
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-32, NO. 5, OCTOBER 1984 1037

Some Complexity issues in Digital Signal
Processing

Abstract-Over the past decade a large class of problems, called NP-
:ompZete [SI, have been shown to be equivalent in the sense that if a
ast algorithm a n be found for one, fast algorithms can be found for
dl. At the same time, despite much effort, no fast algorithms have
)een found for any, and these problems are widely regarded as intrac-
able. This class includes such notoriously difficult problems as the
raveling salesman problem, graph coloring, and satisfiability of Boolean
:xpressions.
Using FIR filter implementation as an illustration, we describe some

moblems in digital signal processing that are NP-complete. These in-
:lude: 1) minimize the number of additions needed to implement a
’ked FIR filter; 2) minimize the number of registers needed to imple
nent a fixed FIR filter; and 3) minimize the time to perform the addi-
ions of such an FIR filter using P adders. Large-scale instances of such
moblems may become important with the use of programmable chips
o implement signal processing.
Our main purpose in this paper is to illustrate the usefulness of as-

rmptotic complexity theory in the field of digital signal processing.
The theory discriminates between tractable and intractable problems,
lometimes identifies fast algorithms for the former, and justifies heuris-
ics for the latter.

L
I. INTRODUCTION

OOKING for ways to improve or optimize the use of pro-
grammable digital signal processing chips can be a tricky

wsiness, and the throughput obtainable often determines
vhether or not a custom design is required. Using the imple-
nentation of an FIR filter as an example, we will formulate
ome combinatorial optimization problems that are compu-
ationally tractable, and some that are likely to be intractable
that is, they are equivalent to problems that are NP-complete).
One purpose of this paper is to identify some problems in

ligital signal processing that are NP-complete. NP-complete
)roblems are all as hard as any in the large class NP, and are
;enerally regarded as intractable (their best known algorithms
equire exponential running time). But the main purpose of
his paper is not so much to identify specific problems that are
ntractable as much as it is to illustrate the usefulness of the
heory of NP-completeness to digital signal processing. Demon-

Manuscript received August 10, 1982; revised December 27, 1983.
rhis work was supported by the National Science Foundation under
;rants ECS-8307955 and ECS-8120037, by the U.S. Army Research
3ffice under Grant DAAG29-82-K-0095, by the Defense Advanced
Research Projects Agency under Contract N00014-82-K-0549, and by
:he Office of Naval Research under Grant N00014-83-K-0275.

P. R. Cappello is with the Department of Computer Science, Univer-
sity of California, Santa Barbara, CA 93106.

K. Steiglitz is with the Department of Electrical Engineering and
Computer Science, Princeton University, Princeton, NJ 08544.

strating the NP-completeness of a problem is a practical yet
theoretically convincing way to discourage attempts at exact,
efficient solutions of the problem, and to justify the develop-
ment of heuristics for its approximate solution. (For details of
the theory, see [5] .)

The methodology used to show that a problem is NP-com-
plete is as follows.

1) Construct an algorithm that, given an instance of the
problem and a proposed solution, verifies the correctness of
the solution in a polynomial amount of time. (This shows that
the problem is “easy enough” to be in NP.)

2) Select a problem that has been shown to be NP-complete,
and transform it to the problem under consideration. The
transformation must be performed by an algorithm that uses
only a polynomial amount of time, (This shows that the
problem i s as “hard” as any in the class NP.)

In this paper we will deal with problems related to the imple-
mentation of an FIR filter on a programmable digital signal
processing chip whose architecture is roughly that of a random
access machine. That is, the chip has a random access memory
and an arithmeticllogic unit (ALU).

In Section I1 we look at the problem of minimizing the num-
ber of additions in a shift-and-add realization of a fixed FIR
filter. Such a realization precludes the need for multiplication
hardware. This leads to Section 111, which deals with mini-
mizing the storage requirements of an FIR filter computation.
Section IV similarly takes up the problem of minimizing the
number of instructions needed to implement an FIR filter.
Section V considers a processor scheduling problem arising
from the assumption that more than one ALU can be fabri-
cated on the chip and that they can be used concurrently to
compute filter outputs.

