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BASES IN HILBERT SPACE RELATED TO THE REPRESENTATION 
OF STATIONARY OPERATORS* 

E. MASRY, K. STEIGLITZ a m  B. LIUt 

1. Introduction. Every complete orthonormal set of functions in 
~ ~ ( d t :a ,  a ) induces an isomorphism from the space ~ ' ( d t : w , a ) of 
continuous-time signals onto the space l2 of discrete-time signals. If the 
Laguerre set is used, it has been shorn [I] that each stationary continuous- 
time linear filter has an isomorphically equivalent discrete-time linear filter 
which is also stationary, and vice versa. The first part of this paper deals 
with the problem of characterizing all those bases in ~ ~ ( d t - :a ,  a ) with-
this property. 

We formulate the problem abstractly as follows: let B(A) be the space of 
~ ~ ( d t :a,a ) functions whose Fourier transforms vanish a.e. outside of -
the Lebesgue measurable set A c R'. We fix the basis in l2 to be the standard 
basis. Each basis in B(A) establishes an isomorphism p from l2 onto B(A).  
We define two Banach spaces Z and 3 of bounded linear operators which are 
stationary in their respective domains of definition B ( A )  and 12. It is re-
quired to-find a necessary and sufficient condition on the isomorphism p (or 
equivaIently on the bases in B(A)) such that the Banach spaces of operators 
L: and 3 be isomorphically equivalent, i.e., A E Z implies A = E.L'A~E 3 
and, conversely, A E 3 impIies A = PAP-' E 2. 

It is shown that the set {e,(t)f z,, of complete orthonormal functions in 
B ( d ) must have the form 

as their Fourier transforms. 
This brings us to the second part of the paper which is concerned with the 

related question: under what conditions does a set { e,(t) ) characterized by 
( 1 ) constitute a basis in B (A)  ? For convenience, we take A to be a finite or 
infinite interval (a, b). It is shown, under the assumption 0 5 p ( w )  5 2n, 
that the set (e,(t)) is orthonormal if and only if the set defined by 
& ( w )  = { W  I p ( u )  5 yJ satisfies the measure condition 

(2) p(E,) = y for all y E 10, 2~1 ,  
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where the measure @ is given by 

@(a)= [IG(jx) i 2  dx. 
It is s h o ~ z  further that each g(t) E B(a,b), 11 g(t)ll = 1, whose Fourier 
transform is nonzero a.e., generates a complete orthonormal set of functions 
(e,(t)) in B(a, b) given by 

1
(3) e,(t) = 1.i.m. -[ G( j w )  exp (jn lwG(jx) 1' dz12n-

In  particular, the Laguerre functions in B( -m, a,) and the cardinal 
functions in B(-ZTW, ~ T W )belong to the above class. Other bases in 
B(a, b)  can easily be constructed. These bases can be applied to the analysis 
and synthesis of signals and systems. 

2. Preliminaries. Let B(A) denote the space of L2(dt:- oo , a ), pos-
sibly complex, functions whose Fourier transforms vanish a.e. outside of the 
Lebesgue measurable set A, i.e., 

In particular, we shall consider A = (a, b) .  Thus, if (a, b) = (- a,, m ), 
B(A) is ~ * ( d t :  -m, a, ). On the other hand, if (a, b) is a finite interval, 
B(A) is the space of square integrable "bandlimited" functions. B(A) is a, 
Hilbert space. 

The space 6:of all bounded liricar operators with domain B(A) and range 
L2(dt: - co, a, ) is a Banach space [2, p. 1611. Define for every T E R' the 
shift operator J ,  by 

( 5 )  JJ(t)= f ( t  + T) for all f (t) E B(A). 

It is clear that J, preserves inner product, i.e., 

Let T denote the space of all such shift operators. Then T c 2.I n  fact, 1' 
is a one-parameter group of unitary transformations from B(A) onto R(A). 
The space 2 c d: of all bounded linear operatols which commute n-it11 shift 
operators is defined by 

(7) 2 = { A E 6: I AJ, = J,A for a117 E R'j. 

