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Glossary

Integrable
This term is generally used in more than one way and in different contexts.
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For the purposes of this article, a partial differential equation or system of
partial differential equations is integrable if it can be solved explicitly to
yield solitons (qv).

Manakov system
A system of two cubic Schrödinger equations where the self- and cross-phase
modulation terms have equal weight.

Nonlinear Schrödinger equation
A partial differential equation that has the same form as the Schrödinger
equation of quantum mechanics, with a term nonlinear in the dependent
variable, and for the purposes of this article, interpreted classically.

Self- and cross-phase modulation
Any terms in a nonlinear Schrödinger equation that involve nonlinear func-
tions of the dependent variable of the equation, or nonlinear functions of a
dependent variable of another (coupled) equation, respectively.

Solitary wave
A solitary wave is a wave characterized by undistorted propagation. Soli-
tary waves do not in general maintain their shape under perturbations or
collisions.

Soliton
A soliton is a solitary wave which is also robust under perturbations and
collisions.

Turing equivalent
Capable of simulating any Turing Machine, and hence by Turing’s Thesis ca-
pable of performing any computation that can be carried out by a sequence
of effective instructions on a finite amount of data. A machine that is Tur-
ing equivalent is therefore as powerful as any digital computer. Sometimes
a device that is Turing equivalent is called “universal.”

1 Definition of the Subject and Its Importance

Solitons are localized, shape-preserving waves characterized by robust colli-
sions. First observed as a water wave by John Scott Russell (1844) in the
Union Canal near Edinburgh and subsequently recreated in the laboratory,
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solitons arise in a variety of physical systems, as both temporal pulses which
counteract dispersion and spatial beams which counteract diffraction.

Solitons with two components, vector solitons, are computationally uni-
versal due to their remarkable collision properties. In this article, we de-
scribe in detail the characteristics of Manakov solitons, a specific type of
vector soliton, and their applications in computing.

2 Introduction

In this section, we review the basic principles of soliton theory and spotlight
relevant experimental results. Interestingly, the phenomena of soliton prop-
agation and collision occur in many physical systems despite the diversity of
mechanisms that bring about their existence. For this reason, the discussion
in this article will treat temporal and spatial solitons interchangeably, unless
otherwise noted.

2.1 Scalar solitons

A pulse in optical fiber undergoes dispersion, or temporal spreading, dur-
ing propagation. This effect arises because the refractive index of the silica
glass is not constant, but is rather a function of frequency. The pulse can be
decomposed into a frequency range—the shorter the pulse, the broader its
spectral width. The frequency dependence of the refractive index will cause
the different frequencies of the pulse to propagate at different velocities, giv-
ing rise to dispersion. As a result, the pulse develops a chirp, meaning that
the individual frequency components are not evenly distributed throughout
the pulse. There are two types of dispersion: normal and anomalous. If
the longer wavelengths travel faster, the medium is said to have normal
dispersion. If the opposite is true, the medium has anomalous dispersion.

The response of a dielectric such as optical fiber is nonlinear. Most of
the nonlinear effects in fiber originate from nonlinear refraction, where the
refractive index n depends on the intensity of the propagating field according
to the relation

n = n0 + n2|E|2, (1)

where n0 is the linear part of the refractive index, |E2| is the optical in-
tensity, and n2 is the coefficient of nonlinear contribution to the refractive
index. Because the material responds almost instantaneously, on the order
of femtoseconds, and because the phase shift ∆φ is proportional to n, each
component of an intense optical pulse sees a phase shift proportional to its
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intensity. Since the frequency shift δω = −(∂∆φ)/(∂t), the leading edge
of the pulse is red-shifted (δω < 0), while the trailing edge is blue-shifted
(δω > 0), an effect known as self-phase modulation (SPM). As a result, if
the medium exhibits normal dispersion, the pulse is broadened; for anoma-
lous dispersion, the pulse is compressed. Under the proper conditions, this
pulse compression can exactly cancel the linear, dispersion-induced broad-
ening, resulting in distortionless soliton propagation. For more details, see
the book by Agrawal (2001).