11. OPTIMIZING A SHIFT-AND-ADD IMPLEMENTATION
OF AN FIR FILTER

Before stating the optimization problem, we formulate a
shift-and-add implementation of an FIR filter. Let us say we
are given the following 15-tap symmetric filter:

yn 7(xn ’ x,-14) ’ 5 (x n - l +xn-13)t (&-a ’ x ? Z - l Z)

- 2(&-3 +xn-11) (xn-5 +x,-,) (xn-6 i- %-a)*

(1)
For notational convenience we let

Wo E X, + X,- 14

W1 +x,- , ,
-

0096-3518/84/1000-1037$01.00 1984 IEEE

1038 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-32, NO. 5, OCTOBER 1984

w2 =xn-2 +x,-,,

w3 =xn-3 +x,-,,

w 4 =xiz-5 +xn+

w5 ‘X,-6 t X n - s .

-

-

-

Then we may rewrite the computation of y, as follows:

y, t 7 W o 5W1 + W2 - 2 W 3 W4 t Wg. (2)

We rewrite (2), replacing the decimal notation for coefficient
values with 5 bit two’s-complement notation:

y, +-00111. wo t 00101 . w1 t 00001 . w2

+ 11110. w3 t oooo1 . w4 t oooo1 . w5. (3)
Collecting like powers of 2 we obtain

yn + 24 (w3) t 23 (w3) t 22 (wo t w1 + W 3)

+ 21 (wo t w3) t 20(w0 t w1 t w2 t w4 t ws). (4)

That is,

y n + 2 j * sumj.
4

(5)
i= o

We now are in a position to realize some computational sav-
ings. Notice that wo t w3 appears in both sum2 and suml.
We can save additions by remembering this partial sum and
using it wherever it is needed. The question arises as to how
much can be saved this way: can we produce the set of sumis
using only, say, five additions?

We state this question more formally.

Collection of Sums
Input: A collection C of expressions of the form ail + ai2 t

. * . t aii, all aik E A , a finite set, where an element of A ap-
pears at most once in any expression, but may appear in any
number of expressions, and a positive integer J.

Question: Is there a sequence S of J or fewer additions that
computes all the expressions in C?

Complexity: NP-complete, see IS, “Ensemble Computa-
tion”]. This problem remains NP-complete even when expres-
ions are restricted to contain no more than three elements of A .
Note also that computing a collection of expressions involving
both addition and subtraction is a more general problem and,
therefore, at least as hard.

111. REGISTER ALLOCATION (STORAGE CONSERVATION)
Suppose that we obtain a sequence of add instructions that

produces the needed sums, provided that all the addition re-
sults are held in some registers (we model storage by registers,
although one can view these as memory locations). Fig. 1
illustrates graphically the partial order induced by one such
add sequence for our example FIR filter. Although it is likely
that each partial result is needed (it is certain if the sequence
of additions is minimal) and so needs to be placed in some
register, there remains the question as to how many distinct
registers are needed. We may reuse registers. Different order-
ings of add instructions will in general require a different num-
ber of registers. Is there a sequence of add instructions that

Yn

t
I

A IO ‘,

Fig. 1. The directed acyclic graph (DAG) represented by the circular
nodes (adds) and the solid arcs illustrates the sums part of the FIR
filter computation. It is a partial order induced by a sequence of
additions. (The dashed arcs and square nodes represent the shift-
and-add part of the computation. Dashed arc labels show the shift
amounts.)

ters? This question is formalized by the following game.
(Note that a partial order can be represented by a directed
acyclic graph (DAG), as can any computable signal flow graph
with its delay arcs removed.)

Definition: Let G = (N, A) be a directed acyclic graph (DAG)
such that its nodes have at most two incoming arcs. Let there
be an infinite supply of registers. A move in the register d o -
cation game is one of the following:

is, load a register)

free).

either

a) place a register on a node with no incoming arcs (that

b) pick up a register from a node (that is, declare a register

If there are registers on every node coming into nodei, then

c) place a new register on nodei (ri +- ri t rk) , or
d) move a register to nodei from one of nodei’s incoming

nodes (ri +- rj t rk).
Definition: A DAG register allocution computation is a se-

quence of moves in the register allocation game that starts
with no registers on any node, and places a register on every
node exactly once.

