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Abstract. We address t he problem of designin g an d building ef
ficient custo m Vl.Sl-besed processors to do computat ions on large
multi -dimensional lat tices. The design t ra deoffs for two architectures
which provid e practical engines for lattice updates are deri ved and
an alyzed . We find t hat I/O constit utes t he principal bottleneck of
processors des igned for lat t ice computations, and we derive upp er
bounds on t hroughp ut for lattice updates based on Hong and Kung's
graph-pebbling argument t ha t model s I/ O. In part icular, we show that
R = O(BS1/ d ) , where R is the site update rate, B is t he main memory
bandwidth, S is t he processor sto rage, and d is t he dimension of th e
la ttice.

1. Introduction

T his pap er deals with the problems of designing and building practi cal, cus
tom VLSI-based comp uters for lat ti ce calculat ions. These computational
problems are characterized by being iterat ive, defined on a regular lattice of
po ints, uniform in space and time, local, and relatively simple at each lat tice
point. Examples include numerical solut ion of differential equations, itera
t ive image processing, and cellular au tomat a. The recently studied lattice
gas auto mata, which are microscopic models for fluid dynamics, are proposed
as a test bed for the work.

The machines envisaged- lattice engines-would typ ically consist of many
instances of a custom chip and a general-purpose host machine for support.
In many pract ical situations, the performance of such machin es is limited ,
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not by the speed and size of the actual processing elements , but by the com
municat ion ban dwidth on- and off-chip and by the memory capacity of the
chip.

A famil iar example of lat ti ce-based computational tasks is two-di mensio nal
image processing . Many useful algorit hms , such as linear filter ing and median
filtering, recompute values the same way everywhere on the image, and so
are perfectly uni form; they are loca l in that th e computa.tion at a given point
depend s on ly on th e immediate neighbors of th e point in the two-dimensional
image.

Another class of calculat ions, besides being uniform and local, has the ad
d it ional important characteristic of using only a few bits to store the val ues
at lat t ice poin ts, and so is ext remely simple. Fur th er} th e ca lculat ions oper
a te on local data iterati vely} which means th at they are not as demanding
of exte rn al data as man y signal pro cessing problems. Th ese comput a t ional
models-uniform}local }simple} and itera t ive-are called cellular automa ta.
We will next describe a particular class of cellular automata} one that pro
vides a good test bed for the gene ral prob lems arising in the design of dedi
cated hard ware for la t tice-based computations.

2. A paradigm for latt ice computations : t he latt ice gas model

Quite recently}there has been much attention given to a particularly promis
ing kind of cellular automa to n} the so-called lat tice gases} because they can
model fluid dynamics [141. T hese are lat tices governed by the following ru les:

At each lat t ice site, each edge of t he lattice incident to that site may
have exactly zero or one par ticle t raveling at unit speed away from th at
site, and} in some models, possibly a parti cle a t rest at the lattice site.

Th ere is a set of collision ru les which determines} at each lattice site
an d at each tim e step, what the next particle configuration will be on
its incident edges .

T he collision rules sat isfy certain physically plausible laws} especially
pa rticle-number (mass) conservat ion and momentu m conservat ion.

T hese la t tice gas models have an intrinsic exclusion pr inciple, because no
more th an one part icle can occupy a given directed lat tice edge at any given
t ime. It is t herefo re surprising that they can model fluid mechan ics. In fact }
in a two-dimensional hexagonally connected la t tice} it has been shown that
the Navier-Stokes equation is sa t isfied in the limit of large lattice size. T his
mod el is called t he F HP model, after Frisch, Hasslacher, and Pomeau [3J.
T he older HPP mod el {4J, which uses an ort hogona l lattice, does not lead to
isotropic solutions.

T he idea of using hexagonal lattice gas models to predict feat ures of fluid
flow seems to be about two yea rs old} and whether the genera l approach of
simulat ing a la t tice gas can ever be comp etitive wit h more familiar numerical
solut ion of th e Navier-Stokes equ ation is certainly a premature question.
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Extensions to three-dimensional gases are just now being formulated [1],
and quanti tative experimental verificat ion of th e two-dimensional resul ts is
fragmentary. The Reynolds Numbers achievable depend s on the size of the
lattices used , and very large Reynolds Numbers will require huge lattices and
correspondingly huge computat ion rates. For a discussion of t he sca ling of
the lattice computations wit h Reynold s Number, see [1 0).

What is clear is th at the ult imate pract icality of the approach will de
pend on the technology of special-purpose hardware implementations for the
mod els involved. Furt hermore, the uniformity , Iocsl ity, and simplicity of t he
model mean tha t thi s is an ideal test bed for dedicated hard ware that is
based on custom chips. We will th erefore use th e lat ti ce gas problem as a
running example in what follows. We especially want to st udy the interac
t ion between the design of custom VLSI chips and the design of the overa ll
system architecture for this class of problems.

We will present and compare two comp eting architectures for latti ce gas
cellular automata (LGC A) computat ions th at are each based on VLSI cust om
processors. The ana lysis will focus on t he permissible design space given t he
usual chip const raints of area and pin-ou t and on th e achievable performance
with in the design space. Following this, we will present some theoret ical
upp er bounds for the computation rate over a lattice, based on a graph
pebbling argument.

3 . Serial p ipelined architectures for lattice processing

We are primari ly interested in spec ial-purpose, VLSI-based processor archi
tectures tha t have more tha n one PE (pro cessing element) per custom chip.
It is important to recogn ize t hat if the PEs are not kept busy, then it might
be more effective (in terms of overall th roughput ) to have fewer PEs per
chip but to use t hem more efficient ly. Although there are many archit ectures
that have the property of using PEs efficiently, we will on ly descr ibe two,
both based on th e idea of serial pipel ining (see figure I). This approach has
t he benefit that the bandwidth to the pro cessor system is small even t hough
t he numb er of active P Es is large. Thi s seria l technique has been used for
image processing where the size of t he two-dime nsional grid is sma ll and
fixed [6,13,17] and has also been used to design a high-performance custom
processo r for a one-dimensional cellular automaton [16).

Consider what is required to pipeline a computation. We must guarantee
th at t he appropriat e site values of the correct ages are presented to the
comput ing elements. In the case of th e LGCA , we can express this dat a
dependency as :

v(a,t + 1) = f( N(a) ,t)

where v(a, t ) is the value at lat t ice sit e a at tim e t, N (a) is the neigh borllOod
of th e latt ice site c, and f is the function that det ermines the new value
of a based on its neighborhood. The LGCA requires all th e points in the
neighb orhood of a to be the same age in ord er to compute t he new value,
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Figure 1: One-dimensional pipeline.

Figure 2: Hex agonal neighborhood . The circled site is a j th e sites
wit h Xs constitute it s neighbor hood.

v(a, t + 1). The LGCA has a neighborhood that looks like the example given
in figure 2.