The idealized mathematical model for this pulse propagation is the non-
linear Schrödinger equation (NLSE):

i
∂u

∂z
± 1

2
∂2u

∂x2
+ |u|2u = 0, (2)

where u(z, x) is the complex-valued field envelope, z is a normalized propaga-
tion distance and x is normalized time propagating with the group velocity of
the pulse. The second and third terms describe dispersion and the intensity-
dependent Kerr nonlinearity, respectively. The coefficient of the dispersion
term is positive for anomalous dispersion and negative for normal dispersion.
Equation (2), known as the scalar NLSE, is integrable—that is, it can be
solved analytically, and collisions between solitons are ‘elastic,’ in that no
change in amplitude or velocity occurs as a result of a collision. Zakharov
and Shabat (1971) first solved this equation analytically using the inverse
scattering method. It describes, for example, the propagation of picosecond
or longer pulses propagating in optical fiber with anomalous dispersion.

Two solitons at different wavelengths will collide in an optical fiber due
to dispersion-induced velocity differences. A schematic of such a collision
is depicted in Fig. 1. The scalar soliton collision is characterized by two
phenomena—a position and phase shift—both of which can be understood
in the same intuitive way. During collision, there will be a local increase in
intensity, causing a local increase in the fiber’s refractive index, according
to Eq. (1). As a result, both the soliton velocity and phase will be affected
during the collision.

From an all-optical signal processing perspective, the phase and position
shifts in a soliton collision are not useful. This is because these effects are
independent of any soliton properties that are changed by collision; that is,
the result of one collision will not affect the result of subsequent collisions.
Scalar solitons are therefore not useful for complex logic or computing, which
depend on multiple, cascaded interactions.

Despite this setback, it was discovered later that a system similar to
the scalar NLSE, the Manakov system (Manakov, 1973), possesses very

4



Figure 1: Schematic of a scalar soliton collision, in which amplitude and
velocities are unchanged. The two soliton collision effects are a position
shift (depicted through the translational shift in the soliton path) and phase
shift (not pictured).
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rich collisional properties (Radhakrishnan et al., 1997) and is integrable
as well. Manakov solitons are a specific instance of two-component vector
solitons, and it has been shown that collisions of Manakov solitons are capa-
ble of transferring information via changes in a complex-valued polarization
state (Jakubowski et al., 1998).

2.2 Vector solitons

When several field components, distinguished by polarization and/or fre-
quency, propagate in a nonlinear medium, the nonlinear interaction between
them must be considered as well. This interaction between field components
results in intensity-dependent nonlinear coupling terms analogous to the self-
phase modulation term in the scalar case. Such a situation gives rise to a set
of coupled nonlinear Schrödinger equations, and may allow for propagation
of vector solitons. For the case of two components propagating in an ideal
lossless medium with no higher-order effects and only intensity-dependent
nonlinear coupling, the equations become:

i
∂u1

∂z
+

∂2u1

∂x2
+ 2µ(|u1|2 + α|u2|2)u1 = 0,

i
∂u2

∂z
+

∂2u2

∂x2
+ 2µ(|u2|2 + α|u1|2)u2 = 0,

(3)

where u1(z, x) and u2(z, x) are the complex-valued pulse envelopes for each
component, µ is a nonlinearity parameter, and α describes the ratio between
self- and cross-phase modulation contributions to the overall nonlinearity.
Only for the special case of α = 1 are Eqs. 3 integrable. First solved using
the method of inverse scattering by Manakov (1973), Eqs. 3 admit solutions
known as Manakov solitons. For nonintegrable cases (α 6= 1), some analyti-
cal solitary-wave solutions are known for specific cases, although in general a
numerical approach is required (Yang, 1997). The specific case of α = 2/3,
for example, corresponds to linearly birefringent polarization maintaining
fiber, and will be considered in more detail in Section 6.

Due to their multicomponent structure, vector solitons have far richer
collision dynamics than their scalar, one-component counterparts. Recall
that scalar solitons are characterized by phase and position shifts only. Vec-
tor soliton collisions also exhibit these effects, with the added feature of
possible intensity redistributions between the component fields (Manakov,
1973; Radhakrishnan et al., 1997). This process is shown schematically
in Fig. 2. In the collision, two conservation relations are satisfied: (i) the
energy in each soliton is conserved and (ii) the energy in each component

6



Figure 2: Schematic of a vector soliton collision, which exhibits a position
shift and phase shift (not pictured), similar to the scalar soliton collision
(cf. Fig. 1). Vector soliton collisions also display an energy redistribution
among the component fields, shown here as two orthogonal polarizations.
Arrows indicate direction of energy redistribution.
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is conserved. It can be seen that when the amplitude of one component
in a soliton increases as a result of the collision, the other component de-
creases, with the opposite exchange in the second soliton. The experimental
observation of this effect will be discussed in Section 6. In addition to fun-
damental interest in such solitons, collisions of vector solitons make possible
unique applications, including collision-based logic and universal computa-
tion (Jakubowski et al., 1998; Steiglitz, 2000; Steiglitz, 2001; Rand et al.,
2005), as discussed in Section 4.

