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Multistable collision cycles of Manakov spatial solitons
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We show numerically, using known state-change relations, that collision cycles of Mariakdy-
dimensional spatial solitons can exhibit multistable polarization states.
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[. INTRODUCTION The work described here is a continuation of ongoing
work that aims at exploiting soliton collisions for computa-
Bistable and multistable optical systems, in addition totion. It was shown in Ref[11], using explicit solutions of
being of some theoretical interest, are of practical importanc&adhakrishnawt al. [12], that collisions of bright Manakov
in offering a natural “flip-flop” for noise immune storage Solitons can be described by transformations of a complex-
and logic. We show in this paper that simple cycles of col-valued polarization state which is the ratio between the two
lisions of (1+1)-dimensional spatial solitons governed by the Manakov components. AOT gate was described there, a
Manakov equations can have more than one distinct stabMOVE operation was described in R¢1.3], and the general
set of polarization states, and therefore these distinct equiligdea of implementing logic using soliton collisions in a ho-
ria can, in theory, be used to store and process informatiodogeneous medium has been studied in Ré#-17. Re-
The multistability occurs in the polarization states of thecently it was shown that allowing time-gating of spatial soli-
beams; the solitons themselves do not change shape and #ns makes possible the implementationFafNOUT, NAND
main the usual sech-shaped solutions of the Manakov equgates, and hence universal computafiba)].
tions. This is in contrast to multistability in the modes of ~ The possibility of using multistable systems of beam col-
scalar solitongsee, for example, Ref1]). The phenomenon lisions broadens the possibilities for practical application of
also differs from other examples of polarization multistabil- the surprisingly strong interactions that Manakov solitons
ity in specially engineered devices, such as the verticalcan exhibit, a phenomenon originally described in RR&2].

cavity surface-emitting laseVCSEL) [2], in being depen- \We show here that a cycle of three collisions can have two
dent 0n|y on Simp'e soliton collisions in a Comp|ete|y distinct foci surrounded by basins of attraCtlonS, and that a

homogeneous medium. cycle of four collisions can have 3. Many questions are left
The picture ofspatial solitons as self-focused beams is for future work: How can one switch effectively and reliably

more recent and less well known than the picturéeaiporal  between two foci? Does this phenomenon occur in other vec-

solitons propagating along an optical fitisr example, but ~ tor SOI_iton systems, §uch as the nonintegrable. saturable sys-

the existence and stability of spatial solitons have been wefléms in photorefractivefd—g|? Can such multistable sys-

established both theoretically and experimentally in a varietf€¢ms be coupled to implement logical operations such as

of materials[3]. As pointed out in Ref[3], bright spatial shift registers and arithmetic? We return to these questions in

Kerr solitons are stable only in(1+1)-dimensional the last section.

systems—that is, systems where the beam can diffract in

_only one dimension as it propagates. Such solitons are real- Il MATHEMATICAL FRAMEWORK

ized in slab waveguides, and are robust with respect to per-

turbations in both width and intensity. What we show in this We review the model and mathematical results we will

paper is that if a realization of vector spatial solitons is gov-use. The Manakov system consists of two coupled 3-NLS

erned by the Manakov equations, then multistability is pos€quations

sible in the steady-statepolarization states of a cycle of

beams. The dynamic behavior of such a system in reaching iQ1e+ Gt 21(]a1]2+ 1021291 =0,
steady-state foci is an open research question, and we leave (1)
discussion of this issue for the conclusion of this paper. . 2 2

The basic configuration considered in this paper requires 020+ Qaxxt 24(]01]*+]02]%)92=0,

only that the beams form a closed cycle, and can thus be

realized in any nonlinear optical medium that supports spawhereq,=0q;(x,t) andg,=q,(x,t) are two interacting op-
tial Manakov solitons. There are several candidates fotical componentsy is a positive parameter, andandt are
physical instantiation of spatial Manakov solitons, includingnormalized space and time. Note that in ordertfty repre-
photorefractives[4—8], and semiconductor quantum well sent the propagation variable, as in Manakov’s original paper
wave guides$9]. Very recently, ideal Manakov solitons were [19], our variablesc andt are interchanged with those of Ref.
also proposed in quadratic media, via optical rectification/12]. Furthermore, in our picture of spatial solitons, the vari-
cascading and the electro-optic eff¢td]. For a recent re- ablesx andt will represent the horizontal and vertical coor-
view of optical spatial solitons and their interactions, seedinates of the medium, with being the direction of beam
Ref. [3]. propagation.
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FIG. 1. The basic cycle of three collisions.