One-dimensional pipelining also requires a linear ordering of the sites in
the array. That is, we wish to send the values associated with the sites one at
a t ime into the one-dimensional pipeline and receive the sequence of sites in
the same order possibly some generations later. Therefore, we would like sites
th a t are close togeth er in the lattice to be close together in t he stream. In
t his way, the serial PE requires a small local memory because neig hborhoods
(sites that are close together in the array) will also be close together in the
st ream. Unfort unately, the lattice gas automaton can require a large amount
of local memory per PE because there is no sublinear embedding of an array
into a list [12].

The natural row-maj or embedding of the array into a list preserves 2-
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neighborhoods? with diameter 2n - 2. T his mean s that a full neighborhood
of a site from an n x n lattice is distributed in the list so that some elements
of the neighborhood are at least 2n - 2 posit ions apart. Thi s embedding is
undesirable for two reasons. The amount of local memory required by a PE
is a fun ction of t he problem instance, forcing us to dec ide in ad vance the
size of one dimension of t he la ttice (one can actually process a prism array,
finit e in all but one dimension ) because the chip will only work for a single
problem size du e to its fixed span. The second deficiency is du e to the size
of the span . If n = 1000, th en each P E would require about 2000 sites wor th
of memory. This puts a severe restrict ion on th e number of P Es that ca n he
placed on a chip.

Unfortunately, the 2n - 2 embedding is opt imal. Rose nberg showed this
bound holds for prism ar ray realizations but it has been unknown whether
it is possible do be tter for finite array realiza t ions. Rosenberg's best lower
bound for the finite array case has never been achieved and he suspected that
t he row-m ajor scheme was optimal. Sternberg [18]also questioned whet her or
not the storage requirement for a serial pipelined machine could be reduced .
Supowit an d Young [1 9] showed t hat the row-major embedding is optima l
and therefore a seria l pipeline must use at least 2n - 2 storage.

T h eorem 1. Place the numbers 1• . . . , n 2 in a square array a(i ,i), and define
the span of the array to be

max{la(i + l , j ) - a(i,j )l, la(i,j + 1) - a(i ,j)l l

Th en span 2: n.

Proof. Put the number s in the array one at a time in order, starting with
1. When for the first t ime there is eit her a num ber in every row or a number
in eve ry column , stop . Without loss of gene ra lity, ass ume this ha ppens with
a number in every row.

We claim t hat there cannot be a full row. Sup pose the cont ra ry. T he
las t number entered was placed in an empty row 1 so there must have been a
full row before we stopp ed . T his would mean th ere was a number in every
column before there was a number in every row.

Since t here is no full row, but a number in every row, there is at least
one vacant place in every row that is adjacent to an occupied spot . Choose
one such vacant place in each row, and call th em set F (with IFI = n). Now,
if we stopped after placing th e number t, the places in F will get filled with
nu mbe rs greater than t. T he largest number that will be put in a location
in F is 2: t + n , and will be adjacent to a nu rnbe r j; t . •

T he critical system par amet ers for the one-dimensional pipeline ar chitec
ture, sys te m area and to tal system th roughput , ca n be var ied over a range of
values. T he actual select ion of the operating point on the thro ughput -area
curve depends on several factors: for example , the probl em instance size and
tota l system cost.

I Sites that are two edge trave rsa ls apart in the latt ice.
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The a ppealing as pec ts of the ser ial architecture are the simplicity of its
des ign, it s small area in comparison to other archi tectures , and th e small
input/ output bandwidth requirement . T he computation proceeds on a. wave
front [8] through t ime an d space, each succeeding P E using the data [rom
the previous P E without the need for fur ther extern al data .

4. Wide-s erial architecture (WS A)

Throughpu t in a serial arch itecture can be improved by add ing concurrency
at each level of the pipeline. On e way to accomplish this is to have each
pipeli ne stage compute t he new value of more than one site each clock period .
For exa mple, if the comp utation at PE i is at the point where site G, circled ,
is to be updated , then P E j contains the data indicated by st rike-out in t he
following:

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 ©J 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

We could allow a second PE P to compute site a + 1 at the same t ime if we
st ore just one more data point.

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 ©J©J 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

T he most at t ractive feat ure of this scheme is that performan ce is in
creased, but at a cost of only the incremental amount of memory needed to
sto re the ext ra sites. Th e on-chip memory per PE is also improved dr am ati
cally; it decreases linearly with the numb er of P Es per chip. However } there
is a price to pay: two new site values are required every clock period so tha t
two site updates can be pe rformed . Th e extra PEs require added bandwid th
to and from the chip and this implies that the mai n memory system must
provide that bandwidth as pins or wires.
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Figure 3: Wide-serial a rchitecture .
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As an example, t he following figure shows how two PEs on the same chip
can cooperate on a computation. Each square of th e shift register holds the
value of one site in the lat tice. Every clock per iod, two new site values are
input to the chip , two sites are updated , an d their values are output to the
next chip in the pipeline.

5. Sternberg partitioned architecture (SPA)

In reference [18], Sternberg proposes th at a large array computation can be
divided among several serial processors, each of which operates as describ ed
earlier. The array is divided into adjacent, non-overlapping columnar slices,
and a fully serial processor is assigned to each slice (see figure 4).

The processors are not exact ly the same as those describ ed above; they are
augment ed to provide a bidirectional synchronou s commun icat ion channel
between adjacent par titions so that sites whose neighborhood s do not lie
ent irely in the storage of a single PE can be computed correc tly and in step
with oth er site upd at es. See reference [18] for det ails.

Dividing the work in this way accomplishes th ree thi ngs. First, it de
creases the amount of storage that each PE needs in order to delay site
values for correct operation of the pipeline. This comes about because each
PE needs to delay only two lines of its slice, not the whole line width. Sec
ond , it increases the ratio of processing elements to the total number of sites,
permitt ing an increase in the maximum throughput by a mult iplicative con
stant equal to th e number of slices. Third, it provides a degree of modularity
and extensibility. It is possib le to join two smaller machines along an edge
to form a machine that han dles a larger problem.

In the case of a VLSI implementation, decreas ing t he size of the local
sto rage is ext remely important because most of the silicon area in th e imple
mentat ion of a serial processor is shift register. Since each PE in the SPA
architectu re requ ires fewer shift register storage cells, it is possible to place
several P Es on a chip, whereas if each serial PE were required to store two
lines of th e whole lat t ice, then only one or two PEs could be placed on a
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Site Lattice
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Pipeline

Figure 4: Sternberg partit ioned archi tecture.

VLSI chip with current technology. T he only way around th is limitat ion is
to use anot her tech nology to implement the required storage, such as off-chip
commercial memories , in which case we qu ickly enco unter pin limi tatio ns.

