Let U ' and T' refer to the slow pipeline. By
definition, T ' = max(t f) /U ', and from Appendix 2,
Corollary 3.2, we have T <_ T' which yields U _>
(E[tf]/max(tf))U'. Since these max(tf) and max(t~) are
fixed, the analysis of the previous section applies, and
U' can be calculated. This yields the bounds

U > s - 1 E[tf] max(~)
- s max(~) + max(tc) ' s _< max(tc----~ + 2

max(t f) >_ E[tf] s >-- + 2
s max(to) ' max(t~)

Again, linear speedup is achieved for any fixed s. If
t c is sufficiently small and max(t/) is sufficiently close
to E[tf], then utilizations arbitrarily close to 100% can
be achieved for an appropriate choice of s. Upper
bounds for U can be obtained in a similar manner using
min(t/) and min(t~).

It may seem pessimistic to estimate the utilization
based on the worst-case delays. One would hope for
a pipeline whose performance is determined primarily
by the average processing and storage times. However,

we can propose pipelines where the bounds given above
are tight in the limit as the number of processors goes
to infinity. For example, consider a pipeline where tf
is 1/p with probability p and zero with probability
1 - p, and tc = 0. This approximates the behavior of
a pipeline where most operations are fast, but infre-
quently computations take a long time. If the pipeline
is operated with a single bubble, we can show that
U = p + 1/n. In contrast, for a pipeline with processing
times fixed at E[tf] = 1 and one bubble the analysis
of Section 5 applies, and U~xed = (n - l)/n. In the
limit as the number of processors goes to infinity,

U _ E[tf]

Ufixed max(tf)

Thus, in the single-bubble case, linear speedup is
achieved, but utilization is limited by the worst-case
processing time. Better utilization can be achieved by
adding more bubbles; however, this example shows that
the performance of self-timed systems is not necessarily
determined by average case-timings (as has often been
claimed).

7. Exponent ia l Process ing and Storage Times

We now consider a case where the worst-case process-
ing and storage times are not bounded. We show that
linear speed-up (relative to expected processing time)
is still achieved. To exploit techniques from queuing
theory, we make two simplifying assumptions:

1. The operations of the processor and the C-element
are combined into a single operation. This could be
achieved by taking the acknowledge signal to Cj-1
from the output of 3~+l instead of the output of Cj.

2. The time for the combined operation of storage and
computation (to + tf) is exponentially distributed
with mean r.

With this change, the left state is never visible. When
loopj_l is in state right and loopj is in state down, a
transition is enabled that brings loopj_l into state down
and loopj into state right. Because this could be effected
by delaying the acknowledge inputs of C-elements, the
throughput of this modified pipeline is less than or equal
to the throughput of the original pipeline (Appendix 2,
Theorem 2).

A segment refers to a sequence of adjacent loops be-
tween bubbles plus the bubble on the right. Each seg-
ment can be viewed as a queue. A transition which
lengthens a segment corresponds to an arrival to the

Bubbles Can Make Self-Timed Pipelines Fast 143

corresponding queue; a transition which shortens a seg-
ment corresponds to a departure. A segment of length
one corresponds to an empty queue (no departure possi-
ble since bubbles cannot be destroyed). Let k be the
rate of arrivals to a queue; the average waiting time T
is s /k . A segment can grow if the successor segment
has a length greater than one, and the time for the tran-
sition which lengthens the segment is exponentially dis-
tributed with mean 7-. Thus, ~ = (1 - pO/7, where
Pl is the probability that the length of a segment is one.
Thus the utilization of processors can be determined
once the distribution of segment lengths is known.

