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Theorem 5: a = S, f is a solution with polarity function

X l X, , il' 3' XiV b ik9 X1)

if and only if

a'= S. fxfSi.x.x

is a solution with polarity function

X2= (X. , Xj , Xi2, ,,X X

We observe t-hat Theorems 2 and 4 are special cases ofTheorem
5. However, Theorems 2 and 4 result into a simple algorithm for
generating all the solutions.

V. ALGORITHM
The steps of the algorithm are as follows.
Step 1: Writef= (fo,fl, * 2.- 1)T-
Step 2: Obtain the vector a by multiplying S' and f
Step 3: Obtain g = 1/f and the new a = S' g. The polarity

now is complement of Step 2.
Step 4: If all the solutions have been generated then stop.
Step 5: Obtain a new polarity function and set f+fXi. Go to

Step 2. The correctness of each solution is guaranteed by Theorem
4. The following example explains the steps of the algorithm.

Example:f(x3, X2, X1) = E (1, 3, 4, 7). For generation of differ-
ent polarities we will use Gray code, the polarity functions are
used in the order (X3, X2, X1), (X3, X2, XI), (X39 X2 X) (X3, X2, X1).
The complete solutions is given below.

S3 as in (1). f vectors are as follows

f gg=fxl - k =gX2 khXlP
f 9 ~ h k

0 1 1 0 1 1 0 0
1 0 0 1 0 0 1 1
0 0 1 1 1 0 0 1
1 1 0 0 0 1 1 0
1 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0
0'1 1 0 0 0 1 1
1 0 0 1 1 1 0 0

a vector with respective polarities are

ao
a,
a2
a3
a4
a5
a6

a7-

I01 1 0 1 1 0 0
11 1 1 11 11
0 1 0 1 0 10 1
0 000 000 0
1 0 10 0 10 1

0 0 0 0 0 0 0 0.1 1 1 1 1 1 1 1~OoO Oo O O

It is easy to see that the minimal solution is with polarity (X3 X2,
xl) where a, = a6 = 1 and therefore f= x1 @ X2 X3.

Obviously the solution can be obtained sequentially and it is
not necessary to retain all the f and a vectors. Certain simple
observations can be included in the program implementing the
algorithm, e.g., a2,1 needs to be worked out only once, based on
experience a threshold number can be chosen and as soon as the
total number of a 's in any a vector exceed this threshold we can
go on to next polarity function, etc.

VI. CONCLUSION
We have shown that Swamy's [1] solution for minimal RMC

expansion is in error. A different solution has been presented to
obtain the minimal solution sequentially.
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The Design of Small-Diameter Networks
by Local Search

SAM TOUEG ANI4wKENNETH STEIGLITZ

Abstract-A local search algorithm for the design of small-
diameter networks is presented for both directed and undirected
regular graphs. In all cases the resulting graphs are at least as good as
any previously known, in the sense that they have at least as small a
diameter and average shortest distance for a given number of nodes
and degrees.

Index Terms-Communication networks, delay, diameter,
graphs, networks

I. INTRODUCTION

Graphs with small diameters are especially well suited for des-
igning communication networks where the elements at the ver-
tices are very reliable and the traffic density is low, so that
messages can be routed by the shortest path. Such a situation
arises quite naturally in the design of networks of micro-
processors; the shortest distance between two vertices then repre-
sents the delay encountered in shortest path communication
between these two vertices, and the diameter is the maximum
delay of this kind possible. This correspondence treats the prob-
lem of constructing graphs with small diameters.
The approach is extendable to more general problems that

might arise in practical situations since additional constraints can
be easily incorporated in the proposed algorithm. For example, if
network reliability is an issue, a k-connectivity test can be
included in the local search.
We shall consider both undirected and directed graphs G = (V,

E). Each edge e E E will have weight 1, and the weight of the
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shortest path from vertex i to vertex j will be denoted by dij. The
diameter of G will be defined by

k = max d
i,j 6 V

The degree of a node in an undirected graph is the number of
edges incident to it. In a directed graph, the in-degree and out-
degree of a node are the number of edges directed in and out,
respectively; if they are equal, we use the term degree in the
directed case as well. Thus, a degree-2 directed graph has
in-degree = out-degree = 2. A regular graph is a graph where all
the nodes have the same degree.
We begin by reviewing other work in this area.

A. Moore Graphs
It is easy to see that a regular undirected graph of degree d and

diameter k has at most

Num(d,k)= 1 +d+d(d- 1)+" ±t d(d- 1)k-1

d(d-1 -2 (d > 2)(1

nodes. The graphs achieving this upper bound are called (d, k)
undirected Moore graphs (UMG's). UMG's have been in-
vestigated in [8], [3], and [5]. They are very rare and for nontrivial
values of d and k (d > 2 and k > 1) there are only two, or possibly
three, graphs achieving the upper bound (1).