The system admits single-soliton, two-component solu-
tions that can be characterized by the complex nunkber
=kg+i-k, wherekg determines the energy of the soliton, G, 2. The two foci and their corresponding basins of attraction
andk; is the velocity, all in normalized units, and a compleX in the first example, which uses a cycle of three collisions. The
statep, constant between collisions, which is the ratio be-states of the input beams afe= —0.8-0.13, B=0.4-0.13, C
tween theq, andqg, components. The two components can=0.5+1.6; andk=4=i.
be thought of as components in two directions of polariza-
tion, but in the case of a photorefractive crystal are in facto stateb. If beamC in then turned on, it will hitA, closing
two different uncorrelated beams. the cycle. Beanma is then changed, changirg etc., and the

Consider a two-soliton collision, and Ie{ andk, repre-  cycle of state changes propagates clockwise. The question
sent the constant soliton parameters, associated with thee ask is whether this cycle converges, and if so, whether it
right-moving and left-moving solitons, respectively. Let  will converge with any particular choice of complex param-
and p_ denote the respective soliton states before impacteters to exactly zero, one, two, or more foci. We answer the
Suppose the collision transforms into pg, andp, into p,. guestion with numerical simulations of this cycle.

The state change undergone by each colliding soliton A typical computational experiment was designed by fix-
takes on the very simple form of a linear fractional transfor-ing the input beamd\, B, G and the parametels, and ks,
mation(LFT) (also called bilinear or Mius transformation  and then choosing pointsrandomly and independently with
[11]. The coefficients are simple functions of the state of thereal and imaginary coordinates uniformly distributed in
other soliton in the collision. Explicitly, the LFT giving the squares of a given size in the complex plane. The cycle de-

0
real

state of the emerging left-moving soliton is scribed above was then carried out until convergence in the
complex numbers, b, andc was obtained to within 10'% in
_[(1=9)/pi +pilpL+9p1/p] ,  norm. Distinct foci of convergence were stored and the ini-
p2= gpL+(1—9g)p1+ Lpt ’ 2) tial starting pointsa were categorized by which focus they
converged to, thus generating the usual picture of basins of
where attraction for the parametex. Typically this was done for
50000 random initial values dd, effectively filling in the
ki + k7 2k1Rr square, for a variety of parameter choidgsB, andC. The
9=9(ky.kz) = Kyt KX Koiptkom—iA’ 3 following results were observed.

In cases with one or two clear foci, convergence was ob-
andA=k;,—k,,, the velocity difference. We assume here, tained in every iteration, almost always within one or two
without loss of generality, that;r,k,z>0. Notice that the hundred iterations.
transformation fromp; to p, is not Mdbius, but is much Each experiment yielded exactly one or two foci.
more nonlinear. This fact plays a crucial role when we form The bistable casegwo foci) are somewhat less common
a closed cycle of collisions, and it appears that it is just thighan the cases with a unique focus, and are characterized by
high degree of nonlinearity that makes possible the existencéalues ofkg between about 3 and 5 when the velocity dif-

of multiple stable configurations of polarization states. ~ ferenceA was fixed at 2. _ 3
In the next section we next give two specific examples of
IIl. THE BASIC THREE-CYCLE AND COMPUTATIONAL bistable parameter choices.

EXPERIMENTS

. . . IV. BASINS OF ATTRACTION
Figure 1 shows the simplest example of the basic scheme,

a cycle of three beams, entering in stafedB, andC, with Figure 2 shows a bistable example, with the two foci and
intermediate beama b, andc (see Fig. 1L For convenience, their corresponding basins of attraction. The paramletisr
we will refer to the beams themselves, as well as their state$ixed in this and all the examples in this paper &tidfor the
asA, B, C,etc. Suppose we start with bedrinitially turned  right- and left-moving beams of any given collision, respec-
off, so thatA=a. Beama then hitsB, thereby transforming it tively. The second example, shown in Fig. 3, shows that the
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FIG. 3. A second example using a cycle of three collisions, FIG. 5. A case with three stable foci, for a collision cycle of
showing that the basins need not be simply connected. The states leihgth four. The states of the input beams Are —0.39-0.45,
the input beams ara=0.7-0.3, B=—-1.1-0.5, C=0.4+0.81; B=0.22-0.25, C=0.0+0.25, D=-0.51+0.49; andk=4=*i.
andk=4=i.

into many small separated fragments. Clearly, this model is
basins are not always simply connected; a sizable island thabmplex enough to exhibit many of the well-known features
maps to the upper focus appears within the basin of the lowesf nonlinear systems.
focus. Fortunately, it is not difficult to find choices of parameters
that result in very well behaved multistable solutions. For
V. PROPOSED PHYSICAL ARRANGEMENT example, Fig. 5 shows such a tristable case. The smallest
distance from a focus to a neighboring basin is on the order
Our computations assume that the angles of collisionsgf 250 of the interfocus distance, indicating that these equi-

which for spatial solitons are determined by the unnormaljjpria will be stable under reasonable noise perturbations.
ized velocities in laboratory units, are equal. In situations

with strong interactions the angles are small, on the order of
a few degrees, at the most. We can arrange that all three
collisions take place at the same angle by feeding back one As mentioned in the Introduction, we have exhibited col-
of the beams using mirrors, using an arrangement similar téision configurations of three and four cycles in the Manakov
that shown in Fig. 4. Whether such an arrangement is expersystem where there are two or three well separated foci. The
mentally practical is left open for future study, but it does notgeneral phenomenon raises many questions, both of a theo-
appear to raise insurmountable problems. Note that it is alsgetical and practical nature. We discuss these in the subsec-
necessary to divert the continuation of some beams to avoitlons below.

unwanted collisions.

