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Multistable collision cycles of Manakov spatial solitons
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We show numerically, using known state-change relations, that collision cycles of Manakov~111!-
dimensional spatial solitons can exhibit multistable polarization states.
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I. INTRODUCTION

Bistable and multistable optical systems, in addition
being of some theoretical interest, are of practical importa
in offering a natural ‘‘flip-flop’’ for noise immune storag
and logic. We show in this paper that simple cycles of c
lisions of~111!-dimensional spatial solitons governed by t
Manakov equations can have more than one distinct st
set of polarization states, and therefore these distinct equ
ria can, in theory, be used to store and process informat
The multistability occurs in the polarization states of t
beams; the solitons themselves do not change shape an
main the usual sech-shaped solutions of the Manakov e
tions. This is in contrast to multistability in the modes
scalar solitons~see, for example, Ref.@1#!. The phenomenon
also differs from other examples of polarization multistab
ity in specially engineered devices, such as the vertic
cavity surface-emitting laser~VCSEL! @2#, in being depen-
dent only on simple soliton collisions in a complete
homogeneous medium.

The picture ofspatial solitons as self-focused beams
more recent and less well known than the picture oftemporal
solitons propagating along an optical fiber~for example!, but
the existence and stability of spatial solitons have been w
established both theoretically and experimentally in a var
of materials@3#. As pointed out in Ref.@3#, bright spatial
Kerr solitons are stable only in~111!-dimensional
systems—that is, systems where the beam can diffrac
only one dimension as it propagates. Such solitons are r
ized in slab waveguides, and are robust with respect to
turbations in both width and intensity. What we show in th
paper is that if a realization of vector spatial solitons is go
erned by the Manakov equations, then multistability is p
sible in the steady-statepolarization states of a cycle o
beams. The dynamic behavior of such a system in reac
steady-state foci is an open research question, and we l
discussion of this issue for the conclusion of this paper.

The basic configuration considered in this paper requ
only that the beams form a closed cycle, and can thus
realized in any nonlinear optical medium that supports s
tial Manakov solitons. There are several candidates
physical instantiation of spatial Manakov solitons, includi
photorefractives@4–8#, and semiconductor quantum we
wave guides@9#. Very recently, ideal Manakov solitons wer
also proposed in quadratic media, via optical rectificat
cascading and the electro-optic effect@10#. For a recent re-
view of optical spatial solitons and their interactions, s
Ref. @3#.
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The work described here is a continuation of ongoi
work that aims at exploiting soliton collisions for comput
tion. It was shown in Ref.@11#, using explicit solutions of
Radhakrishnanet al. @12#, that collisions of bright Manakov
solitons can be described by transformations of a comp
valued polarization state which is the ratio between the t
Manakov components. ANOT gate was described there,
MOVE operation was described in Ref.@13#, and the genera
idea of implementing logic using soliton collisions in a h
mogeneous medium has been studied in Refs.@14–17#. Re-
cently it was shown that allowing time-gating of spatial so
tons makes possible the implementation ofFANOUT, NAND

gates, and hence universal computation@18#.
The possibility of using multistable systems of beam c

lisions broadens the possibilities for practical application
the surprisingly strong interactions that Manakov solito
can exhibit, a phenomenon originally described in Ref.@12#.
We show here that a cycle of three collisions can have
distinct foci surrounded by basins of attractions, and tha
cycle of four collisions can have 3. Many questions are l
for future work: How can one switch effectively and reliab
between two foci? Does this phenomenon occur in other v
tor soliton systems, such as the nonintegrable saturable
tems in photorefractives@4–8#? Can such multistable sys
tems be coupled to implement logical operations such
shift registers and arithmetic? We return to these question
the last section.

II. MATHEMATICAL FRAMEWORK

We review the model and mathematical results we w
use. The Manakov system consists of two coupled 3-N
equations

iq1t1q1xx12m~ uq1u21uq2u2!q150,
~1!

iq2t1q2xx12m~ uq1u21uq2u2!q250,

whereq15q1(x,t) andq25q2(x,t) are two interacting op-
tical components,m is a positive parameter, andx and t are
normalized space and time. Note that in order fort to repre-
sent the propagation variable, as in Manakov’s original pa
@19#, our variablesx andt are interchanged with those of Re
@12#. Furthermore, in our picture of spatial solitons, the va
ablesx and t will represent the horizontal and vertical coo
dinates of the medium, witht being the direction of beam
propagation.
©2001 The American Physical Society07-1
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The system admits single-soliton, two-component so
tions that can be characterized by the complex numbek
5kR1 i •kI , wherekR determines the energy of the solito
andkI is the velocity, all in normalized units, and a compl
stater, constant between collisions, which is the ratio b
tween theq1 andq2 components. The two components c
be thought of as components in two directions of polari
tion, but in the case of a photorefractive crystal are in f
two different uncorrelated beams.