It is imp ortan t to recogni ze that the tot al amount of sto rage requ ired
under this organizati on is two lines of the whole lat tice per p ipeline stage.
T hus, th e tot al storage requirement under this implementat ion is not reduced
below that of the fully serial approach presented earlier. We should also not
forget that each column of serial processors requires its own dat a path to
and from main memory. T his data path is a relatively expensive commodity.
In Iect, as we will see in t he upcoming analysis, the data path is the most
expensive commod ity in a VLSI implementati on of t his architecture.

The analysis will demonstrate an und erlying principle of VLSI imp lemen
tations of archi tectures for multi-dimensional spat ial updates , nam ely that
I/ O pins are the crit ical resou rce of a VLSI chip.

6 . Analysis and com par ison of WSA a n d SPA

In this section, we analyze and compare the Sternberg partit ioned architec
ture (SPA) wit h the wide-serial arch itecture (WSA) that we proposed in
sect ion 4. T he analysis derives the op timu m th rough put and area of process
ing systems comp osed of VLSI chips for the two-dimensional F HP lat tice gas
problem. We define the design parameters for each system and der ive the
design curves and opt imum values of those parameters. For the analysis, we
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assume that a memory syste m capable of providing full bandwidth to the pro
cessor system is evailable.? Finally, we compare the systems on the basis of
maximum throughpu t , total system area, and throughput-to-area ratio. We
also discuss the relative advantages and disadvantages of both architectures
wit h an emphasis on system complexity and ease of implementati on.

6.1 W id e-serial architecture (WSA)

Th e WSA has system parameters: (assumes 1 pipeline stage per chip, P
processing elements wide)

N = k chips

R=F·P·k~second

and chip const ra ints

(System Area)

(System T hroughput)

where

2D· p:o; n
P(2L + 7P + 3) + -y P :0; a

(Chip Pins)
(Chip Area)

N is t he tot al numb er of chips constitut ing the processor ,

P is the number of PE s per VLSI chip,

k is the total dept h iu PEs of the processor pipeline (path lengt h),

F is the major cycle t ime of the chip,

D is the number of bits required to represent t he state of a lat t ice site,

L is the number of sites along an edge of the square lat tice,

PI is the tot al number of pins usahle for input/output,

(J is the area of a shift register that holds a site value, in ,X2,

'Y is the area of a PE, in ,X2 ,

a is the to tal usable chip area, in A2 .

For convenience, we also define:

B =

f =

I!. =•
.:1: =
o

normalized site storage area

normalized processor area

Less forma lly, this says that the number of chips that we need for the
processor equals the total pipeline depth required, k . T he processing rate
t hat this system achieves is equal to the depth of the pipeline, mult iplied
by the number of processors at each depth , multiplied by the rate at which
a processor computes new sites. We are assuming that each VLSl chip will

2T his is a very impor tan t assumpt ion.
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contain on ly a sing le wide pa ra llel pipeline stage. That is, t he chip is not
internally pip elined wit h wide-seria l processors.

We wish to maximize R subject to having a fixed number of chips, N =
No, an d subj ect to constraints on the pin count an d area of the VLS I custom
chip. Notice t hat the prob lem is equivalent to maximizing P subject to the
chip constraints because R = F · p . k = F· p. N, where F and N are fixed
(N is fixed at No).

The constrai nts are describ ed in the L - P pl ane by the following two
inequalit ies:

p < ..!!..
- 2D

p < :.-1_--:::3~B_-~2B:.cL::
- 7B+f

If we consider an example where D = 8, II = 72, B = 576 X 10- 6, and
r = 19.4 x 10-3 (figures derived from our actual layouts) we get the following
graph:

40

30

P
(pEs/Chip) 20

10

o

o 500

L
(Sites)

1000

The chip const raints require that the op erat ing point determined by P and
L lie below both curves. T he intersect ion of th e two curv es is P ~ 4 and
L ~ 785. Beyond tha t po int, we need to dec rease the number of processors
on a chip to make room for more memory- an undesirable situation because
throughp ut th en drops off linearly. Furthermore , we wan t L to be as big as
possible, so the corner is the logical choice of operating point.

We are also interested in the ultimate maximum performance that the
architecture can deliver using any number of chips. It is easy to see that
th e maximum throughput for a fixed clock frequency, F , comes whe n th e
pipeline depth, k, is at a maximum. A maximum value, krnax = L, arises
because at that point th e pipeline contains a ll th e values of the sit es in the
la t t ice and the re is no new data to int rodu ce into the processor pipeline. The
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max imum values for processor system area and processor system throughput
are therefore:

NllUJ"X = L chips

lim.. = ~ . F . L sites
2D sec

It is also interest ing to note that there is an upper bound on L even if we
were to accept arbitrar ily slow computation. At a certain point all the chip
area would be used for memory, leaving no room for PEs.

T he majo r limitation of this architecture is that the largest problem in
stance is fixed by the chip technology, but it has the redeeming feat ures of
simplicity, ease of implementat ion, and small main memory bandwidth .

6.2 Sternbe rg partitioned arch itecture (SPA)

This processor comp utes updates for a lattice L sites on a side by partitioning
the lat tice into non-overlapp ing slices t hat are each W sites wide (t here are {¢
such slices). Each of the VLSI chips that compose the processor computes
Pw slices and t he computat ion of each slice is pipelined on the chip to a
depth P, (see figure 4). It is then easy to see th at the system has area and
t hroughput :

N = L !lY . .s: chips
P", Pic

R _F .k . L. sites- w sec

(System Area)

(System Throughput)

To derive the constraints on the VLSI chip, notice t hat the communica
t ion path between chips in the direction of the data pipeline requires 2D Pw

pins, and t hat t he "slice-to-slice" path requires 2EPk , where E is the number
of bits required to complete the information contained in a single site 's neigh
borhood when that neighborhood is split across a slice boundary. However,
the chip must use no more than a area , of which processors each require "
and memory to hold a site value requires {3. Thus, the whole chip is governed
by t he const raints

2DPw +2E P, ~ IT
((2W + 9)fJ + 'Y)PwPk ~ c

(Chip Pins)
(Chip Area)

We again wish to maximize throughput with respect to a fixed number of
chips, N = No, while at the same time satisfying the VLSI chip constraints of
area and bandwidt h. This again turns out to be equivalent to maximizing the
total number of processors on the chip because we can easily verify by direct
subst itution that R = p . k:- {(; = PU/Pk · F· No. Since F and No are fixed, it
suffices to max imize the product PwPk = P subject to the const raints above.

To evaluate the design space of SPA, it is helpful to view it in the W - P
plane. We do this via a change of variables:
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Rewr iting the chip inequalities yields

P
2DPw + 2Ep ~ II

w

((2W + 9)B + r )p ~ 1

where PUll P, and Ware variables. This is the logical choice of var iab les for
this arch itecture because they are the ones th at are constrained by the chip
technology and govern the opti mal design of the chip. Once we know good
values for them, a machine which can compute for an arbitrary lat ti ce width
L can be bui lt by increasing the numb er of slices of width W .