LEMMA1. The space Z is a Banach space. 
Proof. It is easy to verify that Z is a normed linear space. NTe need only to 

prove completeness. Let (A , , ) be a Cauchy sequence in 2.  Since A ,  E 2, 
there exists an A f 6: such that A,  --t A in norm. We claim that ,4 E 2.  
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To this end consider 

From I/J ,  I /  = 1and 11 An- A 1 1  -+ 0 ,  we have 

The result follows after taking supremum over f ( t )  E B ( A )  	with 
I /  f(t)il = 1. 

Our next assertion is that the range of each A E Z is in B ( A ) .  This follows 
easily from a theorem due to S. Bochner [3, Theorem 721 which we state as 
a lemma. 

LEMMA2. Let A be a bounded linear operator from ~ ~ ( d t :  co, co ) to-
~ ~ ( d t :- co, oo) which commutes with shift operators and let Af = g,  
f ( t )  E ~ ~ ( d t :- G O ,  a).Then, there exists a bounded measurable function 
W (j w )  such that 

where F ( j w )  and G(jw) are the Fourier transforms of f ( t )  and g ( t ) ,  re-
spectively. 

Next we consider the Hilbert space l2 of all complex-valued square surn- 
nlable sequences f = ( f n )z,, with its appropriate spaces of operators. We 
give no proofs since they can be carried out in the same manner as for 
B(il). 

The space 3 of all bounded linear operators with domain and range l2 is 
a Banach space. Define for every integer r the shift operator JTby 

(9) 	 J T f  = ffn+pfz- a for all f E 12. 

Again, 

( 1 0 )  (JTf7JTg)= ( f , g )  forall f , g  E P. 

Let denote the space of all such shift operators. It follows that f' c 2 

and f' is a one-parameter group of unitary transformations from l2 onto 12. 

The space 2 c 8 of all bounded linear operators which commute with shift 
operators is defined by 

LEMMA3. The space 2 i s  a Banach space. 

3. Isomorphic equivalence between the Banach spaces 2 and 2. Let 
{en):,, 	 be the standard basis in 12, i.e., the nth component of en is unity 

onto 1' an isomorphism from pbyand other components are zero. Denote 
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B(A).  Then the set {e,,(t) = pen) is the corresponding complete ortho- 
normal set in B(,A). 1,et the Banach spaces of operators C, 2, 2 and 3 be 
defined as in $2. 

The isomorphism p induces a relationship between operators. If A E 2, 
then the operator p - l ~ pbelongs to 2. Conversely, if A E 2 then pxp-' be-
longs to $. In fact, PAP-' has domain and range B ( A ) ,  but it may fail to 
be in 2.  

However, there exists a certain class of isomorphisms p which induce an 
isoniorphic equivalence [4, $361 between 2 and 2,  i.e., for each A E 2, there 
corresponds a unique operator -4 E 3 given by p-'Ap. Conversely, pffp-' 

belongs to 2 and is the operator corresponding to A E 2. Thus, iso- 
morphically equivalent operators A E Z and E 3 are related by 

We intend to characterize this class. 
THEOREM1. A necessary and sugicient condition jor the Banach spaces of 

operators 2 and 9 to be isomorphicaZly equivalent i s  that the complete ortho- 
nor7nal set {e ,( t )  f z,, be of the form 

jor some, possibly complex, G ( , j w )  E ~ ~ ( d w:A )  and real nzeasurable cp(u). 
Proof. Necessity. Jlet { e,,(t)  be a complete orthonormal set of functions 

in B(A) .Then 

with 

and the Parseval relation 

holds. Let 

Since every operator in 2 has a matrix representatmion [4, $261, we rewrite 



556 E. MASRY, K. STEIGLITZ AND B. LIV 

(18) in the matrix form 

(19) h = Jf, 

where h and f are column vectors with components h, and f, , 
n = - . ,-1, 0, 1, - , respectively, and A is the matrix 

A = [ak,n], 
where 

By hypothesis, belongs to 2. Therefore we must have (in operational 
form) 

3,Af = i i j f  for d l  r, 
which implies 

m 

(21) fn[ak+,,, - ~k,~-? ]= o for aU k, r. 
n--03 

Since f is arbitrary, we conclude that a,,, depends only on the difference of 
the indices. That is, A is a Toeplitz matrix. 