3 Manakov solitons

As mentioned in Section 2, computation is possible using vector solitons
because of an energy redistribution that occurs in a collision. In this section,
we provide the mathematic background of Manakov soliton theory, in order
to understand soliton computing and a remarkable way to achieve bistability
using soliton collisions as described in Sections 4 and 5, respectively.

The Manakov system consists of two coupled NLSEs (Manakov, 1973):

i
∂q1

∂z
+

∂2q1

∂x2
+ 2µ(|q1|2 + |q2|2)q1 = 0,

i
∂q2

∂z
+

∂2q2

∂x2
+ 2µ(|q1|2 + |q2|2)q2 = 0,

(4)

where q1(x, z) and q2(x, z) are two interacting optical components, µ is a
positive parameter representing the strength of the nonlinearity, and x and
z are normalized space and propagation distance, respectively. As men-
tioned in Section 2.2, the Manakov system is a special case of Eq. (3) with
α = 1. The two components can be thought of as components in two po-
larizations, or, as in the case of a photorefractive crystal, two uncorrelated
beams (Christodoulides et al., 1996).

Manakov first solved Eqs. (4) by the method of inverse scattering (1973).
The system admits single-soliton, two-component solutions that can be char-
acterized by a complex number k ≡ kR+ikI , where kR represents the energy
of the soliton and kI the velocity, all in normalized units. The additional
soliton parameter is the complex-valued polarization state ρ ≡ q1/q2, defined
as the (z- and x- independent) ratio between the q1 and q2 components.

Figure 3 shows the schematic for a general two-soliton collision, with
initial parameters ρ1, k1 and ρL, k2, corresponding to the right-moving and
left-moving solitons, respectively. The values of k1 and k2 remain constant
during collision, but in general the polarization state changes. Let ρ1 and
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Figure 3: Schematic of a general two-soliton collision. Each soliton is char-
acterized by a complex-valued polarization state ρ and complex parameter
k. Reprinted with permission from (Steiglitz, 2000). Copyright by the
American Physical Society.

ρL denote the respective soliton states before impact, and suppose the col-
lision transforms ρ1 into ρR, and ρL into ρ2. It turns out that the state
change undergone by each colliding soliton takes on the very simple form of
a linear fractional transformation (also called a bilinear or Möbius transfor-
mation). Explicitly, the state of the emerging left-moving soliton is given
by (Jakubowski et al., 1998):

ρ2 =
[(1− g)/ρ∗1 + ρ1]ρL + gρ1/ρ∗1

gρL + (1− g)ρ1 + 1/ρ∗1
, (5)

where
g ≡ k1 + k∗1

k2 + k∗1
. (6)

The state of the right-moving soliton is obtained similarly, and is

ρR =
[(1− h∗)/ρ∗L + ρL]ρ1 + h∗ρL/ρ∗L

h∗ρ1 + (1− h∗)ρL + 1/ρ∗L
, (7)

where
h ≡ k2 + k∗2

k1 + k∗2
. (8)

We assume here, without loss of generality, that k1R, k2R > 0.
Several properties of the linear fractional transformations in Eqs. (5) and

(7) are derived in (Jakubowski et al., 1998), including the characterization
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of inverse operators, fixed points, and implicit forms. In particular, when
viewed as an operator every soliton has an inverse, which will undo the
effect of the operator on the state. Note that this requires that the inverse
operator have the same k parameter as the original, a condition that will
hold in our application of computing in the next section.

These state transformations were first used by Jakubowski et al. (1998)
to describe logical operations such as not. Later, Steiglitz (2000) established
that arbitrary computation was possible through time gating of Manakov
(1+1)-dimensional spatial solitons. We will describe this in section 4.

There exist several candidates for the physical realization of Manakov
solitons, including photorefractive crystals (Christodoulides et al., 1996;
Shih and Segev, 1996; Chen et al., 1996; Anastassiou et al., 1999; Anastas-
siou et al., 2001), semiconductor waveguides (Kang et al., 1996), quadratic
media (Steblina et al., 2000), and optical fiber (Menyuk, 1989; Rand et al.,
2007). In Section 6, we discuss in detail an experiment with vector solitons
in linearly birefringent optical fiber.