When th ese curves are projected onto th e W - P plane using the values
for D, II, B from the previous example, and set t ing E to 3 (three bits must
be passed to complete a neighborhood), we have

40-

30-

P
(PEslChip) 20-

10-

I
o

,
1000

T he constant curve is a proj ect ion of the first constra int where Pw is given
the value which permits P to achieve its maximum value. For t his example,
this occurs at Pw = ~. As before, we need to operate below both curves ,
and t he corner at P '" 13.5 and W '" 43 yields the best choice. Beyond t his
point, throughput drop s off quite rapidly as t he silicon real estate is used by
memory.

6. 3 Discussion

T he abo ve analysis gives us two different viewpoints from which to make a
comparison between th ese two archit ectures. Ignoring extensibility, we can
make a comparison between th e two designs when they are optimized for
throughp ut , as they were in the preceding. Taking a more general point of
view, we can make the comparison by using a slight variant of WSA which
allows for extensiblity by sacrificing processing speed.

First, let us compare th e designs opt imized for throughput without regard
to extensibility. The optimal WSA configurat ion limit s the lattice length
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to L = 785. Both WSA and SPA systems have throughput rat es which
grow linearly with the number of chips. However , SPA is three t imes faster
than WSA. (SPA has twelve processors per chip while WSA has four. ) On
the other han d, t he SPA system requi res four t imes as much main memo ry
ha ndwidth as t he WSA system: 262 bit s/ tick versus 64 bits / tick.

The above argument contains a bias in favor of SPA. System timing is an
important consideration which can make it difficult to clock SPA as fast as
WSA . The WSA architecture has connect ivity only in one dim ension, whereas
the SPA system requi res communication in both the pipeline direction and
th e synchronous side-to-side data path s. Th is added complexity is a more
pronounced drawback for SPA when ext ensibility is considered, as we will
mentio n below. Th e conclusion in both cases favors the WSA system when
it comes to considering an implementation. There is also the matter of the
data access pattern in the memory. The WSA machine accesses the da ta in
a st rict raster scan pattern which is simpler th an the row-staggered pa ttern
that the SPA scheme requires for its operation.

T he SPA arch itecture has one considerable advantage over the WSA
scheme : extensibility. Smaller inst ances of an SPA machine can be joined
together to form a mach ine that computes a larger lat tice. Th is is not true
for the WSA case, where comp ut at ion is limited to lat ti ce sizes which do
not exceed L as given by the chip area const raint , because all t he requi red
data must fit on the chip. Thi s requirement is relaxed in the SPA scheme
because data can be moved between adj acent chips as W is adjusted to th e
chip const raints and an arbitrary lattice width L can be supported by com
posing a suitable numb er of slices. In th is respect , the two schemes seem
incomparable.

Ou r second point of view on the compari son of these two architectures is
facilitat ed by considering a slight variat ion of WSA which allows extension
of the latt ice size. The extens ion can be accomplished by moving a port ion
of the shift register off chip. The pin const raints given previously, with the
same constants, allow only one processor per chip in thi s case . A stage in the
pipeline consists of a processor chip and associated shift registers sufficient
to hold the remainder of t he 2£ + 10 node values which do not fit onto the
processor chip. We will call this version of WSA WSA-E.

Both SPA an d WSA-E systems have throughput rates t hat grow linearly
with t he number of chips in the system for a fixed lat tice size L . However,
the constant of proportionality between t he two rates grows with increasing
lat tice size. The reason is that the numb er of processors per un it chip area
is independ ent of lattice size for SPA, whereas it decreases with increasing
lat tice size for WSA-E. So, for instance, given the same numb er of chips and
a lattice size L ~ 785, the SPA system is twelve times fast er than WSA~E

because it has twelve processors per chip as opposed to one per chip.
A better under standing of the contrast s between the two systems can be

obtained by looking at requirements for main memory bandwidth and sto rage
area per processor . WSA-E has a constant bandwidth requ irement of 16 bit s
per clock t ick and requires (2L + lO )B storage area per processor ; SPA has a
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main memory bandw idt h requirement of ~ bits per t ick and req uires (1284 )B
area per processor. For a fixed processing rate, the penalty for lar ger la ttice
size is either linear growth in th e number of chips for the WSA-E system, or
linear growth in the main memory bandwidth in th e SPA case. For examp le,
if L = 1000, then WSA-E requires about twice as much area as SPA, while
requiring about one twentieth as much bandw idth.

6.4 Summary

We have analyzed the critical parameters of two system architectures for
high performance computation on a cellular automaton lat t ice. We see th at
the WSA ar chitecture offers good throughput at a modest system area and
complexity, while the SPA architecture offers higher performance, at the pr ice
of increased complexity and memory bandwidth.

The preced ing ana lysis suggests that the ultimate limit to the perfor
mance of these architectures, and any alternat ives, will ste m from chip pin
bandwid th an d storage requirements, not from pro cessing requirements . For
example, a chip in 3ft CMOS has been fabricated and tested for the wide
serial arc hitecture in which about 4 pe rcent of the area is used for processing .
Any more process ing on the chip would simp ly go unused because of storage
and bandwidth constraints. We can expect this frac t ion to shri nk as t he lat
tice gets wider, and as we increase t he dimensionality of the probl ems. T his
fact has recently become clear in the liter atu re on systolic arrays, and in [5),
Hong and Kung present a model an d a bou nding tech nique for quantifying
this notion. In t he next section, we will apply t heir res ults to th e class of
la ttice computations.

7. Pebbling bounds

WSA and SPA are only two of many poss ible computation schemes for com
put ing the evolution of a la ttice gas cellu lar automaton (LGCA) . Once a
scheme has been selected from among the possi bilit ies (for example, single
st ream pipeline, wide pipel ine, column parallel), the processors and local
memory must be mapped to chips while ma intaining pin, area, processing
ra te, and I/ O bandwid th constraints . T hese constraints can be thought of
as divided into hierar ch ical classes by scale: ma in memory band width, total
processor memory, and overall computation rate a t la rge sca le; processing el
emen t area and speed at small scale; and inter-chip communication and pin
const ra ints somewhere in between. The question ar ises as to which sche me
makes the best use of the resources given the mu lt i-scale constraints. To
answer t his partially, we would like to answer the general question, "What is
the bes t that can be done, considering on ly the large scale constraints?" By
"best" we mean "fastest overall computation rate." We want to ignore the
pa rticular method of progress ing through the computation graph for a given
LGCA and concentrate on the limits implied solely by the large scale con
straints. We will use a pebble game to count th e inp ut/output requ irements
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of an LGC A computation.
Variants of the pebble game have been used. as a tool to get space-t ime

trade-offs for computa t ional problems. See, for instance, the pap ers by Pip
penger [Ll] and Lengauer and Tarjan [9]. The red-b lue pebble game described
by Hong and Kung [5] models the computat ion and I/O steps in a sequent ial
computat ion. They used it to get space-input/output trade-offs for several
problems , and to get upp er bounds on speed-up of a comput at ion of these
problems using a sequent ial machin e. T he red-blue game th ey describ e was
exte nded by Savage and Vitter [15J to the par allel-red and block-red-blue
peb ble games, which model parallel computation without input/outp ut and
block paralle l input/ ou tpu t respecti vely. We will use a further variant of the
red-blue game which allows parallel computat ion and para llel input/ output
of any size up to the processor 's local memory ca pac ity. We will use Hong
and Kun g's met hods for t he analysis of th e red-blue game to derive from
our variant a trade-off among the minimum main memory bandwidth , the
maximu m overall comp utation rate, and the local processor memory size.

