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Some Complexity issues in Digital  Signal 
Processing 

Abstract-Over the past  decade  a large  class  of problems, called NP- 
:ompZete [SI, have been  shown to be equivalent  in the sense that if a 
ast algorithm a n  be  found  for  one,  fast  algorithms  can  be  found  for 
dl. At the same time,  despite  much  effort, no fast  algorithms have 
)een  found  for  any,  and  these  problems  are widely regarded  as  intrac- 
able. This  class includes  such  notoriously  difficult  problems  as  the 
raveling  salesman problem,  graph coloring, and satisfiability of Boolean 
:xpressions. 
Using FIR filter implementation as an  illustration, we describe  some 

moblems in digital signal  processing that are NP-complete. These in- 
:lude: 1) minimize the number of additions  needed to implement  a 
’ked  FIR  filter;  2) minimize the number of registers needed to  imple 
nent  a  fixed  FIR filter; and 3) minimize the time to perform  the  addi- 
ions  of  such  an FIR filter using P adders.  Large-scale instances  of  such 
moblems may  become  important  with the use of programmable  chips 
o implement signal  processing. 
Our  main purpose in this  paper is to illustrate the usefulness of as- 

rmptotic  complexity  theory  in the field of digital signal  processing. 
The theory  discriminates  between  tractable  and  intractable  problems, 
lometimes identifies  fast  algorithms for  the  former, and justifies heuris- 
ics for the latter. 

L 
I. INTRODUCTION 

OOKING for ways to improve  or  optimize the use of  pro- 
grammable digital signal  processing chips can be  a  tricky 

wsiness, and  the  throughput  obtainable  often  determines 
vhether  or not  a custom design  is required. Using the imple- 
nentation  of  an  FIR filter as  an example, we  will formulate 
ome  combinatorial  optimization  problems that are compu- 
ationally tractable,  and  some  that are likely to be  intractable 
that is, they  are equivalent to problems that are NP-complete). 
One purpose  of this paper is to identify  some  problems in 

ligital  signal  processing that are NP-complete.  NP-complete 
)roblems are all  as hard as any in the large  class  NP, and  are 
;enerally regarded as intractable (their best known  algorithms 
equire  exponential  running time). But the main purpose  of 
his paper is not so much to  identify specific problems that are 
ntractable as much as it is to  illustrate the usefulness of  the 
heory  of  NP-completeness to digital signal  processing. Demon- 
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strating the  NP-completeness  of  a  problem is a practical yet 
theoretically convincing way to  discourage attempts  at  exact, 
efficient solutions of  the  problem,  and to justify  the  develop- 
ment  of heuristics for  its  approximate solution. (For details of 
the  theory, see [5] .) 

The  methodology used to  show that  a problem is NP-com- 
plete is  as follows. 

1) Construct an algorithm that, given  an instance  of the 
problem  and  a  proposed  solution, verifies the correctness of 
the  solution  in  a  polynomial  amount of time.  (This  shows that 
the problem is “easy  enough” to  be in NP.) 

2) Select a  problem that has  been  shown to be  NP-complete, 
and  transform it to  the problem  under  consideration.  The 
transformation  must  be  performed  by  an  algorithm  that uses 
only  a  polynomial  amount  of  time, (This shows that  the 
problem i s  as “hard” as any in the class  NP.) 

In this  paper we  will deal  with  problems related to  the imple- 
mentation  of  an  FIR filter on a  programmable digital signal 
processing chip  whose  architecture is roughly that of a  random 
access machine.  That is, the chip  has a random access memory 
and  an arithmeticllogic unit (ALU). 

In Section I1  we look  at  the problem of  minimizing the num- 
ber of  additions in a  shift-and-add realization of a  fixed FIR 
filter.  Such  a realization precludes the need for multiplication 
hardware.  This leads to Section 111, which deals with mini- 
mizing the storage  requirements  of  an  FIR filter computation. 
Section  IV similarly takes  up the problem  of  minimizing the 
number  of  instructions  needed to implement  an FIR filter. 
Section  V  considers  a  processor  scheduling  problem arising 
from the assumption that more than one ALU  can  be fabri- 
cated on  the chip  and that  they can be used concurrently to 
compute filter outputs. 

