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Adaptive  Step Size Random Search 

Absiraci-Fixed step size  random search for minimization of 
functions of several  parameters is described and compared with the 
k e d  step size gradient method  for  a  particular  surface. A theoretical 
technique, using the optimum step size at  each step, is analyzed. A 
practical adaptive step size random  search algorithm is then pro- 
posed, and experimental experience is reported that shows the 
superiority of random search over other  methods for sufllciently high 
dimension. 

T 
INTRODUCTION 

H E   P R O B L E M  of locating  the  minimum of a 
function of several  variables is one  that  arises fre- 
quently in many  areas of technology,  particularly 

in the design of adaptive  control  and  communication 
systems. 

The  problem  is:  given the  quality  function Q(X), 
where X is a vector of adjustable  parameters xl, . . , 
x,; find the  value of X that minimizes Q. The following 
assumptions  are  made. 

Q is  unimodal. If i t  is  not,  a  global  search  can  be 
carried  out  first  to  partition  the  parameter  space 
into regions  where Q is unimodal. 
The  structure of the  function Q(X) is  completely 
unknown. The  only  way  that  information  can  be 
obtained  is  by  evaluating Q a t  specific  points. This 
means,  for  example, that  derivatives of Q are  not 
directly  measurable (if they exist a t  all). 
The  only significant  cost  involved  in  the  operation 
of a search  procedure  results  from  evaluating Q. 
Therefore,  the fewer function  evaluations  required , 
the  more  desirable is the procedure. 

Of course, any  strategy suggested  for  solving the pre- 
ceding  problem  can  be  evaluated  only  for a specific sur- 
face or class of surfaces.  Analyses in th i s  paper will be 
restricted  to  hyperspherical  surfaces,  and  experimental 
results will be  given  for  other  surfaces as well. 

Besides the  many  deterministic  minimization algo- 
rithms  developed,  dating  back  to  such classical methods 
as steepest  descent,  the  Newton-Raphson  method,  and 
other  gradient  procedures, Brooks[‘] and Rastrigin[21.[31 
have suggested  randomized  search  strategies. 
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Rastrigin  has  compared a fixed step size  random 
search  (FSSRS)  method  with a fixed step size gradient 
method  and  concluded  that  under  certain  circumstances 
FSSRS is  superior. I t  is clear,  however, that if the  step 
size of the  random  search  method  were  optimum at each 
step,  even  better  performance would result. In this 
paper, a hypothetical  random  search  method  that uses 
the  optimum  step size a t  each  point mill be  analyzed 
for a hyperspherical  surface. An adaptive  step size 
random  search  (ASSRS)  method will then  be  proposed 
that  approximates  the  performance of the  optimum  step 
size  random  search  (OSSRS)  procedure. 

FIXED  STEP  SIZE RANDOM SEARCH (FSSRS) 
The  algorithm for FSSRS is 

Xiil = Xi - aiAXi -I- AXi+1 (1) 

where Xi is the position  in state  space  at   the  i th  instant 
and A X i  is a random  vector of length s, which is dis- 
tributed  uniformly  over  the  hypersphere of radius s 
whose center is a t   the  origin. The  coefficient ai is  given 
hv 

(2) 

where 

and 

Qi-l+ = min Qj 
j=l,Z,. . . , 6 1  

is the  smallest  value of the  quality  function  to  be ob- 
served  in the first i - 1 steps.  The coefficient ai serves t o  
negate  the effect of an unsuccessful  step. Ra~tr igin[~1.[~1 
has  analyzed  this  algorithm  for s = 1 and  the  function 

T o  motivate  the  development of a random  search algo- 
rithm  that  adapts  the  step size s to  the  situation,  the 
performance of FSSRS  as a function of s is  considered. 
Attention will be  restricted  to  the  function 

i=l 

“I,. 
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the  analysis in this  section is the same as Rastrigin. 

which is smooth at its  extremum  and is  more  representa- 
tive of problems  with a minimum  square  error  criterion 
than  the  function considered by  Rastrigin.  Otherwise, 
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Fig. 1. A cross section of parameter space. 