The red-b lue pebble game is played on directed acyclic graphs with bounded
in-degree according th e following rules:

1. A pebble may be removed. from a vertex at any t ime.

2. A red pebble may be placed on any vertex that has a blue pebble.

3. A blue pebble may be placed on any vertex that has a red pebble.

4. If all immediat e predecesso rs of a vertex v are red pebbled , v may be
red peb bled.

T he "inputs" are those vertices which have no predecessors, and the "out
puts" are those which have no successors. A vertex th at is blue-pebb led
represents th e asso ciated value' s presence in main memory. A red-pebb led
vertex represents presence in processor (chip) memory. Rules (2) and (3)
represent I/ O, and rule (4) represe nts the computation of a new value. T he
goal of t he game is to blue-pebble th e outputs given a starting configurat ion
in which the inpu ts are blue-pebbled and the rest of the vertices are free of
peb bles. We will delay the int rodu ction of an extension of this game unti l
we have established some fur th er groundwork.

Th e computat ion graph for an LGCA is derived in th e usual ma nner for
a da ta depende ncy graph. An LGCA, 9 = G(v), is defined by a lattice
graph G = (V, E) conta ined in some d-dimensional finite volume, a value
v(x , t) associated with each node x in the lattice, and a function giving
v(x, t + 1) = f (N(x) , t) where N (x ) is the "neighborhood" of x in G; that
IS ,

N(x){zl{x,z } is an edge in G} U {x }.

The values of nodes at time t + 1 depend on the values of its neighbori ng
nodes at t ime t. For an LGCA that mode ls real fluids, the lattice G must
be isot ropic with respect to conservat ion of momentum and energy. T his
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means G must be regular. We will make use of this regula rity in the proof
for th e bound on the computat ion rate, al though we will not require the
sa tis fact ion of th e isotrop y condition. We form the computa t ion graph of the
LGCA by identifying the vert ices in each layer of th e computation grap h with
the vertices in the lattice G. Each layer of the comput at ion graph consists
of a copy of G 's vertex set with arcs to th e next layer expressing the data
dep enden cy between the values associated with the vertices of the latt ice at
time t and those at time t + 1. That is, if V = {I , 2, 3, ... , L } is t he set of
vert ices in G, th en th e computation graph for Gis C = (X, A ) where

x = {(x ,t)l x E V, and O:S t :s T )

an d there is an arcfrom (u,t- l) to (v, t ) in C if and only if u is in N( v). C is a
layer ed graph of T + 1 layers, each layer represent ing the LGC A at evolut ion
ti me t = 0,1 , 2, . .. ,T (see figu res 5 and 6). We are usually interested in
seeing an image of the LGCA at periodic t ime steps in it s evolut ion , say
every k time steps, and we let T go to infinity. However , it is easy to see
from th e proofs tha t follow tha t forcing T = k will not alter th e results . We
will ap ply a var ian t of the red-b lue pebble game to t he computation graph
C.

Let us introduce some term s we will need and review th e results of Hong
and Kung. Resu lts proved in [5] will be so ind icated. A computation of an
LGCA is said to be a com plete computat ion if it begins with only the input
values v(x, 0) known and at th e end of the comp utat ion the values v(x ,T)
have heen comp uted for all x in the lat t ice G of the LGCA. Thus, a pebbling
P of the com putat ion graph rep resents a complete computat ion of th e LG CA .
Given any complete com putatio n of LG CA 9 (a pebbling P of the as sociated
computat ion graph CjJ, we ass ume the following, where memory and I/O are
measured in unit s of sto rage required to store a single site value v(x, t) of the
LGCA.

S = t he number of red pebbles, i.e., t he amount of processor memory.
(We assume an inexhaus tibl e supply of blue pebbles.)

q = the number of I/O moves requ ired by P.

Q = t he minimum number of I/O moves required to pebb le C, over all
pebblings using S or fewer red pebbles.

D efinitio n : P ' is an S-I/ O-div ision of P, if

P' = {Pi ll:S i:S h)

where Pi is a consecut ive su bsequence of P such that Pi contains exact ly qi
I/O moves, an d

where
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G

Figure 5: A one-dimensional lattice of a cellular automaton (} ::;
(G,v). Vertices 1 and r are boundary vert ices of G. The neighborhood
of vertex 2 is N( 2) = {I ,2, 3).

qi = S for all i except that 0 < q. S S.

We say t he size of P' is h.
Clearly, a lower boun d on the I/O required by a complete computation

of 9 is determined by I. = min {h} over all pebblings of CQ using S or fewer
red peb bles. That is, Q > S · (I. - 1).

Hong and Kung have developed some methods for der iving a lower hound
for h. The concepts depend explicit ly on th e definit ion of an S- I/O-division
which depends implicitly on the fact that the pebbling is linearly ordered.
This is tri vially true for the red-blue game because it is a st rict ly sequential
game: a single ru le from rules (1) through (4) is applied , and the result ing
configuration determines the applicable rules for the next move. An immedi
ate extension of the red-blue game simply considers a block of such moves as
occurring in a single "time step" . This allows a cer tain form of parallelism
and is th e extension used by Savage and Vit ter [15] in the block-red-blue
game. T he actual play of the game is not alte red; ra ther, th e counting of
moves is redefined. It is easy to find a simp le example of a grap h for which
the number of input/output steps can be reduced by allowing the red peb
bling moves to occur in truly parallel fashion. That is, any number of pebbles
may be moved simultaneously, provided th e configuration before t he move
sat isfies the cond itions of any rule employed in the move. With this in mind ,
we define the parallel-red-blue pebble game and show th at it mod els any
computation which can be performed by a computer with arbit rary parallel
capabilit ies (CRCW P RAM).' The result s of the analysis of th is game will
be app lied to a machine model which has the same features as a eRe \,\,
PRAM, but has a limited communicat ion bandwidth.

