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BASES IN HILBERT SPACE RELATED TO THE REPRESENTATION
OF STATIONARY OPERATORS*

E. MASRY, K. STEIGLITZ axp B. LIU}

1. Introduction. Every complete orthonormal set of functions in
L*(dt: — o, ») induces an isomorphism from the space L*(dé: — o, =) of
continuous-time signals onto the space I* of discrete-time signals. If the
Laguerre set is used, it has been shown [1] that each stationary continuous-
time linear filter has an isomorphically equivalent discrete-time linear filter
which is also stationary, and vice versa. The first part of this paper deals
with the problem of characterizing all those bases in L*(df: — o, ) with
this property.

We formulate the problem abstractly as follows: let B(A) be the space of
L*(dt: — », ») functions whose Fourier transforms vanish a.e. outside of
the Lebesgue measurable set A C R'. We fix the basis in I* to be the standard
basis. Each basis in B(A) establishes an isomorphism g from # onto B(A).
We define two Banach spaces = and 2 of bounded linear operators which are
stationary in their respective domains of definition B(A) and I*. It is re-
quired to find a necessary and sufficient condition on the isomorphism p (or
equivalently on the bases in B(A)) such that the Banach spaces of operators
> and $ be isomorphically equivalent, i.e., A € = implies 4 = p A € 2
and, conversely, A € £ implies 4 = pdy™ € =.

It is shown that the set {e,(t)}»—— . of complete orthonormal functions in
B(A) must have the form

(1) E,(jo) = G(ju)e™™

as their Fourier transforms.

This brings us to the second part of the paper which is concerned with the
related question: under what conditions does a set {e.(¢)} characterized by
(1) constitute a basis in B(A)? For convenience, we take A to be a finite or
infinite interval (a, b). It is shown, under the assumption 0 =< ¢(w) < 2w,
that the set {e,(¢)} is orthonormal if and only if the set E, defined by
Ey(w) = {w]|e(w) < y} satisfies the measure condition

(2) B(E,) =y forall y€I[0,2x],
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where the measure § is given by
8) = [ 16(j0) [ d.

It is shown further that each g(t) € B(a,b), || g(¢t)]] = 1, whose Fourier
transform is nonzero a.e., generates a complete orthonormal set of functions
{€.(?)} in B(a, b) given by

(3) e (t) = lLim. %r- fab G(jw) exp (jn j;w [G(jz) |’ d:c) e dw.

In particular, the Laguerre functions in B(— «, «) and the cardinal
functions in B(—27W, 2zW) belong to the above class. Other bases in
B(a, b) can easily be constructed. These bases can be applied to the analysis
and synthesis of signals and systems.

2. Preliminaries. Let B(A) denote the space of L’(di:—, ), pos-
sibly complex, functions whose Fourier transforms vanish a.e. outside of the
Lebesgue measurable set A, i.e.,

(4) B(A) = {f(t) € L*(dt: — o, »)| F(w) =0 a.e.on R'— A}.
In particular, we shall consider A = (a, b). Thus, if (a,d) = (— o, ©),
B(A) is L*(dt: — o, ). On the other hand, if (a, b) is a finite interval,
B(A) is the space of square integrable ‘“bandlimited” functions. B(A) is a
Hilbert space.

The space £ of all bounded linear operators with domain B(A) and range
L*(dt: —, ) is a Banach space [2, p. 161]. Define for every r € R' the
shift operator J, by

(5) Jf(t) = f(t + 7) forall f(¢) € B(A).
It is clear that J, preserves inner product, i.e.,
(6)  (JF(1),J.9(1)) = (f(1),9(t)) forall f(2),g(¢) € B(A).

Let T denote the space of all such shift operators. Then 7' < £. In fact, 7'
is a one-parameter group of unitary transformations from B(A) onto B(A).
The space 2 C £ of all bounded linear operators which commute with shift
operators is defined by

(7 Z={A€L|AJ, = J,Aforallr € R'}.

LemMma 1. The space = is a Banach space.

Proof. 1t is easy to verify that = is a normed linear space. We need only to
prove completeness. Let {4,} be a Cauchy sequence in Z. Since 4, € £,
there exists an 4 € £ such that A, — A4 in norm. We claim that 4 € 3.



554 E. MASRY, K. STEIGLITZ AND B. LIU

To this end consider
” AJff - J-rAf” = “ AJrf - Am]'rf + Aanf - J'rAf”
s[4 = AT + 1T 4a — ANFI-
From || J,|| = 1 and || 4, — 4 || — 0, we have

(8) | AJ.f — J.Af| = o.
The result follows after taking supremum over f(¢) € B(A) with
f@f = 1.