The register allocation problems we consider are NP-complete
even for this restricted class of DAG’S, those with at most two
incoming arcs at any node.

Definition: A register allocation computation of a DAG is
said to use k registers if during some move in the computation
there are k registers on nodes of the DAG, and during every
other move there are no more than k registers being used.

It is natural to ask how many registers are required to com-
pute a given DAG.

Register Sufficiency
Input: A DAG, and an integer K .
Question: Is there a computation for the DAG that uses K or

Complexity: NP-complete [lo] .
The related problem that permits a register to be placed on a

node more than once is PSPACE-complete [6] . That is, find-

fewer registers?

obtains the needed sums and which uses only, say, five regis- ing the fewest number of registers needed when recomputation

CAPPELLO AND STEIGLITZ: COMPLEXJTY ISSUES IN DIGITAL SIGNAL PROCESSING 1039

is allowed is essentially as hard as any problem whose algo-
rithms require a polynomial amount of space. Such problems
are at least as hard as i?$P-complete problems.

Any DAG computation resulting from the register allocation
game defines a function from nodes (N) to registers; that is,
there is exactly one register associated with each node (but
not conversely). One may ask, given a proposed function from
nodes to registers, how hard is it to determine if there is a
DAG computation that defines that function?

Feasible Register Assignment

f : N + { r l , r 2 , - - , rK}.

fewer registers and that is compatible with the functionf?

Input: A DAG, positive integer K , and a register assignment

Question: Is there a computation of the DAG that uses K or

Complexity: NP-complete [101 .
Again, both of these problems remain NP-complete even

when each node has no more than two incoming arcs.

IV. CODE GENERATION (TIME CONSERVATION)
What if we are more interested in saving instructions than

registers? Suppose, for example, that we have, as in Section
11, a computation DAG for computing the necessary sums (or
a computable signal flow graph with its delay arcs removed).
From this DAG we wish to generate succinct straight line
code. As in register allocation for DAG's, we model DAG
code generation by a game.

Definition: Let G = (N, A) be a DAG. Let there be an in-
finite supply of registers. A move in the instruction game is
one of the following:

a) if nodei has only one incoming node, nodej, and nodei
is covered by register rj, then either

i) place rj on node (a no-op), or
ii) place a new register ri on nodei (ri +- ri)

b) if nodei has left and right incoming nodes and they are
covered by registers ri and rk, respectively, then either

i) place rj on nodei (ri + rj t rk), or
ii) place rk on nodei (rk +- ri t rk), or
iii) place a new register ri on nodei (ri +- ri -t rk).

Note that the class of DAG's dealt with here is the same as
in the register allocation problems.

Definition: A DAG code generation is a sequence of moves
in the instruction game that starts with registers on all nodes
that have no incoming arcs (that is, all inputs are in registers),
and places a register on every node.

Definition: A DAG code generation produces K instructions
if it uses exactly K of the moves above.

It is natural to ask how many instructions are required to
compute, in this sense, a given DAG.

Code Generation with Unlimited Registers
Input: A DAG G = (N, A) in which no node has more than

two incoming arcs (each arc is considered either a left arc or a
right arc), and an integer K.

Question: Is there a code generation that produces K or
fewer instructions?

Complexity: If moves b-ii) and b-iii) are forbidden, the prob-

TABLE I
PRECEDENCE-CONSTRAINED SCHEDULING PROBLEMS

___.
1 , Proccsmrs 'Prcccss Icwths'Partlil order c5mpic;gX-'
: Fixed (=n) Iden t~ca l (I) Forest. (F) I8 1 ' Parameter {P)' Diflerent {D) ! DAG (D) I ; = 2

;i = 3,i,5, I

1
I D CJ(n2)

= 2 n r NF-cGmpkie I !
D Opcn ! j
F O(na(n)) t I/ i p I

+ a (n) prows slower than log (n), bnt IS not a constant See [15]

lem is NP-complete [111. If only move b-iii) is forbidden (the
commutative variant of the problem), the problem remains
NP-complete [l l] . If all moves are allowed, the problem
enjoys a polynomial-time solution, a fact that may have impli-
cations for architects or programmers of digital signal process-
ing chips. In this case a linear-time algorithm for producing
a minimum-length instruction sequence is to evaluate the sig-
nal flow graph in a bottom-up fashion (that is, starting with
nodes that have no incoming arcs), level by level, assigning a
distinct register to each node (that is, using only instructions
of the form rk t- ri + ri).