Consider  the  plane  formed  by  the  displacement  vector 
4X and  the  gradient  vector  through  the  starting  point 
A (Fig. 1). # is  the  angle  between  the  displacement 
vector  and  the  negative  gradient  direction. 40 is  the 
largest  value  for # for  which  there  is  an  improvement 
as the  result of the  step 4X. For  the  assumed  uniform 
distribution of displacement,  the  probability  density 
for #, considering # only on [0, T ] ,  (due  to  symmetry) 
is (see Rastrigin  and  Mutseniyek~,[~]  and  entries 858.45 
and 858.46 of 

sinn-24 
P(4) = 

2 so'sinp24 (4) 

r (n  - 1) - - sinn-%. 

2n-2 [ r (7)12 
Search loss is defined as twice the  ratio of the  quality 

function  to  the  expected  value of the  improvement  per 
function  evaluation. The  search loss for  the fixed step 
size  gradient  technique is then 

where 7 = s / p ,  the  ratio of step size to distance  to  the 
minimum. The search loss for FSSRS is  found  to  be 

and $0 is  equal  to c o s 1  (q/2).  Equations (5) and (6) are 
derived in appendix I. 

Fig. 2 shows  the  relative  behavior of the  random 
search  and  gradient  methods  for  different  values of 7-l 

0 z7 0 20 Dirnension,n 40 60 80 

Fig. 2. Tradeoff between FSSRS  and fixed step size gradient tech- 
nique. The gradient  method  is superior above the boundary and 
FSSRS is superior below the boundary. 

and  dimension n. Above  the  boundary  random  search 
is  superior  (has a smaller  search loss) to  the  gradient 
method,  while below the  boundary  the  gradient  tech- 
nique  is  superior.  For n less than 4, the  gradient  tech- 
nique  is  always  superior,  but  for  higher  dimension  ran- 
dom  search  is  superior  for  small q. 

OPTIMUM STEP SIZE RAXDOM SEARCH (OSSRS) 
If the  step  size  for  FSSRS  is  very  small,  the  probabil- 

ity of improvement  is  approximately  one  half,  but  the 
improvement  is  very  small  for a successful  step,  and  this 
results  in a small  average  improvement.  On  the  other 
hand, if the  step size  is made  too  large,  the  step will 
overshoot  the  minimum  and  the  probability of improve- 
ment will be  extremely  small,  also  resulting in a very 
small  average  improvement.  Somewhere  between  these 
extremes lies an  optimum  step size, i.e., a step size  for 
which the  probability of the  improvement of the  quality 
function is not  one  half,  but lies between  zero  and  one 
half. 

The  expected  improvement,  normalized  by  the  pres- 
entvalueofQ,i.e.,I=  --E{4Q}/Q,isequal  to2/Lr(n,7) 
and is given  by 

S,"" (21 cos 4 - 72) sinn-24 d4 

I(% 7) = * (7) 
2 Jo sinn-24 

T o  maximize I ,  the  right-hand  side of (7) is differenti- 
ated  with  respect  to q and  set  equal  to  zero  with  the 
following  equation  for  the  optimal  value of 7 resulting: 

Upon  making  the  appropriate  approximations,  the fol- 
lowing  asymptotic  expressions  are  found  for  large n 
(see Appendix 11) 
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4; 

.n 

If the normalized  expected  improvement I is propor- 
tional  to l /n (see (lo)),  and if the normalized  improve- 
ments  are  independent, as is true  for  OSSRS,  then  the 
average  number of function  evaluations  for  a fixed de- 
sired  accuracy  (relative  to  the  starting  value)  is 
asymptotically  linear in n, as is now demonstrated.  Sup- 
pose that  the  search  starts at a point at which the  value 
of the  quality  function  is Qo, and  that  it  is  desired to  
terminate when the  quality  function  reaches a final 
value of 9. The  value Qj of the  quality  function  after 
j steps  can  be expressed  recursively as 

Qj = 1 - ij) 

where ij is the normalized  improvement at thejth  step.  
Thus  

x 
~ 3 f  = QO (1 - ij). 

j=1 

Taking  the expected  value of both  sides, in light of the 
preceding  assumptions,  results  in 

where k is the  constant of  proportionality.  Solving  for 
the  value of M for  which E [ Q A W ]  is equal  to  the desired 
final value Qf results in 

Thus  the  asymptotic expression for  large n becomes 

dl& - (constant) an (14) 

where  the  constant is equal  to  (-l/k) log (Q,/Qo). 