Cons ider a computat ion which proceeds by doing many ste ps in parallel
in real t ime, and let us consider the necessary features of a pebble game that
mode ls it . T he end result is a peb ble gam e that can be described by a linearly
ordered set of pebble moves, which will allow us to define an S-I/O~d i vi sion

for this game. In the following, we will use the following terminology: placing
a red pebble on a node that contains no pebbles is a calculation . Th e node

3Such a machine mod el consists of an arbitrary number of processors communicat ing
via a shared memory. T his model is often referred to as a CReW PRAM: Concurrent-Read
Concu rrent- Write Paral lel Random Access Machine {2].
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Figure 6: A computation graph Ca(T) where 0 ~ t :s; T . T he tth row
corresponds to get).

peb bled is called th e dependent node, and t he nodes with arcs ending at the
dependent node a re said to support the calculation by virtue of the fact that
if t hey did not contain red pebbles, the calculat ion would not be possible.

We firs t decompose the computat ion into pieces wh ich occur simu ltane
ously. Let th ese pieces be designated Gi , and we say the complete compu
tation C cons ist s of their con catenation: C = C1 0 C2 0 . . • 0 Cv. Now let
us consider the pebble moves within Cc Con sider a datum that is fet ched
from main memory by Cj . It is reas onable to assume t ha t this datum could
not simultaneously he used in a calculation of some dep endent datum. We
then require that a peb ble move that places a red pebble on a node which
only contains a blue pebble precedes any pebble move that uses the node as
a support ing node for a ca lculat ion . We satisfy this ordering req uirement by
ordering all the pebble moves of thi s type (which model main memory reads
occurri ng in Ci ) aft er any other moves in Ci.

Cons ider the calculation of a datum during Cc. We assume the result
datum must be wri tten to a register in the processor memory. T herefore,
we do not conside r it possible in ou r model of computation to allow a mai n
memory wr ite of a datum to occur simult aneously with a calcu lation of th e
same datum. We can enforce th is requ irement in t he pebble game by ordering



Performance of VLSI Engin es for Lattice Com putations 957

all main memory writ es in C i before all calculations in Cj • Th at is, a nod e
must contain a red pebb le before a blue pebble may be placed on it , and that
red pebble must have been placed in a previous Ci.

At this point, we can say that the pebble game must proceed parallel
move by parallel move in order and that within each parallel move Cj the
ordering is: place blue pebb les (wr ite to main memory phase), move red
pebbles to unpebbled nodes (calcu lation phase ), place red pebbles on nodes
containing blue pebb les (read-from-maio-memory phase ). It now remains for
us to find an ordering within these phases of C;

Consider th e pebbl e moves in the two I/O phases. In real tim e, we ass ume
they all happen simult aneously. Suppose we order th em arbitrari ly within
each phase. Take first th e write phase. P lacing blue pebbl es on nod es con
taining red pebbles in any order is permissible since th ere are no dependence
const ra int s beyond the presence of the red pebbles. The nodes available for
writ ing have red pebbles before the beginning of Ci.

T he read phase is essent ially the same, except that nodes containing blue
pebbles receive red pebbles. We must be careful not to violate the timing
constraints on any red pebbles used for thi s purpose. A register that is
used to store t he result of a calculat ion performed during O, cannot also
receive a datum from main memory during Ci . Actu ally, t he red pebbl es
placed on dependent nodes in the calculation phase could theoretically be
picked up and moved to a blue-pebbled node to effect a read during the
read phase. However, th e resul t is that th e dependent node that had its
red pebble remo ved did not rea lly get calculated during Gi , an d we are not
violating th e tim ing constraints on th e real- time computation if we adopt
this interpretat ion of such an event .

T he next potent ial conflict comes from the overlapping of read and write
operations. Suppose a register is used as a source to write to main memory.
During the write phase, a blue pebble is placed on a node cont aining a red
pebble. Th e red pebble represents the use of a register as a source for a.
wri te operati on. However, th e read phase ma.y remove the red pebble and
place it on some node contain ing a blue pebbl e, indicating the same register
is both a source and a receiver of data simultaneously. We accep t this as
within our model of computation because hardware with this capabili ty is
easily realized. T he only remain ing sources for red pebbl es are red pebbles
that were placed pr ior to Ci and do not therefore represent any conflict with
rea l computation. As the various sources for red pebbles do not have any
mutu al dependencies, and likewise, the placement of the red pebbles are not
inter-dependent: we are free to order the movement of pebbles in th e read
phase arbitrarily.

We have established th at th e I/ O phases may be linearl y ordered. At
thi s poin t , it appears that nothing has changed vis-a-vis the red-blue game.
The real cont ribut ion of the parallel game comes in the calculation phase.
Consider a calculat ion in which t he resul t is writ ten into one of the registers
used as inpu t . Th e input may be fanned out to man y calculat ions, and all
proceed in parallel. The red-blue game wou ld block thi s type of activity
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since lift ing the red pebble from a suppo rt ing node and sliding it to one of
the dependen t nodes leaves the remaining dependent nodes without a full
complement of supporting nodes. We define the calculation phase as the
movement of red pebbles onto dep endent nodes. We will add a new pebble
(p ink) to the game to avoid the blockage ment ioned above. T he pink pebble
(place-holder pebble) allows fan-out of t he input by holding the contents of
t he calculat ion until t he end of the calculation ph ase . The new pebble is not
st rict ly required , but using it simplifies the de finit ion of th e new game.

T he above discussion gives us a pebble game that can model an a rbitra ry
par allel compu tation under the assumed model of comput at ion. T he game
is sequent ial in th e I/ O phases, and taking t he calculat ion phase as a single
move, the S-IJO -division is well defined for this game.

Defin it ion : The ru les of the parallel-red-blue pebb le game:
The game is identical to the red-blue pebble game with the additio n of a new
pebble (pi nk) and the following additiona l rules :

5. T he game consists of cyclic repeti t ion of three phases:
write phase, calculate phase, read phase.

The write phase consists of only rule (3) moves.
The read phase consists of only rule (2) moves.
T he calculate phase comprises the following moves
{a] pink peb ble placed by rule (4).
(b) a red pebble rep laces a pink pebble.
(c) no pink pebbles remain at the end of the phase.

With this definit ion of t he parallel-red-blue game, we can proceed along t he
lines of [5J without alt ering their argument s. Their next step int roduces
the idea of partitioning t he computat ion graph to get a lower bound on the
number of sub-pebblings in an S-I/O-division .

Defin ition : A I( -parti tion V is a parti tion of the vert ices of a directed acyclic
gr ap h G = (V, A) such that

1. For every Vi in V there is a dominator set D, ~ V , and a minimum set
Mj ~ ~, both of size at most J( such t hat every path from the inputs
to any element of Vi contains an element of D i l and every v in \Ii which
has no children in \Ii is in Mi.

2. There are no cyclic dependencies among the Vi. (Vj depen ds on Vi if
there is an arc from an element of \Ii to some element of y,:.)

