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Abstract— We show that soliton collisions can reduce quantum
phase noise. This effect can improve quantum nondemolition
measurements, simply by changing the parameter regime in
which the measurement is performed. Successful implementation
favors short propagation distances, small wavelength separation
between solitons, and larger probe than signal solitons.

In a quantum nondemolition (QND) measurement, a quan-
tity of interest can be measured repeatedly and any noise is
introduced only to conjugate observables. The collision of two
solitons provides one realization for such a measurement, in
which the phase of a probe soliton provides a QND reading
of the photon number of a signal soliton [1], [2].

An accurate reading of the probe soliton phase is important.
However, experiments encounter several sources of noise. One
is guided acoustic-wave Brillouin scattering (GAWBS) [3],
which can be suppressed using a closely spaced reference
pulse such that both the reference and probe solitons acquire
the same GAWBS noise [1], [2]. A second noise source
originates from soliton propagation—vacuum-induced ampli-
tude fluctuations couple with the Kerr nonlinearity of the
medium to cause an overall phase diffusion through self-
phase modulation (SPM). Though several ways to combat
this have been proposed, including a specially prepared local
oscillator [4], [5], a phase shifting cavity [6], and a near-
resonant two-level medium [7], none have been experimentally
demonstrated.

In this paper we show that phase noise can be reduced by a
soliton collision due to a negative correlation between phase
fluctuations induced by SPM and cross-phase modulation
(XPM). We then show how this effect can improve QND
measurements.

The field is described by the quantum nonlinear Schrödinger
equation,
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with dimensionless propagation distance z normalized to
2T 2

0 /|β2|, and the normalized field operator φ̂ is scaled such
that the photon number is n̄ ≡ 2λ|β2|/hcγT0. Dispersion is
given by β2, T0 = TFWHM/1.763, wavelength λ, and the non-
linearity parameter γ = 2πn2/λAeff, with Kerr nonlinearity
n2 and effective mode area Aeff.

We decompose the field into a mean classical field φ0 and
quantum noise term Δφ̂ as φ̂(x, z) = φ0(x, z)+Δφ̂(x, z) [8].
The mean field φ0 is the classical fundamental soliton solution
of Eq. (1) [9]:
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This solution is described by four parameters: amplitude A,
frequency (momentum per photon) p, position x0, and phase

θ. The perturbation Δφ̂ is expanded to describe the changes
in the four soliton parameters:

Δφ̂sol =
∑
m

fm(x, z)Δm̂(z) exp (iΦ(z)) , m ∈ {A, x0, p, θ},
(3)

where basis vectors fm(x, z) ≡ (∂φ0/∂m)|x0=p=0, classical
phase shift Φ(z) ≡ (A2

0/4)z, and Δm̂(z) represents the
quantum fluctuations of each soliton parameter.

These fluctuation operators evolve according to [8]

ΔÂ(z) = ΔÂ(0), Δθ̂(z) = Δθ̂(0) +
A

2
ΔÂ(0)z,

Δp̂(z) = Δp̂(0), Δx̂0(z) = Δx̂0(0) + 2Δp̂(0)z. (4)

As a result, the soliton experiences phase diffusion and wave
packet spreading, while the amplitude and frequency propagate
unchanged. The initial variances are found by projecting
statistics of the coherent state, in which 〈Δφ̂(x)Δφ̂†(x′)〉 =
δ(x − x′), yielding [8]
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A soliton collision, which leaves the photon numbers in-
variant, transcribes the signal photon number onto the phase
of the probe [1], [2]. After collision, the asymptotic phase shift
experienced by the probe is [9]
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The variance of probe phase fluctuations is given by
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The term in Eq. (7) that increases quadratically with z
comes about due to SPM. The term linearly proportional to
z originates from a cross-correlation between the SPM- and
XPM-induced phase fluctuations. This term depends on the
derivative of the collision-induced phase shift with respect to
the probe amplitude, given by

∂δθp

∂Ap
=

4|ps|
4|ps|2 + (Ap + As)2

− 4|ps|
4|ps|2 + (Ap − As)2

, (8)

which is always negative and accounts for phase noise reduc-
tion in certain parameter regimes.

The overall phase fluctuations are measured through R ≡
〈Δθ̂2

p(z)〉/〈Δθ̂2
p(z)〉nc, defined as the ratio of the phase noise
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Fig. 1. Contour plots of variance ratio R with respect to (a) propagation
distance z with δp = 0.7 and (b) relative frequency δp with z = 5 as a
function of probe amplitude Ap and fixed signal amplitude As = 1. The
dashed curves are contours of minimum R.

variance in Eq. (7) with respect to the variance in the ab-
sence of collision 〈Δθ̂2

p(z)〉nc = 〈Δθ̂2
p〉0 + A2

pz
2〈ΔÂ2

p〉0/4.
In Fig. 1, we plot the dependence of R on z and relative
frequency δp = −ps as a function of Ap, keeping the signal
amplitude constant, which is arbitrarily fixed at As = 1.
We allow for at least 4 collision lengths, corresponding to
zδp > 3.5, where δp = πcT0Δλ/λ2 and Δλ is the wavelength
separation between probe and signal, collision length Lcoll =
2TFWHM/DΔλ, and fiber dispersion D. The phase fluctuations
can be reduced by over 30%, and three trends are clear—phase
noise is reduced at low propagation distance, small relative
frequency, and larger probe than signal amplitude.

Next, we calculate the normalized QND error variance with
which a measurement of the probe phase will infer the signal
amplitude [4],

S = 1 −
[
〈ΔÂsΔθ̂p(z)〉2
〈ΔÂ2

s〉〈Δθ̂2
p(z)〉

]1/2

, (9)

where S = 0 corresponds to the minimum achievable infer-
ence error of the signal amplitude. Contours of S are plotted
in Fig. 2 in the same way as Fig. 1. Even though a maximum
reduction in probe phase noise is not directly connected with
an optimization of the QND measurement, some trends are
similar. For short propagation distances, a larger probe is
optimal, as seen in Fig. 2(a). At longer lengths, however,
smaller probes favor a more accurate measurement.

The experimental implementation of the above scheme is
feasible with current technology. As an example, we assume
FWHM pulse widths of 1 and 1.2 ps for the probe and signal,
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Fig. 2. Contour plots of normalized QND error variance S with respect
to (a) propagation distance z with δp = 0.7 and (b) relative frequency δp
with z = 5 as a function of probe amplitude Ap and fixed signal amplitude
As = 1. The dashed curves are contours of minimum S.

respectively, Δλ = 3 nm, fiber length of 150 m, and standard
fiber parameters of dispersion D = 17 ps/km nm and non-
linearity γ = 1 W−1/km at 1550 nm. For transform-limited
solitons, the spectral widths of the signal and probe are 2.1 and
2.5 nm, respectively. These parameters accommodate over 4
collision lengths, with Lcoll = 2TFWHM/DΔλ, δp ≈ 0.75, and
z = 5. The photon numbers for the signal and probe solitons
are 5 × 108 and 6 × 108, respectively. A QND measurement
performed in this experiment will achieve S ≈ 0.65. It should
be noted that both the single and double QND experiments [1],
[2] were conducted in a regime with no phase noise reduction
and S > 0.9.

In this paper, we described a new quantum soliton effect:
quantum phase noise reduction in soliton collisions. As an
application, we showed improvements in the accuracy of QND
measurements. In general, an optimized measurement favors
small propagation distances, small wavelength separation be-
tween solitons, and a larger probe amplitude relative to the
signal.
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