From (20), Parseval's theorem and Rochner7stheorem (see §2), aka,is 
given by 

Since W (jw) is arbitrary, the product ~ , ( j w )~k*( jw)should depend on the 
difference n - k for all integers n, k and for almost every w.  Consider first 
n = k. I E,(jw) l2 is independent of n. Therefore we can write E,(jw) in the 
form 

(23) E,(jw) = ~(w)e j~" (" ) ,  

where 

B(w) = I E,(jw) 1 for all n. 

Next consider n f k. Then, ~ , ( jw)~k* ( jw)can be written in the form 
E,(jw)Ek*(jw)= ~~(,,)~j[+'n(")-'k(")I= ~ 2 ( ~ ) ~ j ~ ( n - k  

for some real measurable function r(- , ). In particular, if we let n - k = 1, 
areget a recursive formula 

(24) e j ~ k + l ( ~ )= ejy(l,") ej+'k(o) for all k. 

Therefore 

( 2 5 )  
e j v d 4  = jkky(1,") j vo(4e e for all k. 
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Equations (23) and (25) imply 

which can finally be written as 

( 2 6 )  En(jw) ejn'(w),= ~ ( j w )  

where c p ( w ) is a real measurable function and G(jw) may be complex. Note 
t,hat both G(jw) and ~ ( w )  are independent of n. 

Suficiency. It is clear that (26) is sufficient, since the matrix A = [akwn]is 
then ToepIitz and hence A commutes with every shift operator. Similarly, it 
can be shown that if A E 3 and (26) holds, then A E 2. 

4. Orthonormality and completeness of the set fe,(t)) .In  the preceding 
section we found the general form that the desired basis functions in B(A) 
should take. We now investigate the problem of orthonormality and com- 
pleteness of the set of functions characterized by (26). This will give us a 
class of bases in Hilbert space which have a common functional structure. 

Since the Fourier transform is a unitary transformation [4, $371, it 
suffices to consider the sets fE,(jw)) instead of (e,(t)]. In the sequel, for 
matters of convenience, we shall take A = (a, b ) ,  where (a, b) can be a 
finite or infinite interval. 

The orthonormality requirement is 

whereas the closure property is 
N 


~ ( ~ w )  c,'B,,(+) P(ju) E ~ ' ( d u :a, b) .(28) lirn 1 1  - 1 1  = 0, 
N - , a  n ---N 

It follows that G(jw) cannot vanish on subsets of A of positive measure and 
that 1 1  G(jo) j j  = 1. 

Without loss of generality nre assume that 0 5 p(w) S 2n. 
The following lemma will be used later on in the proof of a theorem on 

orthonormality. It concerns integrals of composite functions. 
LEMMA4 [5,p. 1271. Let p(x) be a fundion integrable with respect to the nun- 

decreasing function P(x), a s x 5 b. Let e,(x) be the characteristic function 
of the set Ev deJined by 

Let 
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Let f ( y) be a function integ~able with respect to a ( y ) .  Then f ( ~ ( x ) )i s  
integrable with respect to ~ ( x )and 

THEOREM2. Let 0 S c ( w )  5 2 ~ .The set of functons ( E , ( j w )  
= ~ ( j w ) e j " " " ' j  i s  orthonormal ij and o n l p  if the set E,(w) = ( w 1 ~ ( w )S y j 
satisfies the measure condition 

where the measure fl is defined by 

8(.) = I G ( i z ) I 2  dx.lw 
Proof. Necessity. Define 

where q ( w )  is the characteristic function of the set E U ( w ) ,  c r ( y )  is an in- 
creasing function, 0 s y < a. 

The orthonormality condition ( 2 7 )  can be written in the form 

By Lemma 4, we have 

where the second equality follows from cr(y) = 27r on [ 2 ~ ,oo ). Now, F. and 
&!I.Riesz [6, p. 2631 have proved that the equations 

where cr ( y ) is of bounded variation, imply the absolute continuity of cr( y ) .  
It follows from the Lebesgue-Stieltjes formula for integration by parts, 

from the completeness of the functions eir" in L2(dy:O,27r), and from Riesz's 
theorem, that 

Thus 

( 3 4 )  B ( E u )  = Yt  Y E 107 2~1.  
The sufficiency part of the proof is trivial. 
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In  particular, if q~(u)is taken to be 

the set { En ( j u )  ) is orthonormal since 

It should be noted, however, Ohat this c p ( w )is not the only function which 
satisfies the measure condition ( 3 0 ) .  One can easily construct functions 
p ( w )  which will satisfy the measure condition without being of the above 
form. On the other hand, by imposing further restrictions on p ( w ) ,  the 
measure condition may determine q ~ ( w )uniquely. An example is provided 
by the following corollary. 