11. OPTIMIZING A SHIFT-AND-ADD IMPLEMENTATION 
OF AN FIR FILTER 

Before stating the  optimization  problem, we formulate  a 
shift-and-add  implementation  of  an  FIR  filter.  Let us say  we 
are given the following 15-tap symmetric  filter: 

yn 7(xn ’ x,-14) ’ 5 ( x n - l  +xn-13)t  (&-a ’ x ? Z - l Z )  

- 2(&-3 +xn-11) (xn-5 +x,-,) (xn-6 i- %-a)* 

(1) 
For  notational  convenience we let 

Wo E X, + X,- 14 

W1 +x,- , ,  
- 
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w2 =xn-2 +x,-,, 

w3 =xn-3  +x,-,, 

w 4  =xiz-5 +xn+ 

w5 ‘X,-6 t X n - s .  

- 

- 

- 

Then we may rewrite the computation of y,  as follows: 

y,  t 7 W o  5W1 + W2 - 2 W 3  W4 t Wg. (2) 

We rewrite (2), replacing the decimal notation for coefficient 
values with 5 bit two’s-complement notation: 

y,  +-00111. wo t 00101 . w1 t 00001 . w2 

+ 11110. w3 t oooo1 . w4 t oooo1 . w5. (3) 
Collecting like powers of 2 we obtain 

yn + 24 (w3) t 23 (w3) t 22 (wo t w1 + W 3 )  

+ 21 (wo t w3) t 20(w0 t w1 t w2 t w4 t ws). (4) 

That is, 

y n  + 2 j  * sumj. 
4 

( 5 )  
i= o 

We now are in a  position to realize some computational sav- 
ings. Notice that wo t w3 appears in both sum2 and suml. 
We can save additions by remembering this partial sum and 
using it wherever it is needed. The question arises as to how 
much can be saved this way: can we produce the set of sumis 
using only, say, five additions? 

We state this question more formally. 

Collection of Sums 
Input: A  collection C of expressions of the  form ail + ai2 t 

. * . t aii, all aik E A ,  a  finite set, where an element of A ap- 
pears at  most once in any expression, but may appear in any 
number of expressions, and  a positive integer J. 

Question: Is there  a sequence S of J or fewer additions that 
computes all the expressions in C? 

Complexity: NP-complete, see IS, “Ensemble Computa- 
tion”]. This problem remains NP-complete even when expres- 
ions are restricted to contain  no  more than three elements of A .  
Note also that computing  a collection of expressions involving 
both addition  and  subtraction is a  more general problem and, 
therefore,  at least as hard. 

111. REGISTER ALLOCATION (STORAGE CONSERVATION) 
Suppose that we obtain  a sequence of add  instructions that 

produces the needed sums, provided that all the addition re- 
sults are held in some registers (we model storage by registers, 
although  one can view these as memory locations). Fig. 1 
illustrates graphically the partial order induced by one such 
add sequence for our example FIR filter. Although it is likely 
that each partial result is needed (it is certain if the sequence 
of additions is minimal) and so needs to be placed in some 
register, there remains the question as to how many distinct 
registers are needed. We may reuse registers. Different order- 
ings of add  instructions will in general require a different  num- 
ber of registers. Is there a sequence of add  instructions that 

Yn 

t 
I 

A IO ‘, 

Fig. 1. The directed acyclic graph (DAG) represented by the circular 
nodes (adds) and the solid arcs illustrates the sums part of the FIR 
filter computation. It is a partial order induced by a sequence of 
additions. (The  dashed arcs and square nodes represent the shift- 
and-add part of the computation. Dashed arc labels show the shift 
amounts.) 

ters? This question is formalized by  the following game. 
(Note that a partial order can be represented by a  directed 
acyclic graph (DAG),  as can any  computable signal flow graph 
with its delay arcs removed.) 

Definition: Let G = (N, A )  be a directed acyclic graph (DAG) 
such that  its nodes have at most two incoming arcs. Let  there 
be an infinite  supply of registers. A move in the register d o -  
cation game is one of the following: 

is, load a register) 

free). 

either 

a) place a register on a  node with  no incoming arcs (that 

b) pick up a register from  a node (that is, declare a register 

If there are registers on every node coming into nodei, then 

c) place a new register on nodei (ri +- ri t rk ) ,  or 
d) move a register to nodei from  one of nodei’s incoming 

nodes (ri +- rj t rk). 
Definition: A DAG register  allocution  computation is a se- 

quence of moves in  the register allocation game that starts 
with no registers on  any  node, and places a register on every 
node exactly once. 

The register allocation problems we consider are NP-complete 
even for this restricted class of DAG’S, those  with  at  most two 
incoming arcs at  any node. 