By the symmetry of the ring, the segment lengths
are identically distributed. Furthermore [11], these
lengths are independent random variables as b ~ co.
This is an M/M/1 queuing system [12]. The departure
rate is 1/r: whenever a segment includes more than two
loops, the bubble can move. The expected length of an
M/M/1 queue is (1 - Pl)/Pl; accordingly, the expected
length of a segment is l ips. Since the average segment
length must be n/b = s by the definition of segments,
wehavepl = 1Is. From this, we have T = rsV(s - 1) and

lim u = S - 1 E [~]
n ~ o o S 2 7"

From this result it follows that choosing s = 2 max-
imizes the asymptotic value of U, and that this maxi-
mum value is U = E[tf]/47". As mentioned above, this
is a lower bound for utilization, because the simplifica-
tions made for the analysis were conservative. For any
fixed s, linear speedup is realized.

We have shown that asymptotically good utilizations
can be realized even when the worst-case processing
time is unbounded. In contrast, the clock period of a
synchronous system must be longer than the worst-case
delay. The above result demonstrates that a self-timed
pipeline can operate with performance determined by
the average processing time instead of the worst-case.

8. Exponentially Distributed Processing Times with
Fixed Offset

We now show that a self-timed pipeline can achieve high
utilization even when processing times are unbounded.
We consider processing times that are exponentially dis-
tributed with an offset:

~(t < to
tz(t)

e - x(t- to) t o _< t

To simplify the analysis, we assume tc = 0. (The anal-
ysis of Section 7 corresponds to tf = O, t c exponential
with parameter r.)

We cannot give exact analytic results for this case;
instead, we derive approximate results for three cases
depending on the spacing of bubbles, and we present
the results of Monte-Carlo simulations that confirm
these approximations.

1. Close spacing: s < < kto. Because there are many
bubbles, a loop will most often proceed directly from
the right to the down state without waiting. In the
limiting case as s goes to zero, the average time spent
in the right state is zero. By arguments similar to
those in Section 5, (s - 1)Tdown = E[tf]. Occa-
sional waiting in the right state can only slow down
the pipeline; thus,

U < (s - 1)/s, s < < to (1)

Monte-Carlo simulation shows that this bound is
close to the actual utilization.

2. Intermediate spacing: s = kto. Both waiting for new
data and waiting for bubbles occur frequently. Based
on Monte-Carlo simulation, we observed

U < kto/(1 + kto), s ~ to (2)

is an upper bound and reasonable approximation.
This is the region of maximum utilization.

3. Large spacing: s > > kto. Waiting for bubbles to
arrive is the primary cause of lost utilization. We
present a more detailed analysis of this case below.

We compute an estimate based on the rate of flow
of bubbles around the pipeline for the case that s > >
kto. Since tc is zero, a loop is a bubble for a positive
amount of t ime only if it becomes a bubble while its
predecessor is still computing a new result. Estimating
the actual waiting time between computations with the
average, T, this happens with probability approximately
e --x(7"-t~ When a bubble stops at a stage, the average
length of the stay is 1/k. This yields:

S e_X(T_to) = T
X

It is easy to verify that in the limit as s goes to infinity

T ~ to + ~ l o g logs ~- Xto

Since this assumes the bubble always arrives after to,
this analysis provides a lower bound on average waiting
time, and thus an upper bound on utilization. In the

144 Greenstreet and Steiglitz

Utilization
U

1 -

0.9--

0.8--

0.7--

0.6--

0.5--

0.4--

0 .3-

0 .2-

0 .1-

0

(2)

� 9 1 7 6 1 7 6
e * *

�9 * * ~ 1 7 6

I I I I I I
3 10 30 100 300 1000

average bubble spacing, s

Fig. 4. Util ization vs. bubble spacing wi th)Xto = 10. Upper bounds

shown by solid curves are labeled by equat ion number . The dots are

the results o f Monte -Car lo s imulat ion.

limit as s ~ 0% T ~ co, and the bubble arrives after
to with probability approaching one. This yields

U),to + 1 = , s >>)% (3)

Xt0 + log logs - Xto

These three upper bounds provide a good approx-
imation to the utilization of the self-timed pipeline.
Figure 4 shows data obtained from Monte-Carlo simu-
lations along with the three upper bounds for a pipeline
with to = 0.9, X = 10, (i.e., mean 1.0, variance 0.1,
processing times) and t c = 0. For distributions with
Xto sufficiently large, utilizations arbitrarily close to
100% can be realized, even though the worst-case proc-
essing time is unbounded.