We say g = IVI is the size of t he partit ion.
For every S-I/O-d ivision of a pebb ling P t he re is a 2S-par ti tion deter

mined in the following way: in P , consider every vert ex that has never bad a
red peb ble placed on it by any moves in Pi, i < k , an d is red pebbled du ring
Pv. T h is set of vert ices is Vk . Prop erty (2) is clearly sa t isfied by the set all



Performance of VLSI Engines for Lattice Computations 959

such Vk's, V . T he dominator , Diu is then the set of all vert ices which had red
pebbles on t hem at the end of Pk - 1l together wit h those vert ices with blue
pebbles on them at the end of p.-1 which get red pebbles duri ng p•. T he
size of D. is at most 2S (there are S red pebbles and at most S I/O moves) .
The minimum set, M k , consists of t hose ver tices which were th e "last" to be
red pebbled durin g Pit: [i.e., have no children which were red pebbled during
P.) . At the end of Pv, any such vertex is either i) st ill red pebbled , or ii)
now blue pebbled. T herefore, Mit: can be at most of size 28.

The above argument gives us the following theorem and lemma.

T heorem 2. {5} Le t G be any dir ected acyclic graph and P be any red-blue
pe bbling of G with an S -l/O-division of size h using at most S red pebbles.
Th en, there is a 2S-part it ionof G of size 9 = h.

In particular, there is a part it ion such th at 9 = h. From th e comment
mad e above concerning the minimum I/ O requir ements, and letting 9 =
min{g} over all 28 -parti tions of G, we have

Lemma 1. {5} For any direct ed acyclic graph,

Q > S · (g - 1).

Th e types of graphs represen ted by LGCA computation graphs have th e
nice feature that they are regular and "lined ." Lines are simp le paths from
inputs to outpu ts. A vertex is said to lie on a line if the line contains the
vertex. A line is covered by a set of vertices if the set contains a vertex th at
lies on the line. A lined graph is a graph in which a set of vertex disjoint
lines can be chosen so t hat every inpu t is on some line in the set. A complete
set of Jines is such a set of lines. For an LGCA computation graph, a path
«x, 0), (x , 1), (x, 2) , . .. , (x, T)} is a line I., for any node x in the lattice G.
Suppose we have chosen a complete set of lines £. for some lined graph G. If
we can bound from above th e maximum numb er of vert ices that lie on lines
in £. and are contained in a single subset of any 2S-partition of G, and we
can count the tot al number of vertices in G that are on lines, we wil1 be able
to lower bound g. In ap plying this reasoning to LGCA computation graphs,
we will choose the complete set of lines

t:. = {1.lx E V}.

In th e case of these grap hs, every vertex lies on some line in E.

Definition: The line-time T(k) for a lined graph G is the maximum number
of vert ices that lie on a single line in any subset of any k-partition of G. T hat
is, if we let K be the set of al1 k-pa rt it ions of G and £. be a complete set of
lines in G, th en

r(k) = max ma x max{jl; n 11;1}.
VEK: V;EV IjE .c
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By observing that a dominator set of size 28 or less can dominate at mos t 28
different lines, it is easy to conclude t ha t the maximum number of vert ices
in a sing le subset of a 2S-part it ion that lie on lines is bo unded from above
by 2S . r(2S); that is,

111;·1:S 2S· r (2S ) in any 2S-partition of G,

where Vi"' is th e sma llest subset of Vi containing every vertex in Vi that lies
on some line.

Co nsequently, we have

Lem ma 2. (51 fJ ::": ,)'~;J5) for a computation graph C = (X, A ).

This lead s to Hong and Kung 's second result:

.1UTheorem 3. {51 Q = n ( '( '5»).

For LG CA computat ions, we can exp ress this bound in te rms of main
memory band width B and pro cessing rate R. Let the to tal time to per
form th e comliuta t ion descr ibed by the comp utat ion graph be p. We then
define R = lfl (for LGCA computations IXI = IX·I). Certainly, th e total
inp ut /output traffi c must be handled by the comm unicat ion chan nel to mai n
memory, so Bp 2:Q, and the preceding bound becomes

R
B = n( r(2S) )

or equ ivalent ly,

R = O(Br(2S) ).

Using this result , we will show that for d~dimensional LGC A comput a tions

R = O(BS~ ) .

Spec ifically, we will show that

r(2S) < 2(d!2S )~

for t heir computat ion graphs.
In proving th is, we will make the following simplifying assump tio ns, which

are in any event worst -case.

1. T he graph G of ad-dimensional LGCA is an orthogonal grid defined on
th e integer lattice points contained in the d·cell in R d consist ing of the
poin ts [x] 0 $" Xi ::; r (i = 1,2, . . . , d)} where r is a non-n egative integer.
T here are edges between a vertex and its nearest neighbors. We will
refer to G as a la t tice. Although G as defined above is inadequate for
isot ropic lattice gases [3], we are assuming th e minimum connect ivity
for G in the sense th at any lattice th at satisfies isotropy requires at
leas t th e same degree of connect ivity.
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2. T he boundaries of LG CAs can be handled in a variety of ways. They
can be null (zero valued) , independently random, dependently random
or deterministic wit h truncated neighborhoods, or toroidally connected
wit h full connectivity. In the first two cases above, th e boundaries
do not appear in C at all. We will assume boundary vert ices appear
in C wit h dependencies defined by the lat t ice. The boundaries can
be thought of as det erministic or randomized , but dependent on their
neighhnrs as defined in (1).

3. H the size of the vertex set of the lattice G is r d , th en we assume th at
the processor memory size 8 is less than r d. In fact , if 8 = r d, only 28
of main memory I/O is required to pebble C, and the bounds mentioned
are irrelevant .

4. In th e following, we will use the notat ion Cd when referring to a com
putat ion graph Cg for ad-dimensional LGCA g, with lattice G.

Let us derive some properties of the computation graph Cd.

Definition : A (u,v)-path is a path from vertex u to vertex v . T he length of
path P, l(p) , is the number of edges in p. T he distance d(u, v) between two
vertices u and v is the min imum of I(p) over all (u , v)-paths p.

Lemm a 3. In Cd, every (u,v)-path p hss leng th d(u , v).

Proof. Since every arc in Cd goes from some layer t to a layer t + 1, paths
of different lengths start ing from the same vertex end in different layers. •

Lem m a 4. In Cd every vertex w which has a. distance from some specified
ver tex u o f d(u , w) = Hd(u ,v)J lies on some (u , v) -path , provided tz and v
bot h lie on the same line in E.