Definition: A register allocation computation of a DAG is 
said to use k registers if during some move in  the computation 
there are k registers on  nodes of the DAG, and during every 
other move there are no more than k registers being used. 

It is natural to  ask how many registers are required to com- 
pute a given  DAG. 

Register Sufficiency 
Input: A DAG, and an integer K .  
Question: Is there  a computation for the DAG that uses K or 

Complexity: NP-complete [lo] . 
The related problem that permits a register to be placed on  a 

node more than  once is PSPACE-complete [ 6 ] .  That is, find- 

fewer registers? 

obtains the needed sums and which uses only, say, five  regis-  ing the fewest number of registers needed when recomputation 
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is allowed is essentially as hard as any  problem whose  algo- 
rithms  require  a  polynomial  amount of space. Such  problems 
are at least as hard as  i?$P-complete problems. 

Any DAG computation resulting from  the register allocation 
game defines  a  function  from  nodes (N) to registers; that is, 
there is exactly one register associated  with  each  node (but 
not conversely). One  may ask, given a  proposed  function  from 
nodes to registers, how  hard is it  to determine if there is a 
DAG computation  that  defines  that  function? 

Feasible  Register Assignment 

f : N +  { r l ,  r 2 ,  - - , rK}. 

fewer registers and that is compatible  with  the functionf? 

Input: A DAG, positive integer K ,  and  a register  assignment 

Question: Is there  a  computation  of  the DAG that uses K or 

Complexity: NP-complete [ 101 . 
Again, both of  these  problems  remain  NP-complete even 

when  each  node  has no more than  two incoming arcs. 

IV. CODE GENERATION (TIME CONSERVATION) 
What  if  we are  more interested in saving instructions  than 

registers? Suppose, for example, that we  have,  as in Section 
11, a  computation DAG for computing the necessary sums (or 
a  computable signal flow  graph  with its delay arcs removed). 
From  this DAG we  wish to generate  succinct straight line 
code. As in register allocation for DAG's,  we model DAG 
code  generation  by  a game. 

Definition: Let G = (N, A )  be a DAG. Let  there be  an in- 
finite supply  of registers. A move in  the instruction game is 
one  of the following: 

a) if nodei has only  one  incoming  node, nodej, and nodei 
is  covered by register rj, then either 

i) place rj on node (a no-op), or 
ii) place a  new register ri on nodei (ri +- ri) 

b) if nodei has left and right incoming  nodes  and  they  are 
covered by registers ri and rk, respectively, then  either 

i)  place rj on nodei (ri + rj t rk), or 
ii)  place rk on nodei (rk +- ri t rk), or 
iii)  place a new  register ri on nodei (ri +- ri -t rk). 

Note  that  the class of DAG's dealt with  here is the same  as 
in the register allocation problems. 

Definition: A DAG code generation is a  sequence  of moves 
in  the  instruction game that  starts  with registers on all nodes 
that have no incoming arcs (that is, all inputs are in registers), 
and places a register on every  node. 

Definition: A DAG code  generation produces K instructions 
if it uses exactly K of the moves  above. 

It is natural to ask how  many  instructions are required to 
compute, in this sense, a given  DAG. 

Code  Generation  with  Unlimited  Registers 
Input: A DAG G = (N, A )  in which  no  node  has  more than 

two  incoming arcs (each  arc is considered either a left arc  or a 
right arc), and an integer K. 

Question: Is there  a  code  generation that produces K or 
fewer instructions? 

Complexity: If  moves b-ii) and b-iii)  are forbidden,  the  prob- 

TABLE I 
PRECEDENCE-CONSTRAINED  SCHEDULING  PROBLEMS 

___. 
1 ,  Proccsmrs 'Prcccss Icwths'Partlil order c5mpic;gX-' 
: Fixed (=n) Iden t~ca l  (I)  Forest. (F) I8 1 '  Parameter {P)'  Diflerent {D) ! DAG (D) I ; = 2  

;i = 3,i,5, I 

1 
I D CJ(n2) 

= 2  n r NF-cGmpkie I !  
D Opcn ! j  
F O(na(n ) ) t  I/ i p  I 

+ a ( n )  prows slower than log (n), bnt IS not a constant See [15] 

lem is NP-complete [ 111. If only move  b-iii)  is forbidden  (the 
commutative variant of the  problem), the  problem  remains 
NP-complete [ l l ]  . If  all  moves are allowed, the problem 
enjoys  a  polynomial-time  solution,  a fact  that may have impli- 
cations for  architects  or  programmers  of digital signal process- 
ing chips. In this case a linear-time algorithm  for  producing 
a  minimum-length  instruction  sequence is to evaluate the sig- 
nal flow  graph in  a  bottom-up fashion (that is, starting with 
nodes  that have no incoming arcs), level by level,  assigning a 
distinct register to each  node (that is, using only  instructions 
of the  form rk t- ri + ri). 