9. Conclusions

We have shown that self-timed pipelines can achieve
linear speedup with utilization close to 100%, under
a wide variety of processing time distributions, includ-
ing unbounded distributions. The variation in process-
ing time is absorbed by bubbles, processors which are
temporarily idle. By introducing bubbles, the pipeline
can operate at a rate which is closer to the average proc-
essing time than the worst-case.

The theorems of Appendix 2 provide a general frame-
work for analyzing the throughput of self-timed pipe-
lines. In particular using Corollary 3.2, performance
bounds (both upper and lower) for many other process-
ing time distributions can be derived from the results
presented in Sections 5-8. The C-element protocol has
a natural extension to higher dimensions. The bounds
from Section 6 (bounded distributions) also apply to

this case. In particular, assuming bounded processing
and communication time, two-dimensional processor
networks can also realize linear speedup. For higher
dimensional networks, the delays of non-nearest neigh-
bor communication may limit performance to less than
this. Our future work will include investigation of
higher dimension cases, especially for more general
distributions.

The techniques presented here can also be applied
to synchronous designs. The C-element ring can be
used instead of a buffer chain to distribute clock pulses
in a pipeline with locally synchronous stages. Feedback
between stages in the C-element protocol guarantees
correct functioning independent of all delays; thus, this
design does not suffer from the limitations of buffer
chains described in Appendix 1. This approach com-
bines the simplicity of synchronous design (for the indi-
vidual stages) and the robustness of self-timed designs
(for interstage timing).

Acknowledgments

We thank Ehran ~inlar, Marios Dikaiakos, Claire
Kenyon-Mathieu, and F. Miller Maley for helpful
comments.

Appendix 1. Synchronous Pipelines

In this appendix, we examine clock buffering for syn-
chronous designs and show that many typical designs
cannot guarantee both linear speedup and reliable pipe-
line operation. The arguments are adversarial, so the
results show that failure is possible, although not nec-
essarily probable. More work needs to be done to
understand when the limits of synchronous clocking are
reached in practical systems.

In [13], Fisher and Kung present several clock dis-
tribution designs. Because signals are necessarily atten-
uated when propagated large distances, these designs
must be implemented with chains of buffers, as illus-
trated in figure 5. They require the skew introduced
by each buffer to be bounded. Under this assumption,
they claim that arbitrarily long pipelines can be con-
structed with a clock period that is (asymptotically) in-
dependent of the size of the array. The difficulty with
their argument is that they neglect variations in clock
skew during operation of the circuit--for example, be-
tween leading and falling edge, or from pulse to pulse
([13], Assumption AS).

Bubbles Can Make Self-Timed Pipelines Fast 145

clock-in ~ ~ �9 �9 �9

Fig. 5. A linear array of processing stages, clocked by a linear array
of buffered clock signals, after [13]. The buffers are labeled "B,"
and the processing stages "S?"

Consider differences in delay between leading and
falling edges in the buffers of figure 5. Let tZh be the
delay for a rising edge, thl for a failing edge, and ta =
max(tlh) -- min(thz). Without loss of generality, assume
ta > 0 (otherwise, the following argument applies
with h and l interchanged). It is possible, in the worst-
case, that each stage delays rising edges by max(tth)
and falling edges by min(thl). The high portion of each
clock pulse output is then t a shorter than the input
pulse (or non-existent). Given enough stages, the clock
pulse completely disappears.

To prevent pulses from disappearing, a one-shot
could be added to the output of each buffer. When the
input of the one-shot is high and the output is low, the
one-shot generates a high output pulse that has a dura-
tion of at least wh and does not fall before the input.
Likewise, the one-shot guarantees that the length of the
low output pulse is at least wl. To show that this does
not produce a reliable buffer chain in the worst-case,
we construct a counterexample in two steps. The first
step exploits variations of delays through the one-shots
to produce a string of minimum-width clock pulses. The
second step exploits variations of width requirements
to force a clock pulse to be missed by a buffer.