PRACTICAL ALGORITHM FOR ADAPTIVE STEP SIZE 
RANDOM SEARCH (ASSRS) 

OSSRS is a theoretical model and  the  optimum  step 
size cannot  be  found  without  additional  experimenta- 
tion.  One  way to  construct a practical  algorithm would 
be  to  try  numerous  exploratory  random  steps  from  the 
same  point,  each  with  the  same  step size, and  to  repeat 
th i s  procedure  for a number of different step sizes. From 
these  results,  the  optimum  step  size could be  estimated 
and  this  estimate used. However,  none of the  intermedi- 
ate  exploratory  steps would produce  any  improvement. 
In  the  ASSRS  algorithm, no attempt is  made to esti- 
mate  the  optimum step size  accurately.  Instead  the 
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Fig. 3. Flow diagram for ASSRS. I2 counts the number of suc- 

loop. 
cessive failures. I1 counts total number of iterations  through the 

optimum is  tracked in an  approximate  fashion,  and 
each  step  is  both  exploratory  and  able  to  produce  an 
improvement.  A  nominal  value, s, for  the  step size is 
chosen  before each  iteration.  A  random  step of size s is 
taken  and a random  step of  size s(1 +a) is taken 
(1 >a > 0), and  the  resultant normalized  improvements 
are  compared.  The step size that  produces  the  larger 
improvement is chosen as the  nominal  step size  for the 
next  iteration. If  neither  step  causes  an  improvement,  the 
step size remains  unchanged;  and if this  occurs  for  some 
number  of  iterations,  the  step size is reduced. Thus on 
the  average  the  algorithm  adjusts  to  the  direction of 
the best step size. In  addition,  each  time  some  large 
number of iterations  has  passed, a step  with  nominal 
step size  is compared, in the  same  manner, n-ith a step 
of much  larger size.  Again, the  step size that  produces 
the  larger  improvement  is chosen as the new  nominal 
step size. This  test  serves  as a deterrent  against  the 
possibility that   the  step size has  inadvertently  become 
too  small. I t  is  also  helpful in the case in which the I vs. 
step size curve  has  more  than a single  local  maximum. 
In such a case  the  search  procedure could be  chasing a 
small  local maximum;  and a large  change  in  step size 
would make it possible to  detect  and begin adaptation 
to a higher  local  maximum. -4 flow diagram  for  the 
ASSRS  algorithm  is  shown in Fig. 3. 
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EXPERIMENTAL RESULTS 
The  ASSRS  algorithm  was  tested  on  the IBM 7094 

computer  for a number of test  functions.  The  results of 
these  experiments  are  presented  here. 

The  quality  function Q=p2 was  tested  to  see how the 
ASSRS  algorithm  compared  to  the  Newton-Raphson 
method  and  to OSSRS.  For  each  dimension  from 1 to  40, 
fifteen  independent  trials  were  run. The  stopping  cri- 
terion  was Q<1OP8 and  the  starting  point was 