Our next assertion is that the range of each A € Z isin B(4A). This follows
easily from a theorem due to S. Bochner [3, Theorem 72] which we state as
2 lemma.

Levmma 2. Let A be a bounded linear operator from L*(dt: —», ) fo
L*(di: — o, o) which commutes with shift operators and let Af = g,
f(t) € L*(dt: — o, ). Then, there exists a bounded measurable function
W (jw) such that

G(jw) = W(jw)F(ju),

where F(jw) and G(jw) are the Fourier itransforms of f(t) and g(t), re-
spectively.

Next we consider the Hilbert space I of all complex-valued square sum-
mable sequences f = {f,}%—— . with its appropriate spaces of operators. We
give no proofs since they can be carried out in the same manner as for
B(A).

The space £ of all bounded linear operators with domain and range * is
a Banach space. Define for every integer r the shift operator J. by

(9) Jf = {fasr)oew forall feli
Again,
(10) (J£ J.g) = (f, g) forall f g€l

Let 7' denote the space of all such shift operators. It follows that T < £
and T is a one-parameter group of unitary transformations from 2* onto 7*.
The space £ C £ of all bounded linear operators which commute with shift
operators is defined by

(11) $=1{4Ac&|AJ, =J.A,r an integer].
Lemma 3. The space £ is a Banach space.

3. Isomorphic equivalence between the Banach spaces T and £. Let
{€a}7— « be the standard basis in [, i.e., the nth component of e, is unity
and other components are zero. Denote by x an isomorphism from I* onto
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B(A). Then the set {e,(f) = ue,} is the corresponding complete ortho-
normal set in B(A). Let the Banach spaces of operators £, £, = and £ be
defined as in §2.

The isomorphism p induces a relationship between operators. If 4 € 2,
then the operator u'Au belongs to £. Conversely, if A € £ then uAp™ be-
longs to £. In fact, uAu™" has domain and range B(A), but it may fail to
be in Z.

However, there exists a certain class of isomorphisms g which induce an
isomorphic equivalence [4, §36] between = and £, i.e., for each A € I, there
corresponds a unique operator A € £ given by p " Au. Conversely, pdu™
belongs to Z and is the operator corresponding to A € £. Thus, iso-
morphically equivalent operators A € = and A € £ are related by

(12) A = pAu

We intend to characterize this class.

TurEOREM 1. A necessary and sufficient condition for the Banach spaces of
operators = and £ to be isomorphically equivalent is that the complete ortho-
normal set {e,(t)} n— « e of the form

(13) e (t) = 1,i.m_§1_f G ()™ @ e du
T Ja

for some, possibly complex, G(jw) € L*(dw: A) and real measurable ¢(w).
Proof. Necessity. 1.et {e.(t)} be a complete orthonormal set of functions
in B(A). Then

(14) J®) = lim. 3 fueal®)

with

(15) fo = (), en(®)),

and the Parseval relation

(16) O = 2 151

holds. Let

1 h(t) = Af(t), A €Z, f(t) € B(A).

T4 wus shown In §2 thav hit) © B{A). Thus
(18) R(t) = lim. k; uen(t).

Since every operator in £ has a matrix representation [4, §26], we rewrite
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(18) in the matrix form

(19) h = Af,
where h and f are column vectors with components h, and f,,
n=---,—1,0,1, --- , respectively, and 4 is the matrix
‘1 = [ak.n]7
where
(20) e = (Aen(2), e(t)).

By hypothesis, A belongs to £. Therefore we must have (in operational
form)
J.Af = AJf forall r,
which implies

(21) > falGirm — @i =0 forall k,r.

n=—0

Since f is arbitrary, we conclude that a,, depends only on the difference of
the indices. That is, A is a Toeplitz matrix.

From (20), Parseval’s theorem and Bochner’s theorem (see §2), ax,, is
given by

(22) A = %AW(]w)E,,(Jw)Ek*(Jw) duw.

Since W (jw) is arbitrary, the product E,(jw)E:*(jw) should depend on the
difference » — k for all integers n, k£ and for almost every w. Consider first
n = k. | E,(jw)|* is independent of n. Therefore we can write E,(jw) in the
form

(23) E.(jw)

where

jon(w)
B(w)e™™,

B(w) = | E.(jw)| forall n.
Next consider n # k. Then, E,(jw)E:*(jw) can be written in the form
E,,(jw)Ek*(jw) — B2(w)ej[¢n(w)—¢lc(w)] — B2(w)ef‘y(n—k,w)

for some real measurable function v(-, - ). In particular,if weletn — k = 1,
we get a recursive formula

(24) ei¢k+1(w) — e:‘v(l.w)eiwk(w) for all k.
Therefore

(25) eiw:(w) —_ eik'v(l.w)ewa(w) for all k.
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Equations (23) and (25) imply.