For simplicity, we assume Wh = Wl = w. Each buf-
fer delays pulses (from input to output) by some amount
t. Due to variations as the circuit operates, t and w are
random variables. We assume that they are bounded
with ranges At = max(t) -- min(t) and Aw = max(w)
- rain(w). We assume the input clock is symmetric
with high and low intervals of ~- (where ~" > w).

If the first stage delays the first (e:g., rising) edge
by max(t) and all subsequent edges by min(t), then the
first pulse has a width of 7- - At at the input to the
second stage. I f the first k stages delay the first edge
by max(t) and all subsequent edges by rain(t), then the
first two edges are separated by max(r - kAt, w) at
the output of Stage k. Narrowing of the separation to
less than w is prevented by the one-shot. If subsequent
stages continue to delay the first edge relative to the
others, the interval between the second and third edges
will be reduced, and so on. Thus we can produce an

arbitrarily long sequence of successive pulses separated
byw.

The second step of the construction exploits varia-
tions in w. Suppose that such a sequence of pulses,
separated by min(w), encounters a stage which imposes
a separation of max(w). Because a one-shot must have
finite memory, the stage must ultimately lose a pulse.

Appendix 2. Properties of Self-Timed Pipelines

In this appendix, we derive three theorems for pipe-
lines. First we present a sufficient condition for live-
ness. Then we give a proof that the waiting time cannot
be decreased by increasing the delay of one or more
operations in a realization. Finally, we show sufficient
conditions under which the average waiting time T is
well defined.

Let n be the number of processors (and therefore
the number of storage elements) in the pipeline, b be
the number of bubbles, and s = n/b be the average spac-
ing of bubbles. All operations on processor, storage ele-
ment, and loop indices are implicitly modulo n. Each
loop (as described in Section 3) can be in one of the
three states down, left, or right.

THEOREM 1. For any pipeline with 1 < s _< n, and
for any distributions for t c and tf, at least one proc-
essor or C-element is active at any given time.

By the definition of s, 1 < s < n is equivalent to
1 _< b < n, which means that there is at least one loop
that is a bubble and at least one loop that is not a bub-
ble. Since the loops are arranged in a ring, we can find
a j such that loopj is in state down and loopj_i is in
state left or right. I f loopj_l is in state left, then proc-
essor J)_ 1 is active. Otherwise, loopj_l is in state right
and C-element Cj_ 1 is active. In both cases the claim
is established.

The next theorem shows that the throughput of a self-
timed pipeline cannot be increased by slowing down
any one or more operations. In general, the times for
computation and storage are random variables. A reali-
zation is an initial state and a delay for each operation.
The initial state can be specified by a function q where
q(j) is the initial state (down, left, or right) of loopj.
The delays of computation and storage operations can
be specified by a positive (but not infinite), real valued
function, delay(i, j , what), where i is the iteration, j
is the position in the ring, and what is either processor
or C-element. In particular, delay(42, 17, C-element) =

146 Greenstreet and Steiglitz

1.23 means that C17 takes 1.23 time units (after its inputs
are both available) to perform its 42 nd storage opera-
tion. Likewise, we define start(i, j , what) to be the time
at which the inputs become available for whatj to start
its i th operation. We write delay~ <_ delay2 to denote
that for all i, j , and what, delay~(i, j , what) < delay2(i,
j , what). We define start~ < startz in the same manner.

THEOREM2. LetR~ = (ql, delayx) andR2 = (q2, delay2)
be two realizations of a pipeline. If ql = q2 and delay 1

<- delay2, then starta <_ start2.
Assume otherwise. Then, of all operations that start

earlier in R 2 than in R1, let (i, j , what) be the first.
If what = processor, this means that the output of

the preceding C-element changed sooner in R2 than in
R~. By the choice of (i, j , what) to be the first violation
of the claim, this C-element started its operation no
earlier in R z than in Rv Furthermore, the C-element
in R 2 took at least as long to complete its operation as
the one in Rz by the hypothesis delayl <_ delay2. Thus,
the input to 3~ became available no earlier in R2 than
in R~. A contradiction.