V. PROCESSOR  SCHEDULING 
In this section we consider  programmable digital signal pro- 

cessing chips  with  more than  one ALU. In  this scenario the 
chip can be  performing  more than  one  addition  at  a time. 
Continuing  with  our  FIR filter example, we now  want to see 
how  many ALU's  are needed to compute  our  sums in a  spe- 
cific amount  of  time. Equivalently, we may wish to know if a 
given number of processors is sufficient to compute  our sums 
in a desired time  frame. By processors (processes)  we mean, 
for  example,  adders (additions). This context permits  us to 
assume that  the schedule 

1) is deterministic (that is, the filter's requirements are 
known in advance), 

2) is nonpreemptive (that is, requires  a  processor to finish a 
process, once started), and 

3) involves unit execution time processes (for example, all 
additions will  be assumed to consume the same amount of a 
processor's time). 

Under  these  assumptions we would like to know  how  hard 
it is to schedule  the  operations  indicated  by  a partial order (or 
those  indicated by  a  computable signal flow  graph  with its 
delay arcs removed). 

Precedence-Constrained  Scheduling 
Input: A DAG G, P processors,  and  a  deadline D. 
Question: Is there  a  P-processor  schedule  for G that meets 

Complexity: NP-complete [ 121 . 
We summarize variations of  this  problem in Table  I.  See 

[13] for details. 
As  we did in  the feasible register  assignment problem, we 

consider  the feasible precedence-constrained  schedule  prob- 
lem.  In  this  problem we are given a set of individual process 
deadlines and ask  if there is some  schedule that can achieve 
them.  This  situation  might arise, for  example,  when  one first 
obtains  a  schedule  for  a filter's multiplications, and  then seeks 
a  compatible  schedule for the  required additions. An algorithm 
for  this  problem also might  be used  as the basis of a heuristic 
for  the overall deadline  problem, 

deadline D? 
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Feasible  Precedence-Constrained  Schedule 
Input: A DAG G, P processors,  and  a set D of deadlines, 

one  for  each  node in the DAG. 
Question: Is there  a  P-processor  schedule  for G that meets 

all the  deadlines? 
Complexity: NP-complete [l] . The  problem  enjoys  a  poly- 

nomial-time  solution if P is.fixed at 2, see [ 141 , or if the DAG 
is such that  no node has more  than  one  immediate successor 
[11* 

VI. CONCLUSIONS 
We have described  a variety of FIR filter realization problems 

in digital signal  processing.  Many of  them are NP-complete. 
When a  problem has been  shown to be  NP-complete,  and we 
need to solve  large instances of it, we are inclined to investi- 
gate either 

1) restricted versions  of the problem  (for  example, assuming 
some  modularity  or regularity) to see  if they can be solved 
efficiently, or 

2) fast procedures that give either 

a) suboptimal solutions, or 
b)  optimal solutions with  probability less than one. 

Similarly, when  a  problem  has  been  shown to have a  poly- 
nomial-time  solution, we may be inclined to investigate more 
general versions of the  problem, again sharpening  our  under- 
standing of the problem’s characteristics vis B vis its computa- 
tional  complexity. 

Computational  complexity  theory is useful, not because it 
tells us how to solve a particular problem, but because it tells 
us whether  or  not  a  problem is likely to have  an efficient solu- 
tion.  It  thus guides the  direction  of  future research. 

In this paper we  have been discussing optimization  problems 
for  programmable digital signal  processing chips  with random 
access  machine architectures. Optimized solutions are not well 
suited for custom  implementation  on  a special purpose FIR 
filter chip. For  example,  laying out a  directed acyclic graph of 
adders is unwise,  even  if the graph  has  a  minimum  number  of 
add  nodes (for a given FIR filter). This is because the topology 
of an arbitrary DAG  is  highly irregular. Moreover, in most 
digital signal  processing applications  we wish to minimize, not 
latency,  but period. Special  purpose architectures for FIR 
filters (and  other  functions)  should have highly regular topolo- 
gies  (see, for  example, [2] -[4], [7] - [9]). As long as there 
are RAM-architecture digital signal  processing chips, however, 
optimization  problems  such as the ones  described in this paper 
will need attention.  Indeed, such attention may  influence the 
instruction set of  such general purpose chips. As  was noted in 
Section IV, for  arbitrary  computable signal flow graphs  with 
their delay arcs removed, the problem  of  producing  a  mini- 
mum  instruction  sequence is easy when the chip  has  three- 
register instructions,  and is intractable when  the  chip  only  has 
two-register instructions. 