Consider a two-soliton collision, and letk1 andk2 repre-
sent the constant soliton parameters, associated with
right-moving and left-moving solitons, respectively. Letr1
and rL denote the respective soliton states before imp
Suppose the collision transformsr1 into rR , andrL into r2.

The state change undergone by each colliding sol
takes on the very simple form of a linear fractional transf
mation~LFT! ~also called bilinear or Mo¨bius transformation!
@11#. The coefficients are simple functions of the state of
other soliton in the collision. Explicitly, the LFT giving th
state of the emerging left-moving soliton is

r25
@~12g!/r1* 1r1#rL1gr1 /r1*

grL1~12g!r111/r1*
, ~2!

where

g5g~k1 ,k2!5
k11k1*

k21k1*
5

2k1R

k1R1k2R2 iD
, ~3!

and D5k1I2k2I , the velocity difference. We assume her
without loss of generality, thatk1R ,k2R.0. Notice that the
transformation fromr1 to r2 is not Möbius, but is much
more nonlinear. This fact plays a crucial role when we fo
a closed cycle of collisions, and it appears that it is just t
high degree of nonlinearity that makes possible the existe
of multiple stable configurations of polarization states.

III. THE BASIC THREE-CYCLE AND COMPUTATIONAL
EXPERIMENTS

Figure 1 shows the simplest example of the basic sche
a cycle of three beams, entering in statesA, B, andC, with
intermediate beamsa, b, andc ~see Fig. 1!. For convenience
we will refer to the beams themselves, as well as their sta
asA, B, C,etc. Suppose we start with beamC initially turned
off, so thatA5a. Beama then hitsB, thereby transforming it

FIG. 1. The basic cycle of three collisions.
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to stateb. If beamC in then turned on, it will hitA, closing
the cycle. Beama is then changed, changingb, etc., and the
cycle of state changes propagates clockwise. The ques
we ask is whether this cycle converges, and if so, whethe
will converge with any particular choice of complex param
eters to exactly zero, one, two, or more foci. We answer
question with numerical simulations of this cycle.

A typical computational experiment was designed by fi
ing the input beamsA, B, C, and the parametersk1 and k2,
and then choosing pointsa randomly and independently with
real and imaginary coordinates uniformly distributed
squares of a given size in the complex plane. The cycle
scribed above was then carried out until convergence in
complex numbersa, b, andc was obtained to within 10212 in
norm. Distinct foci of convergence were stored and the i
tial starting pointsa were categorized by which focus the
converged to, thus generating the usual picture of basin
attraction for the parametera. Typically this was done for
50 000 random initial values ofa, effectively filling in the
square, for a variety of parameter choicesA, B, andC. The
following results were observed.

In cases with one or two clear foci, convergence was
tained in every iteration, almost always within one or tw
hundred iterations.

Each experiment yielded exactly one or two foci.
The bistable cases~two foci! are somewhat less commo

than the cases with a unique focus, and are characterize
values ofkR between about 3 and 5 when the velocity d
ferenceD was fixed at 2.

In the next section we next give two specific examples
bistable parameter choices.

IV. BASINS OF ATTRACTION

Figure 2 shows a bistable example, with the two foci a
their corresponding basins of attraction. The parameterk is
fixed in this and all the examples in this paper at 46 i for the
right- and left-moving beams of any given collision, respe
tively. The second example, shown in Fig. 3, shows that

FIG. 2. The two foci and their corresponding basins of attract
in the first example, which uses a cycle of three collisions. T
states of the input beams areA520.820.13i , B50.420.13i , C
50.511.6i ; andk546 i .
7-2
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MULTISTABLE COLLISION CYCLES OF MANAKOV . . . PHYSICAL REVIEW E63 046607
basins are not always simply connected; a sizable island
maps to the upper focus appears within the basin of the lo
focus.

V. PROPOSED PHYSICAL ARRANGEMENT

Our computations assume that the angles of collisio
which for spatial solitons are determined by the unnorm
ized velocities in laboratory units, are equal. In situatio
with strong interactions the angles are small, on the orde
a few degrees, at the most. We can arrange that all t
collisions take place at the same angle by feeding back
of the beams using mirrors, using an arrangement simila
that shown in Fig. 4. Whether such an arrangement is exp
mentally practical is left open for future study, but it does n
appear to raise insurmountable problems. Note that it is
necessary to divert the continuation of some beams to a
unwanted collisions.