quired  function  evaluations  is well described by 
ICALL = 80n.l 

Since  derivatives  are  not  available,  partial  derivatives 
must  be  measured  approximately  by  taking  finite  dif- 
ferences, and  the  number of function  evaluations  per 
iteration  for  the  Newton-Raphson  method  can  be  found 
as follows. T o  approximate  the  gradient  vector, a mini- 
mum of n finite  differences are  needed. To find the  diag- 
onal  terms of the  Hessian  matrix,  2n  additional  func- 
tion  evaluations  are  needed  to  estimate  the  partial 
derivatives at a second  point. The  Hessian  matrix  is 
symmetric so that  hii =hi;. Thus  one half of the off- 
diagonal  terms  or (n2-n)/2 more  second  partial  deriva- 
tives  are  required,  This  requires n2-n  additional  func- 
tion  evaluations. Also, one  more  function  evaluation 
occurs  with  the final move. Thus  the  total  number of 
function  evaluations  required  per  iteration of the  New- 
ton-Raphson  method  is n+2n+(n2-n)+l  = ( ~ + l ) ~ .  
Assuming that  the  partial  derivatives  can  be  determined 
exactly  by  finite  differences,  only  one  iteration is re- 
quired  for  this  function  and  the  number of function 
evaluations  required  for  the  Newton-Raphson  method 
is ( n  + l)2. 

The  results  for  ASSRS  and  for  the  Newton-Raphson 
method  are  shown in Fig. 4. Extrapolating  these  curves, 
their  intersection  is a t  n = 78, beyond  which  dimension 
ASSRS  is  superior. If the  fact  that  the  partial  deriva- 
tives  cannot be  measured  exactly  (which  means that  
additional  iterations  are  required)  is  taken  into  account, 
the  Newton-Raphson  curve  becomes  higher  and  the 
intersection  with  the  ASSRS  occurs a t  a smaller  value 
of n. Also, if a  lesser  degree of accuracy  is  required,  the 
ASSRS  curve  has a smaller  slope  while  the  Newton- 
Raphson  curve  is  unchanged.  This  also  results  in  a 
smaller  value of n at the  intersection  of  the  curves,  and 
ASSRS is then  superior at a smaller  value of dimension. 
As an  indication of the  variance  in  ICALL  associated 
with  ASSRS,  the  standard  deviation  for n= 100  was 
found  to be 502 as  compared  with  the  mean of 7677. 

On the basis of the  experimental  results,  the  average 
normalized  improvement  per  step, I, was  calculated  for 
Q = p 2  and was  found  to  be  asymptotic  to 0.2725/n. 
Thus,  although  the  value of K is  smaller  than  for 
OSSRS,  the  asymptotic  form of I is still k / n ;  and  the 
number of function  calls  was  found  to  be  asymptotically 

(1, 1, - * , 1). The  resulting  average  number of re- 

tions performed during a given minimization procedure. 
1 The variable ICALL represents the number of function evalua- 
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Fig. 4. Average number of function  evaluations vs. dimension for 
Q= ~ ; c l x ~ i 2 ,  for ASSRS (0) and  the Newton-Raphson method 
(squares). 
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Fig. 5. Average number of function  evaluations vs. dimension for 
Q= c1,13ci4, for ASSRS (O), Newton-Raphson (squares), and 
the simplex method (A). 

proportional  to n as i t  is  for  OSSRS [see (14)]. 
Fig. 5 shows  the  results  for 

Q = xi4 
i=l 

averaged  for 22 independent  experiments  for  each 
dimension  from 1 through 40. Again  the  starting  point 
was (1, 1, . . . , 1). The  stopping  criterion  was Q < O . S  
X10-8. T h e  Newton-Raphson  method is again as- 
sumed  to  be  able  to  measure  derivatives  without  error, 
but  the  fact  that Q is  not  quadratic is taken  into  account 
by  multiplying  the  number of iterations  required  by 
(n+l)* in order  to  find  the  number of function  calls. 
The  results  for  the  simplex  method  are  those of Nelder 
and 31ead,[61 who  found  that,  for n= 1 through  10, 
the  number of function  evaluations  needed  for  the 
simplex  method  is well described  by  3.16(n+1)2.11. This 
formula  was  extrapolated  to  higher  dimensions  and 
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Fig. 6. Average number of function  evaluations vs. dimension 
for ASSRS for Q = x:=.l upi2. 

plotted  along  with  the  curves  for  ASSRS  and  Newton- 
Raphson.  In  this case,  ASSRS  is  superior to  Newton- 
Raphson  for n > 2 and  to  the simplex  method  for n > 10. 
For  ASSRS,  ICALL  is  again  proportional  to n, and I is 
asymptotic  to 0.427/n. 