Garey  and  Johnson [5] provide a  comprehensive  introduc- 
tion to  the  theory of NP-completeness,  a  catalogue  of  prob- 
lems that are known to be NP-complete,  and  a discussion of 
some  methods  for  coping  with  NP-complete  problems. 
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Resolution  Enhancement of Digital  Beamformers 
HONG FAN, STUDENT MEMBER, IEEE, EZZ I. EL-MASRY, SENIOR MEMBER, IEEE, 

AND W. KENNETH JENKINS, SENIOR MEMBER, IEEE 

Abstract-Large  array  extent is usually required  in  order to adequately 
enhance  the  resolution  of  a  beamformer  and to improve its beam pat- 
tern. Due to physical  constraints  this  requirement  may not be  met. 
This  paper  presents  the  results of an  analytical and experimental  study 
in  the use of a signal extrapolation  method to enhance the beamformer 
resolution  for small array  extent. A real-time  implementation  scheme is 
proposed. I t  is shown that  the beam pattern  and  the  resolution of the 
beamformer  can be improved.  Examples for  various  situations  are 
provided. 

I 
I. INTRODUCTION 

N the area  of signal processing,  considerable attention has 
been  devoted t o  digital array processing in recent years. 

This attention is due to  the increasingly wide  use of array pro- 
cessing for  both civilian and  military  purposes. Digital beam- 
forming,  for  example, is an active area in digital array  process- 
ing.  Many techniques in digital beamforming have been well 
established [1]-[8]. It  has  been  shown [ l ] ,  [8] that  the 
beam pattern, signal-to-noise ratio (SNR), etc., depends on the 
array  length  or the array extent and  the  number of sensors 
used, i.e., the larger array extent and  the  more sensors, the 
better  the beam pattern and the SNR  become. In a practical 
situation,  however,  the  array  extent  may be restricted for 
economical  or  physical reasons, In this situation,  techniques 
for  improving  beamformer  performance  through signal pro- 
cessing may be useful. 

A  totally  different  concept, signal extrapolation,  has also 
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been  drawing  a great amount of interest  recently, largely in the 
area of signal/image restoration.  It  has  been  shown  that  a 
known  portion  of  a signal  can  be extrapolated  outside  of  the 
observation interval if the signal  possesses certain properties 
[9] , [12] . Many algorithms, both iterative and noniterative, 
have been  proposed  for  continuous  and discrete cases. Refer- 
ences [9]  -[13] serve  as a  good review of  this subject. 

The purpose of this paper is to use spatial extrapolation in 
conventional digital beamforming to improve the beam pattern 
without  extending the array length. Effectively, the  array 
length is extended  through signal processing.  Other  currently 
used techniques  such as interpolation  beamforming,  weighting, 
and the widely  used spectral estimation  techniques: the maxi- 
mum entropy  method (MEM), the  maximum  likelihood  method 
(MLM), etc., can be combined  with  extrapolation to achieve 
an overall better  performance. 

11. BACKGROUND 
The  following  discussion  assumes a  uniform linear array  of 

omnidirectional  sensors as shown in Fig. 1 .  For  convenience, 
assume that  there are a  total 2 M +  1  sensors in the  array,  in- 
dexed  from -M to M .  Also, assume that  the signal  is band 
limited,  and  may be corrupted  by additive noise. Furthermore, 
assume that  the beam steering specifications are  met by either 
sampling the  sensor outputs  at  a sufficiently high  frequency, 
or  by using digital interpolation  beamforming  techniques, as 
described in [ 2 ] .  These assumptions will be used throughout 
this paper. 

A. Beam forming 
Computer Engineering and the Coordinated-Science  Laboratory, Uni- The  task  of  detecting  a signal and  determining  its direction 
versity  of Illinois, Urbana,  IL  61801. E. I. El-Masw is with  the Department of Electrical can be accomplished  by  conventional digital beamforming, i.e., 
Technical University of Nova Scotia,  Halifax, N. S., Canada  B3J 2x4. by  delaying  and  summing the corresponding  sensor signals. 

0096-3518/84/lOOO-1041$01.00 0 1984 IEEE 