4 Manakov soliton computing

We described in the previous section how collisions of bright Manakov soli-
tons can be described by transformations of a complex-valued state which
is the ratio between the two Manakov components. We show in this section
that general computation is possible if we use (1+1)-dimensional spatial soli-
tons that are governed by the Manakov equations and if we are allowed to
time-gate the beams input to the medium. The result is a dynamic computer
without spatially fixed gates or wires, which is unlike most present-day con-
ceptions of a computer that involve integrated circuits, in which information
travels between logical elements that are fixed spatially through fabrication
on a silicon wafer. We can call such a scheme “nonlithographic,” in the sense
that there is no architecture imprinted on the medium.

The requirements for computation include cascadability, fanout, and
Boolean completeness. The first, cascadability, requires that the output of
one device can serve as input to another. Since any useful computation con-
sists of many stages of logic, this condition is essential. The second, fanout,
refers to the ability of a logic gate to drive at least two similar gates. Finally,
Boolean completeness makes it possible to perform arbitrary computation.

We should emphasize that although the model we use is meant to reflect
known physical phenomena, at least in the limit of ideal behavior, the result
is a mathematical one. Practical considerations of size and speed are not
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considered here, nor are questions of error propagation. In this sense the
program of this article is analogous to Fredkin and Toffoli (1982) for ideal
billiard balls, and Shor (1994) for quantum mechanics. There are however
several candidates for physical instantiation of the basic ideas in this paper,
as noted in the previous section.

Although we are describing computation embedded in a homogeneous
medium, and not interconnected gates in the usual sense of the word, we
will nevertheless use the term gates to describe prearranged sequences of
soliton collisions that effect logical operations. We will in fact adopt other
computer terms to our purpose, such as wiring to represent the means of
moving information from one place to another, and memory to store it in
certain ways for future use.

We will proceed in the construction of what amounts to a complete
computer in the following stages: First we will describe a basic gate that can
be used for fanout. Then we will show how the same basic configuration
can be used for not, and finally, nand. Then we will describe ways to use
time gating of the input beams to interconnect signals. The nand gate,
fanout, and interconnect are sufficient to implement any computer, and
we conclude with a layout scheme for a general-purpose, and hence Turing-
equivalent computer. The general picture of the physical arrangement is
shown in Fig. 4.

Figure 5 shows the usual picture of colliding solitons, which can work
interchangeably for the case of temporal or spatial solitons. It is convenient
for visualization purposes to turn the picture and adjust the scale so the
axes are horizontal and vertical, as in Fig. 6. We will use binary logic,
with two distinguished, distinct complex numbers representing true and
false, called 1 and 0, respectively. In fact, it turns out to be possible to use
complex 1 and 0 for these two state values, and we will do that throughout
this paper, but this is a convenience and not at all a necessity. We will thus
use complex polarization states 1 and 0 and logical 1 and 0 interchangeably.

4.1 FANOUT

We construct the fanout gate by starting with a copy gate, implemented
with collisions between three down-moving, vertical solitons and one left-
moving horizontal soliton. Figure 7 shows the arrangement. The soliton
state labeled in will carry a logical value, and so be in one of the two states
0 or 1. The left-moving soliton labeled actuator will be in the fixed state
0, as will be the case throughout this paper. The plan is to adjust the (so
far) arbitrary states z and y so that out = in, justifying the name copy. It
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actuatorsactuators input data

time-gated beams

results

Figure 4: The general physical arrangement considered in this paper. Time-
gated beams of spatial Manakov solitons enter at the top of the medium, and
their collisions result in state changes that reflect computation. Each solid arrow
represents a beam segment in a particular state. Reprinted with permission from
(Steiglitz, 2000). Copyright by the American Physical Society.
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data operators

Figure 5: Colliding spatial solitons. Reprinted with permission from (Steiglitz,
2000). Copyright by the American Physical Society.
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Figure 6: Convenient representation of colliding spatial solitons. Reprinted with
permission from (Steiglitz, 2000). Copyright by the American Physical Society.