The  quadratic  form 
n 

i=l 

was  also  used as a test  function,  with  the  coefficients 

tribution on [0.1, 11. T h e  minimization  was  repeated 
twenty  times for each  dimension  from 1 to 20 and six 
times  for n= 100. The  search was  terminated  when Q 
was  less than  one  one-thousandth of its  initial  value. 
Fig. 6 shows  the  resulting  average  number of function 
evaluations  required as a  function of dimension. The 
result  for 100 dimensions  was  ICALL =3396. Again, 
ICALL  was  found  to  be  approximately  linear in n. 

Rastrigin131 has  done  some  work  with  random  search 
algorithms  that  adapt only to  the  best  direction  with  a 
fixed step size. The  problem  with  this  method  is  that 
convergence  is  only  guaranteed  to  within a distance of 
one  step size to  the  minimum, so that if a high  accuracy 
is  desired,  the  steps  must  be  small,  thus  requiring  many 
function  evaluations.  Adapting the step size  seems to  be 
more  fruitful  than  adapting  to  the  direction.  A com- 
bination of the  two  methods,  however,  would  seem  to  be 
in  order  and  should  be  the  subject of future  investiga- 
tions. 

ASSRS  was  also  tested  using  Rosenbrock's  function 
Q =  100(xz-x~z)2+(1 -x1)2, and  although i t  converged, 
ASSRS was inferior  to  Rosenbrock's methodr71 and  to 
Powell's  methad[*l  for  this  function. I t  should,  therefore, 
be  noted  that  ASSRS is not  very effective as  a ridge fol- 
lower,' but shows  its  superiority  in  multidimensional 
problems  without  narrow  valleys  or  ridges.  Combining 
directional  adaptation  with  step  size  adaptation  may 
result in removing  this  limitation. 

a1, az, - . . , a, randomly  chosen  from a uniform  dis- 

In  this  paper  the  problem of minimizing a function 
of several  parameters  by  the  method of random  search 
has been  discussed. T h e   k e d   s t e p  size  random  search 
algorithm  has  been  described  and  compared  to  the  sim- 
ple  gradient  technique on the  basis of search loss. I t   has  
been  shown that  for n>4 ,  FSSRS is  superior  for suffi- 
ciently  small 7. Optimum  step size  random  search  was 
introduced  and  its  performance  investigated  for  hyper- 
spherical  surfaces. 

A  practical  algorithm  for  adaptive  step  size  random 
search  has  been  described  and  compared  with deter- 
ministic  methods.  For  the  functions 

n 

Q = xi2  
i=l 

n 

Q = xi4  
i=l 

n 

Q = acxi2 
&I 

the  number of function  evaluations  required for a de- 
sired  accuracy for  the  deterministic  methods  increases 
at a  rate  that  is  proportional  to at least  the  second  power 
of n; and  the  computation  time  increases  as n3. This  is 
true  for  other classicaI methods  besides  the  Newton- 
Raphson  and  simplex  However,  for  ASSRS 
the  number of  required  function  evaluations  is  propor- 
tional to  n, and  the  computation  time  is  proportional 
to  n2. The  computation  time could  be  made  proportional 
to n if parallel  computations  were  used.  Thus  the  con- 
clusion is reached,  that  despite  its  simplicity,  adaptive 
random  search  is  an  attractive  technique  for  problems 
with  large  numbers of dimensions. 