VI. A TRISTABLE EXAMPLE USING A FOUR-CYCLE

Collision cycles of length four seem to exhibit more com
plex behavior than those of length 3, although it is difficult
draw any definite conclusions because the parameter sp
are too large to be explored exhaustively, and there is
present no theory to predict such highly nonlinear behav
If one real degree of freedom is varied as a control para
eter, we can move from bistable to tristable solutions, wit
regime between in which one basin of attraction disintegra

FIG. 3. A second example using a cycle of three collisio
showing that the basins need not be simply connected. The stat
the input beams areA50.720.3i, B521.120.5i , C50.410.81i ;
andk546 i .

FIG. 4. One way to control the collision angles.
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into many small separated fragments. Clearly, this mode
complex enough to exhibit many of the well-known featur
of nonlinear systems.

Fortunately, it is not difficult to find choices of paramete
that result in very well behaved multistable solutions. F
example, Fig. 5 shows such a tristable case. The sma
distance from a focus to a neighboring basin is on the or
of 25% of the interfocus distance, indicating that these eq
libria will be stable under reasonable noise perturbations

VII. DISCUSSION

As mentioned in the Introduction, we have exhibited c
lision configurations of three and four cycles in the Manak
system where there are two or three well separated foci.
general phenomenon raises many questions, both of a t
retical and practical nature. We discuss these in the sub
tions below.

A. Nonintegrable systems

The fact that there are simple polarization-multistab
cycles of collisions in a Manakov system suggests that si
lar situations occur in other vector systems, particularly p
torefractives with a saturable nonlinearity. Any vector sy
tem with the possibility of a closed cycle of soliton collision
becomes a candidate for multistability, and there is at t
point really no compelling reason to restrict attention to t
Manakov case, except for the fact that the explicit sta
change relations make numerical study much easier.

B. Dynamics

The simplified picture we used of information travelin
clockwise after we begin with a given beama gives us stable
polarization states when it converges, plus an idea of the
of their basins of attractions. It is remarkable that in all ca
in our computational experience, except for borderline tr
sitional cases in going from two to three foci in a four cyc
this circular process converges consistently and quickly.

,
of

FIG. 5. A case with three stable foci, for a collision cycle
length four. The states of the input beams areA520.3920.45i ,
B50.2220.25i , C50.010.25i , D520.5110.48i ; andk546 i .
7-3
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KEN STEIGLITZ PHYSICAL REVIEW E 63 046607
understanding the actual dynamics and convergence ch
teristics in a real material requires careful physical modeli
This modeling will depend on the nature of the medium us
to approximate the Manakov system, and is left for futu
work. The implementation of a practical way to switch fro
one stable state to another is likewise critically dependen
the dynamics of soliton formation and perturbation in t
particular material at hand, and must be studied with re
ence to a particular physical realization.

We remark also that no iron-clad conclusions can
drawn from computational experiments about the number
foci in any particular case, or the number possible for a giv
size cycle—despite the fact that we regularly used 50
random starting points. On the other hand, the clear ca
that have been found, such as those used as example
very characteristic of universal behavior in other nonline
iterated maps, and are sufficient to establish that bistab
and tristability, and perhaps higher-mode multistability, is
genuine mathematical characteristic, and possibly also ph
cally realizable. It strongly suggests experimental explo
tion.

The collision cycles proposed here can also be imp
mented using collisions of counterpropagating temporal s
tons in a fiber. However, this requires a way to divert so
tons synchronously after they are used for collisions, a
before they interfere with new versions of the fixed solito
used in the cycle. In effect, the periodic bombardment wo
‘‘refresh’’ the state. This approach, if it could be realize
would directly mimic the iterative algorithm used in this p
per to locate foci computationally, but as a physical insta
tiation would be more in the spirit of a dynamic memo
than a flip-flop composed of beams in quiescent states.
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C. More complicated topologies

We restricted discussion in this paper to the simplest p
sible structure of a single closed cycle, with three or fo
collisions. The stable solutions of more complicated config
rations are the subject of continuing study. A general the
that predicts this behavior is lacking, and it seems at t
point unlikely to be forthcoming. This forces us to rely o
numerical studies, from which, as we point out above, o
certain kinds of conclusions can be drawn. We are fortun
however, in being able to find cases that look familiar a
which are potentially useful, such as the bistable three-cy
with well separated foci and simply connected basins of
traction.

It is not clear, however, just what algorithms might b
used to find equilibria in collision topologies with more tha
one cycle. It is also intriguing to speculate about how co
sion configurations with particular characteristics can be
signed, how they can be made to interact, and how t
might be controlled by pulsed beams. There is promise
when the ramifications of complexes of vector soliton co
sions are more fully understood they might be useful for r
computation in certain situations. In any event the con
quences of the rich interactions possible in collisions
Manakov solitons originally derived by Radhakrishnanet al.
@12# have yet to be fully explored.
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