I f what = C-element, a similar argument leads to
the required contradiction.

Corollary 2.1. Let R 1 = (ql, delayO and R2 = (q2,
delay2) be two realizations of a pipeline. If ql = q2 and
delay~ = delay2, then starfi = start2.

Proof Since delay~ <_ delay2, Theorem 2 implies start~
< start2. Likewise, d e l a y 2 <_ de lay1 implies start2 <_
startl. Therefore, startl = start2 as claimed.

Corollary 2.1 shows that the behavior of a self-timed
pipeline (as described by starting times of operations)
is completely determined by the initial state and the
delay function.

We now give a condition that guarantees that utiliza-
tion depends only on the distributions of processing and
storage times and the number of bubbles in the pipeline.

Condition 1. For any fixed i, j , and what, delay(i, j ,
what) is a random variable. Condition 1 is satisfied if

1. All of these random variables are independent.
2. For fixedj and what, the resulting family of random

variables are identically distributed.

The first condition requires that the time to perform
any given computation or storage operation is indepen-
dent of the time to perform other operations. The sec-
ond condition requires that any given processor (or

storage element) has the same distribution of computa-
tion (or storage) times for all iterations.

We now introduce the idea of restarting that will
allow us to analyze aggregate properties of (almost) all
realizations. For any integer k, after each processor and
C-element has completed exactly k operations, the state
of the pipeline is identical to the initial state. The restart-
at-k of a realization R = (q, delay) is a realization
R' = (q, delay) such that delay' < delay and all proc-
essors and C-elements complete their/d h operation at
the same time. In particular, we consider the first proc-
essor or C-element to complete its /(h operation; let
this occur at time rk. We reduce delays (in delay' rela-
tive to delay) for operations in progress at this instant
so that they will also complete at time 7 k. Finally, we
set the delays of all remaining operations of iterations
at or before k to zero to guarantee that each processor
and C-element completes its/d h operation at time rk.
By construction delay' <_ delay and by Theorem 2,
start' <_ start. Since the pipeline is restarted to a fixed
state (independent of the state before the restart opera-
tion), and the delays of computation and storage oper-
ations are independent random variables (assuming
Condition 1), the behaviors of the pipeline before and
after the restart are independent. The restart-every-k
of a realization R = (q, delay) is a realization R ' =
(q, delay') such that delay' < delay and all processors
and C-elements complete their mk th operation at the
same time for all integer m > 1.

THEOREM 3. If a pipeline satisfies Condition 1, then the
limit

T = lira start(m, j , what)
,n-* ~ m

exists almost surely and has the same value for all j
and what, and all initial states with the same number
of bubbles.

Proof In the following, we assume i < b < n to guar-
antee that the pipeline is alive. Otherwise, the pipeline
deadlocks, and the limit is infinity for all realizations.
We first show that the limit exists for any fixed initial
state and for any integer k, when each realization is
replaced by its restart-every-k version. We then show
that in the limit as k goes to infinity, the limit for the
restart-every-k version is the limit for the original pipe-
line. Finally, we show that this limit is independent of
the initial state, j , and what.

Let startk be the starting times of a restart-every-k
version of a realization. We consider

Bubbles Can Make Self-Timed Pipelines Fast 147

T k = lim startk(m' j ' what)
m~o~ m

Let 6k(1) = startk(1, j , what) and 6k(m) = startk(m, j,
what) -- startk(m - 1, j, what). Then we can write the
above limit as

m-~o m i=l m-~oo m i=0 ~ h=l 6k(ik h)