APPEXDIX I 
EVALUATION O F  SEARCH LOSS 

The  search  loss  for  the fixed step size  gradient  method 
is found  as follonrs. The  gradient of Q is  given  by 2X; 
thus  the  step of size s to  be taken  is 

This  results  in a change  in Q 

AQ = s2 - 2 ~ p  (13 

which  is  negative  as  long as p > s / 2 .  To determine  the 
correct  descent  direction, n measurements  of  the  quality 
function  are  made, i.e., one in each of the n coordinate 
directions  with a step size  much  smaller  than s. Also, 
one  function  evaluation  is  made  corresponding  to  the 
actual  move  of  size s. Thus a  total of n + l  function 
evaluations  are  necessary  for  the  improvement  given 
by (15). Therefore,  the  search loss for  the  gradient 
method  is 
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2p2(n  + 1) Subsequent  substitution  of (19), (21), and (22) into 
Lo(% P I  = 

2sp - s2 (16) (18) yields  the  final  expression  for  the  search  loss  for 
the  random  search  method: 

For  the  random  search  method,  reference is again 
made  to Fig. 1. Because of the  symmetry of the  quality 
function,  only  positive  values of 4 need to  be  considered 
in this  discussion.  Let do be the  angle  subtended  by  all 
possible  successful  steps of size s and  let po be  the  initial 
distance  to  the  minimum.  Then  the  relation  between 
4 0  and p o  is 

40 = cos-' - * 
2PO 

The  search loss for FSSRS is 

where p is the  probability of a successful  step. ( - )  de- 
notes  mathematical  expectation  over  all  successes,  and 
A p 2  is  the  ditierence  between  the  initial  and final dis- 
tances  to  the  minimum  for  one  step of the  random 
search.  Because  steps  that  are  unsuccessful are rejected, 
A p 2  =0, and there  is no improvement.  Referring  to  Fig. 1, 

Ap2 = - AQ = po2  - p12 

where p = P O .  The  expectation of Ap2 over  all  successful 
steps  is 

s, AP2P(4) a4 
$0 (PI 

@p2) = (20) 
P 

The  probability of success f i  is, from (4), given by 

p = probability of success 

Substitution of (4) and ( 2 1 )  into ( 2 0 )  gives 

Letting q=s /p ,  (16) and (23) become ( 5 )  and (6) ,  re- 
spectively,  and +o is now given  by  substituting  into (17) : 

do = cos-1 - ?I 

2 

APPENDIX I1 
ASYMPTOTIC EXPRESSIONS FOR gopt, Im,,,, AND popt 
The  asymptotic  expressions  for  large n n7ill now  be 

derived.  For  simplicity,  in  the  subsequent  calculations, 
the  optimum  values  for p ,  q, and 1 will simply  be  written 
as p ,  qo, and I ,  respectively. The  first  assumption  that 
will be  made  is  that  for  large n, q o  is  small,  which as- 
sumption is borne out by the  results  obtained  by  evalua- 
tion  of (7). I t  is,  therefore,  assumed that  for  large n, 
sin-1 q0/2  = q 0 / 2 .  If the expression 

is  denoted  by a(%) ,  (8) becomes 

Using  the  identity 

(24)  becomes 

qo was  assumed  to  be  small.  Therefore,  all  values of 4 
in  the  integral  on  the  left-hand  side of ( 2 5 )  are  small, 
and  the  approximation cos 4 = 1 -@/2 is assumed to  be 
valid. Also, because qo is  small  the  expression on the 
right-hand  side of ( 2 5 )  is approximated  by  the  first  three 
nonzero  terms of its  Taylor  series  expansion,  viz., 
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1 $02 (n  - 3 h 0 4  --- 
n - 1  8 + 128 

Upon  making  these  substitutions (25) becomes 

-I- 128 

Using  Dwight’s  entry 858.44151 and  Stirling’s  approxima- 
tion  for n! ,  the  asymptotic expression for a(%) becomes 

- 
After  substituting l/n/2n for a(%) and  assuming  that n 
is  large,  (26)  becomes 

5 3 

384 8 
dEqa - ; - 0. (28) 

1 
- vo4n - - l o 2  + 

Solving (28) for qo, the  resultant  asymptotic expression 
for 70 is, as given in (9),  

1.225 
$opt = - * 4: 

Noting that 

(23)  can  be  rewritten as 

Solving  for 9, 

n /  
3.07(n - 1) 

Upon  substituting  the  asymptotic expressions  previ- 
ously  obtained  for p and 70 the  result is (lo), viz., 

0.406 

n 
I,,, = - . 
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