V. PROCESSOR SCHEDULING
In this section we consider programmable digital signal pro-

cessing chips with more than one ALU. In this scenario the
chip can be performing more than one addition at a time.
Continuing with our FIR filter example, we now want to see
how many ALU's are needed to compute our sums in a spe-
cific amount of time. Equivalently, we may wish to know if a
given number of processors is sufficient to compute our sums
in a desired time frame. By processors (processes) we mean,
for example, adders (additions). This context permits us to
assume that the schedule

1) is deterministic (that is, the filter's requirements are
known in advance),

2) is nonpreemptive (that is, requires a processor to finish a
process, once started), and

3) involves unit execution time processes (for example, all
additions will be assumed to consume the same amount of a
processor's time).

Under these assumptions we would like to know how hard
it is to schedule the operations indicated by a partial order (or
those indicated by a computable signal flow graph with its
delay arcs removed).

Precedence-Constrained Scheduling
Input: A DAG G, P processors, and a deadline D.
Question: Is there a P-processor schedule for G that meets

Complexity: NP-complete [121 .
We summarize variations of this problem in Table I. See

[13] for details.
As we did in the feasible register assignment problem, we

consider the feasible precedence-constrained schedule prob-
lem. In this problem we are given a set of individual process
deadlines and ask if there is some schedule that can achieve
them. This situation might arise, for example, when one first
obtains a schedule for a filter's multiplications, and then seeks
a compatible schedule for the required additions. An algorithm
for this problem also might be used as the basis of a heuristic
for the overall deadline problem,

deadline D?

1040 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-32, NO. 5 , OCTOBER 1984

Feasible Precedence-Constrained Schedule
Input: A DAG G, P processors, and a set D of deadlines,

one for each node in the DAG.
Question: Is there a P-processor schedule for G that meets

all the deadlines?
Complexity: NP-complete [l] . The problem enjoys a poly-

nomial-time solution if P is.fixed at 2, see [141 , or if the DAG
is such that no node has more than one immediate successor
[11*

VI. CONCLUSIONS
We have described a variety of FIR filter realization problems

in digital signal processing. Many of them are NP-complete.
When a problem has been shown to be NP-complete, and we
need to solve large instances of it, we are inclined to investi-
gate either

1) restricted versions of the problem (for example, assuming
some modularity or regularity) to see if they can be solved
efficiently, or

2) fast procedures that give either

a) suboptimal solutions, or
b) optimal solutions with probability less than one.

Similarly, when a problem has been shown to have a poly-
nomial-time solution, we may be inclined to investigate more
general versions of the problem, again sharpening our under-
standing of the problem’s characteristics vis B vis its computa-
tional complexity.

Computational complexity theory is useful, not because it
tells us how to solve a particular problem, but because it tells
us whether or not a problem is likely to have an efficient solu-
tion. It thus guides the direction of future research.

In this paper we have been discussing optimization problems
for programmable digital signal processing chips with random
access machine architectures. Optimized solutions are not well
suited for custom implementation on a special purpose FIR
filter chip. For example, laying out a directed acyclic graph of
adders is unwise, even if the graph has a minimum number of
add nodes (for a given FIR filter). This is because the topology
of an arbitrary DAG is highly irregular. Moreover, in most
digital signal processing applications we wish to minimize, not
latency, but period. Special purpose architectures for FIR
filters (and other functions) should have highly regular topolo-
gies (see, for example, [2] -[4], [7] - [9]). As long as there
are RAM-architecture digital signal processing chips, however,
optimization problems such as the ones described in this paper
will need attention. Indeed, such attention may influence the
instruction set of such general purpose chips. As was noted in
Section IV, for arbitrary computable signal flow graphs with
their delay arcs removed, the problem of producing a mini-
mum instruction sequence is easy when the chip has three-
register instructions, and is intractable when the chip only has
two-register instructions.