Because the operation of the pipeline before any restart
is independent of the operation after the restart, the
sums over h are independent random variables. Thus,
by the strong law of large numbers [10], the limit exists
almost surely. Since start k <_ start, we have

lim inf start(m, j, what) > Tk
m--* oo m

We now derive an upper bound, and show that these
two are equal in the limit as k goes to infmity. In a pipe-
line with b bubbles, the difference at any time in the
number of operations performed by any two processors
or C-elements is at most b + 1. Therefore, the number
of processor delays that are decreased by each restart is
at most n(b + 1). Likewise, at most n(b + 1) C-element
delays are decreased in the construction of delay'. The
largest difference in starting times between the original
realization and its restarted counterpart would occur
if these operations were performed sequentially in the
original. Let

(i+ 1)k n - 1 [d
gapi = Z Z elay(h, j, processor)

h=(i+l)k-b j=0

delay(h, j, C-element)l +

For each i, gapi is an upper bound on the decrease of
starting times due to the i th restart. This yields

start(m, j, what)
lim sup

m~oo m

-< lim 1 ~ l l l g ~ - -) l
m-~o m i=0 ~ api + 6k(ik + h

h=l

Applying the strong law of large numbers again, the
right side of the inequality becomes

1%7-~ l 1
m--*colim m 2.~i=0 ~ (E[gap] + Tk)

Taking limits as k goes to infinity yields

lira sup Tk < lim inf start(m, j, what)

start(m, j, what)
< lim sup

m~oo m

< lim inf IE[~aP] + ~--,~o Tk~

almost surely. E[gap] is bounded by n(b + 1)(E[(f] +
E[tc]); therefore, limE[gap]/k = 0, and we conclude

k- -~

lim inf start(m, j, what) = lim sup start(m, j, what),
m-~ m m--* oo m

almost surely. Therefore, for any fixed initial state the
limit exists almost surely as claimed.

The final step is to show that this limit is the same
for all initial states with the same number of bubbles,
and for allj and what. Let ql and q2 be two states with
the same number of bubbles. Let T~ and Tz be their
respective values of the above limit. We note that a
pipeline initially in state ql can be brought into state
qz by setting the delays of a bounded, O(nb), number
of operations to zero. Thus, Tz < 7"1. By symmetry,
we have T~ < Tz and therefore T2 = T1. As noted above,
the difference in the number of operations performed
by any two processors or C-elements is at most b + 1.
Because each loop completes any finite number of oper-
ations in a finite amount of time, the difference between
starting times of different loops and processors is insig-
nificant in the limit. Thus, the limit exists and is the
same for all initial states, and for all j and what.

Corollary 3.1. If a pipeline satisfies Condition 1, then
its utilization is defined.

Proof The average waiting time is

T = lim start(m, j, what)
m-.+ r m

By Theorem 3, this limit exists almost surely. Therefore,
the utilization U = E[tf]/T is defined.

Corollary 3.2. Let P~ and Pz be two pipelines that satisfy
Condition 1 and have the same number of processors
and bubbles. Let F~ and C~ be the distribution func-
tions for processing and storage times respectively in
t'1, and F2 and C2 be the same for P> If F~ _ F2 and
C~ > C2, then Tt -< Tz.

148 Greenstreet and Steiglitz

Proof By Theorem 3, T~ and T2 are defined. By Theo-
rem 2 and the monotonicity of averages, it is sufficient
to exhibit a mapping from realizations of P1 to realiza-
tions of P2 with the following two properties: (1) the
realization in P2 has a delay function that is greater than
or equal to that of the realization in/1, and (2) the map-
ping preserves the probability of measurable sets. If
F~, C~, F2, and C2 are continuous this can be achieved
for each realization and by mapping delay~(i, j , proc-
essor) to F f 1 (F~(delayt(i, j, processor))) and likewise
for C-element delays. Since FI -> Fz

F21(Fl(delay~(i, j , what))) >_ delayl(i, j , what)

as required. If one or more of the distributions are not
continuous, suitable variations of this simple mapping
will produce the required result.

References

1. H.T. Kung, L.M. Ruane and D.W.L. Yen, "A Two-Level Pipe-
lined Systolic Array for Convolution" Proc. of the CMU Conf.
on VLSI Systems and Computation, Pittsburgh, PA, 1981.