VIl. DISCUSSION

A. Nonintegrable systems

VI A TRISTABLE EXAMPLE USING A FOUR-CYCLE The fact that there are simple polarization-multistable

Collision cycles of length four seem to exhibit more com- cycles of collisions in a Manakov system suggests that simi-
plex behavior than those of length 3, although it is difficult to lar situations occur in other vector systems, particularly pho-
draw any definite conclusions because the parameter spac@sefractives with a saturable nonlinearity. Any vector sys-
are too large to be explored exhaustively, and there is d@em with the possibility of a closed cycle of soliton collisions
present no theory to predict such highly nonlinear behaviorbecomes a candidate for multistability, and there is at this
If one real degree of freedom is varied as a control parampoint really no compelling reason to restrict attention to the
eter, we can move from bistable to tristable solutions, with aManakov case, except for the fact that the explicit state-
regime between in which one basin of attraction disintegrateghange relations make numerical study much easier.

A B. Dynamics

9 o\B The simplified picture we used of information traveling

c a clockwise after we begin with a given beangives us stable
C—g polarization states when it converges, plus an idea of the size

of their basins of attractions. It is remarkable that in all cases

\ .

mirror'& 5 > mirror in our computational experience, except for borderline tran-
sitional cases in going from two to three foci in a four cycle,
FIG. 4. One way to control the collision angles. this circular process converges consistently and quickly. But
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understanding the actual dynamics and convergence charac- C. More complicated topologies

ter@stics in a reallmaterial requires careful physical r_nodeling. We restricted discussion in this paper to the simplest pos-
This modeling will depend on the nature of the medium usedsjple structure of a single closed cycle, with three or four
to approximate the Manakov system, and is left for futurecoliisions. The stable solutions of more complicated configu-
work. The implementation of a practical way to switch from rations are the subject of continuing study. A general theory
one stable state to another is likewise critically dependent othat predicts this behavior is lacking, and it seems at this
the dynamics of soliton formation and perturbation in thepoint unlikely to be forthcoming. This forces us to rely on
particular material at hand, and must be studied with refernumerical studies, from which, as we point out above, only
ence to a particular physical realization. certain kinds of conclusions can be drawn. We are fortunate,
We remark also that no iron-clad conclusions can béiowever, in being able to find cases that look familiar and
drawn from computational experiments about the numbers oivhich are potentially useful, such as the bistable three-cycles
foci in any particular case, or the number possible for a giverwith well separated foci and simply connected basins of at-
size cycle—despite the fact that we regularly used 50 0odraction. _ _ _
random starting points. On the other hand, the clear cases It is not clear, however, just what algorithms might be
that have been found, such as those used as examples, Hged to find QQUIlIbrIE_i in co_II|S|on topologies with more thar_1
very characteristic of universal behavior in other nonlineafon€ cycle. It is also intriguing to speculate about how colli-

iterated maps, and are sufficient to establish that bistabilit?ion configurations with particular characteristics can be de-

and tristability, and perhaps higher-mode multistability, is a>9"€d. how they can be made to interact, and how they

genuine mathematical characteristic, and possibly also phys\ﬁl]v—qr'lger:]t tt;lee igrr]r:irf?gggo% gt‘jlggr?];?Iiig]ss.();I—Cgcr:(iolrss%rlﬁg]r:st(:aoflri]-at
;:islrI]y realizable. It strongly suggests experimental explora-sions are more fully understood they might be useful for real
: computation in certain situations. In any event the conse-

The collision cycles proposed here can also be impleg, ances of the rich interactions possible in collisions of

mented using collisions of counterpropagating temporal soliyj5nakov solitons originally derived by Radhakrishreral.
tons in a fiber. However, this requires a way to divert 50"'512] have yet to be fully explored.

tons synchronously after they are used for collisions, an

beforg they interfere with new versions of the fixed solitons ACKNOWLEDGMENTS

used in the cycle. In effect, the periodic bombardment would

“refresh” the state. This approach, if it could be realized, The author is indebted to the following colleagues for past
would directly mimic the iterative algorithm used in this pa- and continuing discussions about spatial solitons: C. Anas-
per tolocate foci computationally, but as a physical instan- tassiou, M. Jakubowski, D. Lewis, M. Segev, and R. Squier.
tiation would be more in the spirit of a dynamic memory We thank J. Hietarinta for the suggestion of using collisions
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