Garey and Johnson [5] provide a comprehensive introduc-
tion to the theory of NP-completeness, a catalogue of prob-
lems that are known to be NP-complete, and a discussion of
some methods for coping with NP-complete problems.

ACKNOWLEDGMENT
We thank the referees for helpful comments, and for the

remark concerning the PSPACE-complete problem.

REFERENCES
[11 P. Brucker, M. R. Garey, and D. S. Johnson, “Scheduling equal-

length tasks under treelike precedence constraints to minimize
maximum lateness,”Math. Oper. Res., vol. 2, pp. 275-284, 1977.

[21 P. R. Cappello and K. Steiglitz, “Digital signal processing applica-
tions of systolic algorithms,” in VLSI Systems and Computa-
tions, H. T. Kung, B. Sproull, and G. Steele, Eds. Rockville,
MD: Comput. Sci. Press, 1981.

[3] -, “Bit-level fixed-flow architectures for signal processing,” in
Proc. IEEE Int. Coni Circuits Comput., New York, Sept. 29-
Oct. 1, 1982.

[4] -,. “Completely pipelined architectures for digital signal pro-
cessmg,” IEEE Trans. Acoust., Speech, Signal Processing, vol.

[51 M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco, CA:
Freeman, 1979.

[6] J. R. Gilbert, T. Lengauer, and R. E. Tarjan, “The pebbling prob-
lem is complete in polynomial space,” SIAM J. Comput., pp.

[7] H. T. Kung, L. M. Ruane, and D. W. L. Yen, “A two-level p ipe
lined systolic array for convolutions,” in VLSI Systems and Com-
putations, H. T. Kung, B. Sproull, and G. Steele, Eds. Rockville,
MD: Comput. Sci. Press, 1981.

[81 H. T. Kung, “Let’s design algorithms for VLSI systems,” in Proc.
Coni V e v Large Scale Integration: Architecture, Design, Fabri-
cation, California Inst. Technol., Pasadena, Jan. 1979, pp. 65-90.

[9] -, “Special-purpose devices for signal and image processing: An
opportunity in very large scale integration (VLSI),” in Proc. SOC.
Photo-Opt. Instrum. Eng., vol. 241, “Real-Time Signal Processing
111,” July 1980.

[l o] R. Sethi, “Complete register allocation problems,” SIAM J.
Comput., vol. 4, pp. 226-248, 1975.

i l l] A. V. Aho, S. C. Johnson, and J. D. Ullman, “Code generation
for expressions with common subexpressions,” J. Ass. Comput.
Mach., vol. 24, pp. 146-160, 1977.

1121 J. D. Ullman, “NP-complete scheduling problems,” J. Comput.
Syst. Sci., vol. 10. pp. 384-393, 1975.

[131 E. Coffman, Computer and Job-Shop Scheduling Theory. New
York: Wiley, 1976.

[141 M. R. Garey and D. S. Johnson, “Scheduling tasks with nonuni-
form deadlines on two processors,” J. Ass. Comput. Mack., vol.

[151 R. E. Tarjan, “Efficiency of a good but not linear set union

ASSP-31, pp. 1016-1023, Aug. 1983.

513-524, 1980.

23, pp. 461-467, 1976.

algorithm,”J. Ass. Comput. Mach., vol. 25, pp. 215-225, 1975.

Peter R, Cappello (M’83), for a photograph and biogaphy, see p. 33 of
the February 1984 issue of this TRANSACTIONS.

Kenneth Steiglitz (S’S7-M’64-SM’79-F181), for a photograph and biog-
raphy, see p. 33 of the February 1984 issue of this TRANSACTIONS.

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-32, NO. 5, OCTOBER 1984 1041

Kenneth Steiglitz (S’57-M’64-SM’79-F‘81) was
born in Weehawken, NJ, on January 30, 1939.
He received the B.E.E., M.E.E., and Eng.Sc.D.
degrees from New York University, New York,
NY, in 1959, 1960, and 1963, respectively.

Since September 1963 he has been with
the Department of Electrical Engineering
and Computer Science, Princeton University,
Princeton, NJ, where he is now Professor,
teaching and conducting research in the com-
puter and systems areas. He is the author of

Introduction to Discrete Systems (New York: WiIey, 1974), and coau-
thor, with C. H. Papadimitriou, of Combinatorial Optimization: Algo-
rithms and Complexity (Englewood Cliffs, NJ: Prentice-Hall, 1982).