Ea(jo) = B(jw)e™®@emr®®
which can finally be written as
(26) Ea(j) = G(jo)e™,

where ¢(w) is a real measurable function and G(jw) may be complex. Note
that both G(jw) and ¢(w) are independent of n.

Sufficiency. It is clear that (26) is sufficient, since the matrix A = [a; ] is
then Toeplitz and hence A commutes with every shift operator. Similarly, it
can be shown that if A € £ and (26) holds, then 4 € Z.

4. Orthonormality and completeness of the set {¢,(t)}. In the preceding
section we found the general form that the desired basis functions in B(A)
should take. We now investigate the problem of orthonormality and com-
pleteness of the set of functions characterized by (26). This will give us a
class of bases in Hilbert space which have a common functional structure.

Since the Fourier transform is a unitary transformation [4, §37], it
suffices to consider the sets { E,(jw)} instead of {e.(¢)}. In the sequel, for
matters of convenience, we shall take A = (a, b), where (a, b) can be a
finite or infinite interval.

The orthonormality requirement is

b
(27) LG w) e do = o,
2
T Ja
whereas the closure property is

N
FGw) — 2 C.E.(jo)|| =0, F(jo)€ L*(dw:a,b).

ni=—N

(28) lim
N >0

It follows that G(jw) cannot vanish on subsets of A of positive measure and
that || G(jw)|| = 1.

Without loss of generality we assume that 0 < ¢(w) = 27.

The following lemma will be used later on in the proof of a theorem on
orthonormality. It concerns integrals of composite functions.

LemMA 4 [5, p. 127]. Let () be a function integrable with respect to the non-
decreasing function B(x), a < x < b. Let e,(x) be the characteristic function
of the set E, defined by

Ey(z) = {z]e(z) = y}.
Let

a(y) = [ e(@) dB(a), —w <y <
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Let f(y) be a function integrable with respect to a(y). Then f(¢(x)) s
tntegrable with respect to B(x) and

(29) [ 5ot ds@) = [ 1ta) datw.

TaroreM 2. Let 0 £ o(w) = 2x. The set of functons {E.(jo)

= G(jw)e™™} is orthonormal if and only if the set E,(v) = {v|e(w) < v}
satisfies the measure condition

(30) B(E,) =y Jforall y€l0,2n]
where the measure B s defined by \
pw) = [ 16G) [ aa
Proof. Necessity. Define
b
a(y) = [ eo) ds(o),

where ¢,(w) is the characteristic function of the set E,(w), a(y) is an in-
creasing function, 0 £ y < .
The orthonormality condition (27) can be written in the form -

b
(31) o [ €7 dg(e) = oo
By Lemma 4, we have
1 [ 1
(32) P f & da(y) = f & da(y),
2w b 2m Jo

where the second equality follows from a(y) = 27 on [27, = ). Now, F. and
M. Riesz [6, p. 263] have proved that the equations

27
—l'f ejwda(y)=0, r=12-.-,
2w Jo
where a(y) is of bounded variation, imply the absolute continuity of a(y).

It follows from the Lebesgue-Stieltjes formula for integration by parts,
from the completeness of the functions e’ in L*(dy: 0, 2r), and from Riesz’s

theorem, that

(33) a(y) =y, y€I0,2x].
Thus

(34) B(Ey,) =y, y€Il0,2x].

The sufficiency part of the proof is trivial.
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In particular, if ¢(w) is taken to be
o) = [ 16G) [ as,
the set {E.(jw)} is orthonormal since
51; f 16 e) [ do = o fo o dy = by

It should be noted, however, that this ¢(w) is not the only function which
satisfies the measure condition (30). One can easily construct functions
¢(w) which will satisfy the measure condition without being of the above
form. On the other hand, by imposing further restrictions on ¢(w), the
measure condition may determine ¢(w) uniquely. An example is provided
by the following corollary.

CorOLLARY. Suppose, moreover, that ¢(w) ts absolutely continuous and
monotonically increasing. Then the set { E.(jw)} s orthonormal #f and only if

o) = [ 16G2) ds.
Proof. ¢ *(w) exists and is monotonically increasing. Therefore
{olo(w) £y} = (¢7(¥), a).
By the measure condition (30),

) _
v=[ 162 [ do = 67 W),
Since B8(w) and ¢(w) have unique inverses, we have
(35) o() = 8() = [ 16(jo) ! do.