COROLLARY. is absolutely continuous and Suppose, moreover, that p ( w )  
monotonically increasing. Then th set { E n ( j w )  1 i s  orthonor?nal if and only i f  

qJ(u)= lwI ~ ( j x ) 1 Zdx. 

Proof. cp-'(w) exists and is monotonically increasing. Therefore 

By the measure condition (30), 

Since p ( w  ) and cp(w) have unique inverses, we have 

Next we consider the closure properties of the set { En(jw)Jin L2(dw: a,  b). 
While in the orthonormality theorem the only restriction imposed on cp(w) 
mas 0 q ~ ( w )5 28, it seems inevitable that further assumptions on ~ ( w )  
be made. 

THEOREM3. Let q~(o)be absolutely continuous, 0 5 ~ ( w )5 2n, cp(a) = 0, 
q ~ ( b )= 2 ~ .Let the measure condition (30) be satisjied (for orthonormality). 
Suppose we can write q ~ ' ( w )  = G * ( j w ) ~ ( j w )  a ,  b ) .  such that L ( j w )  E ~ ~ ( d w :  
Then the orthonormal set of functions fE,(jo)) is complete in ~ ~ ( d w :a ,  b )  i f  

and only i f p ( w )  = 1/ G ( j z ) r d x .  

Proof. Necessity. Let f ( w )  = L ( j w )  - G ( j u ) .  Clearly f ( w )  E L2(dw: 
a ,  b) .It follows easily that the inner products 

( f ( u ) ,E n ( j @ ) )= 0, n = 0, f l ,  f 2 ,  .... 
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By the completeness hypothesis, 

Therefore 

p ( w )  = 1' I G(jx) I2 dx. 
a 


Su,ficier~cy.Let q > 0 be given. Let F(jw) be an arbitrary function in 
~ ~ ( d w :a,  b ) .  

Let 

Define 

where B is a positive real number. The sequence I KB(jw)G(jw)- F(jw)l 2  
is decreasing everywhere (as B -+ cc ) and tends to zero a.e. Note that we 
have used the fact that G(jw) does not vanish on sets of positive measure. 
It follon-s from the monotone convergence theorem [2, p. 721 that 

lim [1 K,(jo)G'(jo) - F( jw) le d o  = 0. 
B+m 

Therefore, there exists a positive real number B = B(q)  such that 

(39) [1 K , ( j a ) G ( j ~ )- F ( j 4  I'dm < 7. 

Next consider 

where we have let X = J, 1 ~ ( j x )dx. We note that ~,( jm-l (X))is a1' 
bounded function and thus belongs to L ~ ( ~ x :0, 27r). By the completeness 
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of the set { ejnX ,in L"(~x: 0, 2n), there exist numbers N and C, such 
that the integral (40) is less than 7. It follows from (39), (40) and the 
Minkowski inequality that 

5. Summary and examples. We summarize the discussion of the previ- 
ous section. Each G(jw)E ~ ~ ( d w :a,  b) which is nonzero a.e. generates a 
complete orthonormal set (E,(jw)] in ~ ~ ( d w :a, b )  given by 

En(jw)= G(jw)exp ( jn  lwI G(jz) l 2  dz) .  

Since the Fourier transform is a unitary transformation, the set 

is orthonormal and complete in B(a, b) .  
We give three examples. 
Example 1. Let 

(a, b) = (-2nW, 27rW), 

G ( j w )  = (1/2/2W)[u(w+ 2nW) - u(w - 2nW)], 

where u( .) is the step function. Then 

-sin [2aWt+ na]
en(t) = d 2 w  2rWt + na , 

which is the set of cardinal functions used in the sampling representation of 
bandlimited functions. 

Example 2. Let (a, b )  = (- to, to ), g(t) = *e-lu(t). Then 

e,(t)  is the Laguerre function 

and L, ( t) is the Laperre polynomial of degree n, 

Example 3. The Laguerre and cardinal functions are the most common 
sets that belong to this class. However, one can easily construct other sets. 
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For example: 

where g,,(t) is related to the Anger function J,(x) [7, p. 351 by 
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