Dr. Steiglitz is a member of the VLSI Committee of the IEEE ASSP
Society, and has served as a member of the Digital Signal Processing
Committee, a member of the Administrative Committee, and Awards
Chairman of the Society. He is an Associate Editor of the journalNet-
works, and is a former Associate Editor of the Journal of theAssociation
for Computing Machinery. A member of Eta Kappa Nu, Tau Beta Pi,
and Sigma Xi, he received the Technical Achievement Award of the
ASSP Society in 1981, and an IEEE Centennial Medal in 1984.

Resolution Enhancement of Digital Beamformers
HONG FAN, STUDENT MEMBER, IEEE, EZZ I. EL-MASRY, SENIOR MEMBER, IEEE,

AND W. KENNETH JENKINS, SENIOR MEMBER, IEEE

Abstract-Large array extent is usually required in order to adequately
enhance the resolution of a beamformer and to improve its beam pat-
tern. Due to physical constraints this requirement may not be met.
This paper presents the results of an analytical and experimental study
in the use of a signal extrapolation method to enhance the beamformer
resolution for small array extent. A real-time implementation scheme is
proposed. I t is shown that the beam pattern and the resolution of the
beamformer can be improved. Examples for various situations are
provided.

I
I. INTRODUCTION

N the area of signal processing, considerable attention has
been devoted t o digital array processing in recent years.

This attention is due to the increasingly wide use of array pro-
cessing for both civilian and military purposes. Digital beam-
forming, for example, is an active area in digital array process-
ing. Many techniques in digital beamforming have been well
established [1]-[8]. It has been shown [l] , [8] that the
beam pattern, signal-to-noise ratio (SNR), etc., depends on the
array length or the array extent and the number of sensors
used, i.e., the larger array extent and the more sensors, the
better the beam pattern and the SNR become. In a practical
situation, however, the array extent may be restricted for
economical or physical reasons, In this situation, techniques
for improving beamformer performance through signal pro-
cessing may be useful.

A totally different concept, signal extrapolation, has also

Manuscript received November 22, 1982;~revised Mav 19, 1983 and
December 15, 1983. This work was supported in part by the Joint Ser-
vice Electronics Program (JSEP) under Contract N00014-79C-0424.

H. Fan and W. K. Jenkins are with the Deuartment of Electrical and

been drawing a great amount of interest recently, largely in the
area of signal/image restoration. It has been shown that a
known portion of a signal can be extrapolated outside of the
observation interval if the signal possesses certain properties
[9] , [12] . Many algorithms, both iterative and noniterative,
have been proposed for continuous and discrete cases. Refer-
ences [9] -[13] serve as a good review of this subject.

The purpose of this paper is to use spatial extrapolation in
conventional digital beamforming to improve the beam pattern
without extending the array length. Effectively, the array
length is extended through signal processing. Other currently
used techniques such as interpolation beamforming, weighting,
and the widely used spectral estimation techniques: the maxi-
mum entropy method (MEM), the maximum likelihood method
(MLM), etc., can be combined with extrapolation to achieve
an overall better performance.

11. BACKGROUND
The following discussion assumes a uniform linear array of

omnidirectional sensors as shown in Fig. 1 . For convenience,
assume that there are a total 2 M + 1 sensors in the array, in-
dexed from -M to M . Also, assume that the signal is band
limited, and may be corrupted by additive noise. Furthermore,
assume that the beam steering specifications are met by either
sampling the sensor outputs at a sufficiently high frequency,
or by using digital interpolation beamforming techniques, as
described in [2] . These assumptions will be used throughout
this paper.

A. Beam forming
Computer Engineering and the Coordinated-Science Laboratory, Uni- The task of detecting a signal and determining its direction
versity of Illinois, Urbana, IL 61801. E. I. El-Masw is with the Department of Electrical can be accomplished by conventional digital beamforming, i.e.,
Technical University of Nova Scotia, Halifax, N. S., Canada B3J 2x4. by delaying and summing the corresponding sensor signals.

0096-3518/84/lOOO-1041$01.00 0 1984 IEEE