Let N,(d, k) be the maximal number of nodes in a (d, k) regular
undirected graph; the (d, k) graphs achieving this number are
called maximal. At present, very few values of Nu(d, k) are known
(see [6]).
We can formulate similar upper bounds for directed graphs.

Clearly, a regular directed graph ofdegree d and diameter k has at
most

dk+l1 i d1 2
Ndm(d,k)=I+d+d2+ +dk= d(d->1) (2)

nodes. The graphs achieving this upper bound are called (d, k)
directed Moore graphs (DMG's). In [15] it is shown that there are
no (d, k) DMG's for nontrivial values of d and k (d > 1 and k > 1).

B. General Graph Construction Techniques
There are two kinds of closely related problems in the design of

networks. The first is to maximize the number of nodes n in a
graph of degree d and diameter k. We have the upper bounds (1)
and (2) and very few graphs, the Moore graphs, achieve them.
General techniques for the construction of regular undirected (d,
k) graphs with a large number of nodes were given in [6], [1], [7],
[10], [14], and [15] for (d, k) directed graphs. However, the gap
between the number of nodes achieved by these techniques and
the Moore upper bounds is still considerable. For example, the (3,
8) undirected graph constructed by Friedman's technique has 90
nodes when the corresponding Moore bound is Num(3, 8) = 776.
The second problem is to minimize the diameter k of a regular

graph with n nodes and degree d. This is discussed in [2] and is
principally the object of this paper. In fact, this problem is easily
generalized to nonhomogeneous graphs. In this case, either the
degree of each node or the total number of edges can be given
instead of d.
Another closely related generalization we shall discuss is the

minimization of the average distance A of a regular graph with n
nodes and of degree d where A is defined as

It is easy to compute a lower bound for the average distance A
of regular graphs with n nodes and degree d. The method is best
explained with an example. Fig. 1 illustrates the breadth-first-
search tree of a directed graph with 48 nodes and degree-2 achiev-
ing the minimal distance from the root to all other nodes. In this
example, the minimal average distance from the root to the other
nodes is

A = (1 x 0 + 2 x 1 + 4 x 2 + 8 x 3 + 16 x 4 + 17 x 5)/48

= 3.8125.

No regular directed graph with 48 nodes and degree-2 can have a

smaller value A-since this value serves as a bound for all nodes.

II. THE LOCAL SEARCH ALGORITHM

The method of local search has been applied successfully to a

number of,combinatorial optimization problems, starting with the
early work of Bock [4], Lin [11], and Reiter and Sherman [12].
Perhaps the problem closest to the one considered here that has
been attacked by this method is the design of low cost networks
with prescribed connectivity [13]. A review of the area can be
found in [9].
The algorithm can be characterized in general terms as follows.

For a given graph G, a neighborhood N(G) of graphs is defined
which represents a set of perturbations of the given graph. If a

graph G' E N(G) is found which is an "improvement" of G, it
replaces G and the process continues. When finally a graph is
obtained which is better than any in its neighborhood, it is ac-

cepted as a local optimum with respect to the neighborhood N.
We may start the algorithm from several different graphs and
accept the best result.
The main choices in the design of such an algorithm are the

method of choosing an initial graph, the neighborhood N, the
method of enumerating N, and the criterion of improvement. We
next take the choices up one at a time for the present problem.

A. The Initial Graphs
In the undirected case, for any given number of nodes n and any

degree d, we use the graphs studied by Trufanov in [16] as initial
graphs. (Note that n and d cannot be both odd.) Trufanov showed
that their diameter is bounded by

k < 1 + [r2[m/2J/dl + 1

for an even d or

rn/(d '1)1k < I + 1

for an odd d.
In the directed case, we used a simple variation of Trufanov's

graphs. Their diameter is of the same order of magnitude as the
diameter of the corresponding undirected graphs.

B. The Neighborhood N

Given a graph G = (V, E), the neighborhood N(G) of G is the
set of all graphs G' such that G' is derived from G by an "X-
change" [13]. For an undirected graph, an X-change operation
consists of replacing any two undirected edges (u, v) and (r, s) such
that

(u,v)eE, (r,s)eE (3)
A= E dijln2.

i,je V

538

(u, s) 0 E, (r, v) 0 E (4)



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-28, NO. 7, JULY 1979

Fig. 1. Example of breadth-first-search tree of a directed graph.
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Fig. 2. Undirected X-change operation.

with the edges (u, s) and (r, v). This is illustrated in Fig. 2. For a

directed graph, an X-change operation similarly consists of re-

placing any directed edges (u, v) and (r, s) satisfying condition (3)
and (4) with the directed edges (u, s) and (r, s). (Note that the
degree, and in the directed case both the in- and out-degree, of
each node is not changed by an X-change.)