Proof. Let d(u, v) = 2k + 6 where k ~ 0 and 6 is either zero or one. Let
u = (x, t ) and v = (x, t + 2k + 6). If k = 0, the result is trivial, so sup pose
that k > O. T here is some (u,w)-pat h PI = (u = UO, u r, .. ., Uk = w ). Let
U j = (X i , t + i) . Since there is an arc (U i , 'Ui+l) , X i is in t he neighborhood
N( Xi+d , an d vice versa. Consequent ly, there is a. path P 2 = (w = V k , Vk _ I,

. . ., Vo = (x , t+2k )), where v; = (x; , t+k+(k - i) ). T hus, th e path p = PlOP,
is a path from u to (x , t + 2k) on the (u , v)-pat h along Ie- Concatena t ing
tbe path « x, t + 2k) , (x , t + 2k + I ), (x, t + 2k + 2), ... , (x, t + 2k + 6)) onto
t he end of p gives us a (u, v)~path containing w.•

Lemma 5. In Cd, every line I%; covered by a path of length at most j [rom
some specified vertex u, is covered by a path of length exactly i such that
the last vertex on the path lies on {z:.

P roof. Let p be a path from u of length j or less covering line Ix. Let z be
a vertex on path p such that z lies on 1%. Let PI be that portion of p [rom u
to z , By assumpt ion l(PI) = k :0; j . Concatenating onto PI th e path start ing
from z and continuing along I;J; for j - k steps gives us the requ ired path. •
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Lemma 6 . In Cd the number of lines covered by all paths of length j or less
from a specified vertex u is equal to the number of vertices reachable from u

in exactly j steps.

Proof. By the definition of L, every vertex in a single layer lies on a unique
line. By the argument of lemma 3, the end point of every path of length j
lies in the same layer. So, for every vertex reachable in exactly j steps, there
is a line covered by a path of length j. The lemma then follows from the
previous lemm a. •

Lemma 7 . H in Cd vertex v = (z, t + j) is reachable from vertex u = (x, t)
in j steps, then in G vertex z is reachable {rom x in at most j s teps . The
conve rse holds if t ~ T - j .

P ro of. Consider a (u,v)-path p = (u = uo, UI, U2 ,'" 1 Uj = v) in Cd, where
Ui = (Xil t + i) . Since X i E N(Xi+l) , either there is an edge { X i l Xi+l } in G, or
Xi = Xi+ l' Deleting the self loops from the path q = (x = Xo, X l, X2, ... , xi =
z) gives us an {z, z)-path in G of length at most j . •

Conversely, consider a path q = (xo = X , X I, X 2" ", Xi = z) in G where
o$ i $ j . By hypothesis, t $ T - j , and consequently, the path

p = ((x = Xo, t), (X I> t + 1), . .. , (Xi = Z, t + i) , (z, t + i + 1), ... , (z,t + j ))

is a (u , v)-path in Cd.

D efini tion: The line-spread from a vertex u in graph Gis

{

00 , if no vertex z exists such that d(u , z) = j
ta(u,j) = the numher of lines covered

by paths of length j or less, ot herwise.

D efinition: The line-spread of a graph G = (V,E) is

Ta(j) = min{t a(u ,j)}
uEV

If the graph G is Cd, we write Td(j) .

'Lem m a 8. Td(j ) > 71 ·

Proof By lemmas 5, 6, and 7 we have shown that the number of lines
covered by paths from some vertex u = (x, t) of length at most j in Cd is
equal to the number of vertices reachable from x in at most j steps in G,
provided at least one path of length j exist s in Cd. By the definition of G,
that is, an integer grid in the non-negative orthant, the minimum number of
vertices reachable in j or fewer steps in G occurs when the origin is chosen
as the specified vertex . T he latter quant ity is then given by
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where t/> is th e region in a- defined by th e set {xlxl +X3 +...+X d :5 i ,(x; ~
OJ), and <l> is the set of integer lattice points in t/>.

We are now in a position to prove t he main resul t :

Theorem 4. In c; T(2S) < 2(d!2S)~ .

P roof.' Sup pose that T(2S) ~ 2(d!2S) ~ . Let j = (d!2S) i . Th en t here
exist vert ices u and v in some subset \Ii of some 2S- part it ion V of Cd such
th at d(u,v) = 2j , and u and v both lie on t he same line in C. Since the
subset s of the par ti tion V are not cyclically depend ent, every vertex z on any
(u , v)-path is in \Ii. By lemma 4, every vertex in th e set Z = {x ld(u , x) = j)
is on a (u,v)-path , and therefore Z C \Ii. Then Z covers at least Td(j)
lines. The dominator for Vi must cover these lines. Since th e lines in L are
disjoint ID;I ~ Td(j) , and emp loying lemma 8 we have ID;I > ;F = 2S. This
cont radicts th e assumption that Vi is an element of a 2S-partit ion, and we
are done. •

8 . Conclusions

We have descr ibed two architectures for lattice-update engines based on VLSI
custo m chips and derived their design curves and best operating points. T he
wide-serial arch itect ure (WSA) has ext remely simple support logic and data
flow, while Sternberg's part itioned architecture (SPA) is perhaps more eas
ily extens ible to latt ices of arbit rary sizes and provides higher th roughput
per custom chip, albeit at th e expense of support logic and main memory
bandwidth . Each has its preferred operating regime in different parts of the
throughput vs. la tt ice-size plane. A prototype lat tice-gas engine, using t he
WSA ar chitecture, and based on a custom 31t CMOS chip, is now being con
st ructed. Each chip provides 20 million site-u pdates per second runn ing at 10
MHz. It is unlikely, however, that the workstation host will be ab le to supply
th e 40 megabyte per second bandwidth required for thi s level of performance.
We expect to realize approximately 1 million site- upda tes/sec/chip from th e
pro totyp e implementat ion.

We have also presented a graph-pebbling argument that gives upp er
bounds for th e computat ion rate for lattice upd ates. T he asy mptotic up
per bounds show clearly that memory bandwidth, an d not processor speed
or size, is t he factor that limits performance. One goal for fur ther research
is the t ightening of these pebbling-game arguments so that t hey give est i
ma tes of abso lute, as well as asymptot ic, performance. We will apply these
est ima tes to get quan t itative comparisons between compet ing architectures

"T his prooffollows t.he proof of theorem 5.1 in {S].
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for lattice gas computations such as the Connection Machine, the CRAY
XMP, and special pur pose machines. A furt her goal would be to discover
an op timal pebbling for any problem in this class, an d thereby discover an
architecture which is optimal with regard to input / output complexity.

T his work supports t he growing recog nition that communication bott le
necks-at all sca les of the architectura l hiera rchy-are the crit ical limit ing
factors in the performance of highly pipelined, massively parallel machines.
In OUf conservative VLSI des ign, not nearly at the limi ts of present inte
gration technology, the processors themselves comp rise only a smal l fraction
of the total sil icon area. As feature sizes shrink and pro blems are tackled
with larger lat tices in higher dimensions, th is effect will become even more
dramatic. This suggests that a search for more effect ive interconnect ion tech
nologies, perhaps using optics, should have high priori ty.
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