2. R.J. Lipton and D. Lopresti, "A Systolic Array for Rapid String
Comparison," Proe. of the 1985 Chapel Hill Conf. on VLSI,
Chapel Hill, NC, 1985.

3. S.D. Kugelmass and K. Steiglitz, ' ~ Scalable Architecture for
Lattice-Gas Simulations;' J. Computational Physics, vol. 84,
1989, pp. 311-325.

4. U. Frisch, B. Hasslacher and Y. Pomeau, ' ~ Lattice Gas Auto-
maton for the Navier-Stokes Equation" Phys. Rev, Lett., vol.
56, 1986, pp. 1505-1508.

5.: C.L. Seitz, "System Timing," in Introduction to VLSI Systems,
C.A. Mead and L.A. Conway, Reading, MA: Addison-Wesley,
1980, pp. 245-258.

6. I.E. Sutherland, "Micropipelines" Communications of the ACM,
vol. 32, June 1989.

7. D.L. Dill, S.M. Nowick and R.E Sproull, Specification and Auto-
matic Verification of Self-timed Queues, Technical Report CSL-
TR-89-387, Computer Systems Laboratory, Stanford University,
Stanford, CA, 1989.

8. R.E. Miller, Switching Theory, New York: Wiley, 1965.
9. M.R. Greenstreet, T.E. Williams and J. Staunstrup, "Self-Timed

Iteration,' VLSI "87: Proc. of the Int. Conf on VLSI, Vancouver,
1987.

10. W. Feller, An Introduction to Probability Theory and Its Applica-
tions, Vol. 1, New York: Wiley, 1968.

11. J. Kao, personal communication.
12. A.O. Allen, Probability, Statistics, and Queuing Theory, with

Computer Seience Applications, New York: Academic Press, 1978.
13. A.L. Fisher and H.T. Kung, "Synchronizing Large VLSI Proc-

essor Arrays" IEEE Trans. on Computers, vol. C-34, 1985, pp.
734-740.

Mark Greenstreet received the B.S.E.E. degree (with honors) from
the California Institute of Technology, Pasadena, CA, in 1981.

From January 1982 through July 1985, Mr. Greenstreet was em-
ployed by ESL, Inc., Sunnyvale, CA, where he designed custom VLSI
chips for signal processing applications. He was awarded two patents
related to these designs. In August, 1985, Mr. Greenstreet joined the
newly formed VLSI research group at Aarhus University, Aarhus,
Denmark, where his research included parallel computation, VLSI
design, and design verification. Since September 1987, Mr. Greenstreet
has been in the Ph.D. program in computer science at Princeton
University.

Kenneth Steiglitz received the B.E.E. (magna cum laude), M.E.E.,
and Eng.Sc.D. degrees from New York University, New York, NY,
in 1959, 1960, and 1963, respectively.

Since September 1963 he has been at Princeton University, Prince-
ton, N J, where he is now Professor of Computer Science, teaching
and conducting research on highly parallel architectures, optimization
algorithms, and the foundations of computing. He is the author of
Introduction to Discrete Systems (New York: Wiley, 1974), and co-
author, with C.H. Papadimitriou, of Combinatorial Optimization: Algo-
rithms and Complexity (Englewood Cliffs, NJ: Prentice Hall, 1982).

Dr. Steiglitz is a member of the VLSI Committee of the IEEE
Signal Processing Society, is chairman of the Society's Technical
Direction Committee, served two terms as member of their Adminis-
trative Committee, as member of the Digital Signal Processing Com-
mittee, and as Awards Chairman of that Society. He is an Associate
Editor of the journal Networks, and is a former Associate Editor of
the Journal of the Association for Computing Machinery. A member
of Eta Kappa Nu, Tau Beta Pi, and Sigma Xi, he was elected Fellow
of the IEEE in 1981, received the Technical Achievement Award of
the Signal Processing Society in 1981, their Society Award in 1986,
and the IEEE Centennial Medal in 1984.