C. The Method of Enumerating N
Let the (u, v, r, s)-tuple denote the X-change involving the edges

(u, v) and (r, s) of a graph G = (V, E). We enumerate the neighbor-
hood N(G) of a graph G by enumerating in lexicographical order
all the possible (u, v, r, s)-X-changes and then applying them to G.

D. The Criterion for Improvement
In a graph G = (V, E) with diameter k, a pair of nodes i,j E V is

said to be an extremal pair if the distance dij between these two
nodes in G is equal to the diameter k of G.
Most of the experimental results shown here were obtained

using the following criterion for improvement. Let G be a graph
and p and p' denote the respective number of extremal pairs in
each graph. G' is an improvement over G if the following condi-
tion holds:

(k' < k) v [(k' = k) A (p' < p)] (5)

(G' has a smaller diameter than G or, if it has the same diameter,
then it has fewer extremal pairs).
We also tried the following criterion for improvement involving

the average distance A. Let G = (V, E) be a graph and let
G' E N(G). Then G' is an improvement over G if the average dis-
tance A' in G' is smaller than the average distance A in G. That is if
condition

A' = ( E jij/n ) < A = ( EVdij/n2) (6)
i,je V i,jeC V

holds.

III. EXPERIMENTAL RESULTS

Unless otherwise indicated, all of the following discussion refers

to results obtained using condition (5) as the improvement
condition.

Experimental results show that after a fast initial phase of large
improvements, the algorithm spends most of its time in the last
few marginal improvements. A typical result is illustrated in Fig.
3. The average distance achieved by the algorithm for a directed
graph with 48 nodes and degree-2 is plotted versus the number of
X-changes tried up to that point.
For regular graphs with n nodes and degree d, improvement

conditions (5) and (6) can be checked in O(n2d)-time. This is done
by executing an 0(nd)-time breadth-first-search about each node
of the graph, branching out if and when the improvement condi-
tion is verified to be false. We found that most of the algorithm
running time is spent in checking the improvement condition.

All the results concern the construction of regular graphs with
8, 16, 24, 32, 40, and 48 nodes. The results for directed graphs are

given in Table I and in Table II. In Table I the graphs are of
degree-2, in Table II they are of degree-3. Similar results for un-

directed graphs of degree-3 and degree-4 are given in Table III
and Table IV.
We also used condition (6) (minimization of the average dist-

ance A) as improvement criterion to construct directed graphs of
degree-2. The results are shown in Table V. Comparing this table
with Table I it seems that average distance criterion gives con-

sistently better graphs than the previous one. But the improve-
ments were negligible compared to a doubling of the algorithm
running time.

Reasonable confidence in the heuristic of this algorithm may be
deduced from the following facts.

1) When we tried different initial solutions, they always
resulted in local optima with the same diameter and similar (if not
equal) number of extremal pairs and average distance. Even using
a different minimization criterion we obtained similar results
(compare Table I with Table V).

2) A certain consistency of the algorithm behavior is illustrated
in Fig. 4 where the number of nodes is plotted versus the average

distance of the locally optimal graphs found. A semilogarithmic
plot is used, and in all the four cases (directed graphs of degree-2
and degree-3 and undirected graphs of degree-3 and degree-4) the
function is almost linear. Therefore, it seems that the number of
nodes the algorithm can fit in a regular graph of fixed degree d is
an exponential function of the average distance in the graph.

3) We also tried the algorithm for some values of number of

u v
r 0

r s
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2 4 6 8 10 12 14 16
NUMBER OF X -CHANGES (x 1000)

Fig. 3. Average distance versus number of X-changes for the directed case, number
of nodes N = 48, degree-2.

TABLE I
LOCALLY OPTIMAL DIRECTED GRAPHS OF DEGREE-2

N d p A

8 3 10 1.6562

16 4 42 2.4805

24 5 22 2.9757

32 6 2 3.4169

40 6 43 3.6944

48 6 188 3.9444

N=number of nodes in the graph,
d=diameter of the graph,
p=number of extremal pairs of nodes,
A=average shortest-path distance.