Next we consider the closure properties of the set { E,(jw)} in L*(dw: a, b).
While in the orthonormality theorem the only restriction imposed on ¢(w)
was 0 £ o(w) = 2, it seems inevitable that further assumptions on ¢(w)
be made.

THEOREM 3. Let o(w) be absolutely continuous, 0 < o(w) < 2, o(a) = 0,
o(b) = 2w. Let the measure condition (30) be satisfied (for orthonormality).
Suppose we can write ¢’ (0) = G*(jw)L(jw) such that L(jw) € L*(dw: a, b).
Then the orthonormal set of functions {E,(jw)} is complete in L*(dw: a, b) if

and only if o(w) = f " 6z) ! da.

Proof. Necessity. Let f(w) = L(jw) — G(jw). Clearly f(w) € L*(dw:
a, b). It follows easily that the inner products

(f(w), Ex(jw)) = 0, n =0, %1, £2, ---.
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By the completeness hypothesis,
(36) f(w) =0 a.e.

Therefore
o(w) = [ G(jo) [ dz.

Sufliciency. Let n > 0 be given. Let F(jw) be an arbitrary function in

L¥(dw:a,b).
Let
(37) K(jo) = %ﬁ—g
Define
K(jw) if |K(jow)| < B,
(38) Kp(jo) =

K(jw)
[ K(jw)|

where B is a positive real number. The sequence | K 5(jw)G(jo) — F(jo)|*
is decreasing everywhere (as B — « ) and tends to zero a.e. Note that we
have used the fact that G(jw) does not vanish on sets of positive measure.
It follows from the monotone convergence theorem [2, p. 72] that

B it |K(jw)| 2 B,

b
lim | | Kp(jw)G(jo) — F(jo)|* do = 0.

B> Jg

Therefore, there exists a positive real number B = B(7) such that
b

(39) f | K3(jw)G(jw) — F(jw) | do < n.

Next consider

fa ' K5(jo)G(jo) — FI_VZN C.G(jo) exp (jn f ) |G(jz) [* dx)

(40) = f:

2
dw

| G(jeo) [ deo

Kp(jw) — ZN:N C. exp (jn j;w | G(jz) |” dx)

n=-—
f2r
0

where we have let A = f | @(jz)|® dz. We note that Kz(ju '(\)) is a
bounded function and thus belongs to L*(d\: 0, 2x). By the completeness

Ka(j'(0) — 30 Cac™| i,

n=—N
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of the set {¢™} 57— in L*(d\: 0, 2x), there exist numbers N and C, such
that the integral (40) is less than 5. It follows from (39), (40) and the
Minkowski inequality that

(41) f Py — iy C. G (jw) exp (jn f 163 dx)

5. Summary and examples. We summarize the discussion of the previ-
ous section. Each G(jw) € L*(dw: a, b) which is nonzero a.e. generates a
complete orthonormal set {E,(jw)} in L*(dw: a, b) given by

E,(jw) = G(jw) exp <jn _/;w | G(jz) |* dx) .

2
do < 47.

Since the Fourier transform is a unitary transformation, the set
b
en(t) = lim. = f Eo(jo)e™ duw
~T a

is orthonormal and complete in B(a, b).
We give three examples.
Example 1. Let

(a,b) = (—=27W,2zW),
G(jw) = (1/V2W)u(w + 27W) — u(w — 2zW)],
where u( ) is the step function. Then

== sin [2aWt + nx]
e(t) = V2W 2eWt + nx  ’

which is the set of cardinal functions used in the sampling representation of

bandlimited functions.
Example 2. Let (a,b) = (— o, »), g(t) = A/2¢ “u(t). Then

. 2 jn2 arctan w
En(Jw) = 1\_{-‘;‘(9 61 2 ta; ,

e.(t) is the Laguerre function

0 —/26' Loy (—28)u(—t) if n =1,
e.(t) =
. V2e L, (2t)u(t) if n<o0,
and L,(t) is the Laguerre polynomial of degree =,
et dn n ~—t
= 2 =2 >
L(t) = 5 = (7, nz 0.

Ezample 3. The Laguerre and cardinal functions are the most common
sets that belong to this class. However, one can easily construct other sets.
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For example:

(a,b) = (—’2_’ g) G(jw) = 2 cos w.

Then
en(t) = ga(t + 2n + 1) + ga(t + 20 — 1),
where ¢, (¢) is related to the Anger function J,(x) [7, p. 35] by
9u(t) = 3Jy2(—n).
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