TABLE II
LOCALLY OPTIMAL DIRECTED GRAPHS OF DEGREE-3

N d p A

8 2 32 1.3750

16 3 55 1.9023

24 4 3 2.2829

32 4 55 2.4932

40 4 259 2.7137

48 4 602 2.8867

TABLE III
LOCALLY OPTIMAL UNDIRECTED GRAPHS OF DEGREE-3

N d p A

8 2 32 1.3750

16 3 96 2.0625

24 4 48 2.4583

32 5 2 2.8867

40 5 24 3.1037

48 5 254 3.3394

TABLE IV
LOCALLY OPTIMAL UNDIRECTED GRAPHS OF DEGREE-4

N d p A

8 2 24 1.250

16 3 4 1.6406

24 3 168 2.0416

32 3 480 2.2812

40 4 26 2.4412

48 4 176 2.5894

9
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TABLE V
DIRECTED GRAPHS OF DEGREE 2 OBTAINED BY MINIMIZATION

OF THE AVERAGE SHORTEST PATH DISTANCE

Nl d p A L E nI n2

8 3 10 1.6562 1.6250 1.9 106 9'

16 4 40 2.4687 2.3750 3.9 1255 50

24 5 15 2.9531 2.9166 1.25 3829 74

32 6 2 3.3486 3.2187 4.0 6541 130

40 6 33 3.6606 3.5750 2.3 20104 210

48 6 138 3.9079 3.8125 2.5 18247 198

T.-5 1Ie.t^ I-, nr on +-ho :x7=,-e =en i; ci-n n- c Aj=a iower Douna on rne average aiE
E=1OOX (A-L)/L,
n1=number of X-changes tried,
n2=number of successful X-changes.
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Fig. 4. Number of nodes N versus average distance A.

nodes n and degree d for which maximal undirected graphs (or
UMG's) are known [6]. For n = 10 and d = 3 the local optimum
obtained was Petersen's graph, this is the (3, 2) UMG. For n = 15
and d = 4, the local optimum has the diameter k = 2; for n = 20
and d = 3, the graph obtained has the diameter k = 3. Both
graphs are known to be maximal and the latter one is illustrated
in [6].

4) The average distances obtained are quite close to the known
lower bounds. For example, we previously noted that a directed
graph with 48 nodes and of degree-2 has a minimum average
distance of 3.8125. It is riot known if any graph achieves this
bound, but the locally optimal graph found, using improvement
condition (6), has an average distance equal to 3.9079, which is 2.5
percent more than the lower bound.

541
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TABLE VI
SOME RESULTS BY ARDEN AND LEE [2]. (VALUES OBTAINED BY THE

LOCAL SEARCH ALGORITHM ARE IN PARENTHESES)

MTS - UNDIRECTED GRAPHS

DEGREE = 3

UNDIRECTED GRAPHS*

DEGREE = 4

DIRECTED GRAPHS*

DEGREE = 2

N d A d A d A

24 4 (4) 72 (48) 2 .500 (2 .458) 4 (3) 2.19 (2.04) 6 (5) 3.14 (2.95)

32 5 (5) 32 (2) 2.898(2.886) 4(3) 2.38(2.28) 6(6) 3.52(3.35)

40 5(5) 180(24) 3.188(3.104) 4(4) 2.58(2.44) 7 (6) 3.82(3.66)

48 5(5) 474(254) 3.453(3.339) 4(4) 2.75(2.59) 7(6) 4.06(3.91)

(*: These graphs are obtained by slight
MTS graphs)

5) Finally, the results obtained compare favorably with those
known to date. Table VI gives some recent results by B. Arden
and H. Lee [2]. It should be pointed out, however, that the graphs
derived by Arden and Lee have a known regular structure which
can be of great advantage in routing.

This algorithm has two main limitations. One is its impracti-
cability for large values of the number of nodes n (n > 150), and
the other disadvantage is the lack of knowledge of the structure
and of the possible symmetries of the locally optimal graphs ob-
tained. Removing these barriers remains a goal for future work.
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variations of

Comments on "Generalization of Consensus Theory and
Application to the Minimization of Boolean Functions"

ROBERT B. CUTLER AND SABURO MUROGA

Abstract-An algorithm for finding a minimal irredundant dis-
junctive form representation for an incompletely specified multiple-
output switching function presented by P. Tison' is shown to be
incorrect by counterexample and corrected.

Index Terms-Boolean algebra, consensus theory, covering prob-
lem, minimal sum, multiple-output functions, prime implicants.

Step 2 of Algorithm 5 in the paper by P. Tison' reads

"2) We keep only the prime implicants of a product
B(F) * B(Fk) ... if the intersection with the product b(F) * b(Fk) ...

is nonempty."

This step will be shown to be incorrect by the following example.
Let a two-output switching function be given by the lower and

upper bounds

The upper bounds
implicants

b(Fl) = ab' + acd

B(Fl) = ab' + ac

b(F2) = a'b + bcd'

B(F2) = a'b + bc

and products of upper bounds have prime

B(F1): {ab, ac}

B(F2): {a'b, bc}

B(F1) B(F2): {abc}.
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