z y in

out
garbage

actuator
state = 0garbage

Figure 7: copy gate. Reprinted with permission from (Steiglitz, 2000). Copy-
right by the American Physical Society.
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Table 1: Parameters for gates when soliton speeds are 1.
gate z y
copy −0.24896731− 0.62158212 · I 2.28774210 + 0.01318152 · I
not −0.17620885 + 0.38170630 · I 0.07888703− 1.26450654 · I
one −0.45501471− 1.37634227 · I 1.43987094 + 0.64061349 · I
z-conv 0.31838068− 0.43078735 · I −0.04232340 + 2.17536612 · I
y-conv 1.37286955 + 0.88495501 · I −0.58835758− 0.18026939 · I

is reasonable to expect that this might be possible, because there are four
degrees of freedom in the two complex numbers z and y, and two complex
equations to satisfy: that out be 1 and 0 when in is 1 and 0, respectively.
Values that satisfy these four equations in four unknowns were obtained
numerically. We will call them zc and yc. It is not always possible to solve
these equations; Ablowitz et al (2004) showed that a unique solution is
guaranteed to exist in certain parameter regimes. However, explicit solutions
have been found for all the cases used in this section, and are given in
Table 4.1.

To be more specific about the design problem, write Eq. (5) as the
left-moving product ρ2 = L(ρ1, ρL), and similarly write Eq. (7) as ρR =
R(ρ1, ρL). The successive left-moving products in Fig. 7 are L(in, 0) and
L(y, L(in, 0)). The out state is then R(z, L(y, L(in, 0)). The stipulation
that 0 maps to 0 and 1 maps to 1 is expressed by the following two simul-
taneous complex equations in two complex unknowns

R(z, L(y, L(0, 0)) = 0, (9)
R(z, L(y, L(1, 0)) = 1.

It is possible to solve for z as a function of y and then eliminate z from
the equations, yielding one complex equation in the one complex unknown
y. This is then solved numerically by grid search and successive refinement.
There is no need for efficiency here, since we will require solutions in only a
small number of cases.

To make a fanout gate, we need to recover the input, which we can
do using a collision with a soliton in the state which is the inverse of 0,
namely ∞ (Jakubowski et al., 1998). Figure 8 shows the complete fanout
gate. Notice that we indicate collisions with a dot at the intersection of
paths, and require that the continuation of the inverse soliton not intersect
the continuation of z that it meets. We indicate that by a broken line,
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Figure 8: fanout gate. Reprinted with permission from (Steiglitz, 2000).
Copyright by the American Physical Society.

and postpone the explanation of how this “wire crossing” is accomplished.
It is immaterial whether the continuation of the inverse operator hits the
continuation of y, because it is not used later. We call such solitons garbage
solitons.

4.2 NOT and ONE gates

In the same way we designed the complex pair of states (zc, yc) to produce
a copy and fanout gate, we can find a pair (zn, yn) to get a not gate,
mapping 0 to 1 and 1 to 0; and a pair (z1, y1) to get a one gate, mapping
both 0 and 1 to 1. These (z, y) values are given in Table 4.1.

We should point out that the one gate in itself, considered as a one-
input, one-output gate, is not invertible, and could never be achieved by
using the continuation of one particular soliton through one, or even many
collisions. This is because such transformations are always nonsingular linear
fractional transformations, which are invertible (Jakubowski et al., 1998).
The transformation of state from the input to the continuation of z is, how-
ever, much more complicated and provides the flexibility we need to get the
one gate. It turns out that this one gate will give us a row in the truth
table of a nand, and is critical for realizing general logic.

4.3 Output/input converters, two-input gates, and NAND

To perform logic of any generality we must of course be able to use the output
of one operation as the input to another. To do this we need to convert logic
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from output

fanout

other input

out

z y in
actuator

z converter y converter

Figure 9: A nand gate, using converter gates to couple copies of one of its
inputs to its z and y parameters. Reprinted with permission from (Steiglitz,
2000). Copyright by the American Physical Society.

(0/1) values to some predetermined z and y values, the choice depending on
the type of gate we want. This results in a two-input, one-output gate.

As an important example, here’s how a nand gate can be constructed.
We design a z-converter that converts 0/1 values to appropriate values of
z, using the basic three-collision arrangement shown in Fig. 7. For a nand
gate, we map 0 to z1, the z value for the one gate, and map 1 to zn, the z
value for the not gate. Similarly, we construct a y-converter that maps 0
to y1 and 1 to yn. These z- and y-converters are used on the fanout of one
of the inputs, and the resulting two-input gate is shown in Fig. 9. Of course
these z- and y-converters require z and y values themselves, which are again
determined by numerical search (see Table 4.1).

The net effect is that when the left input is 0, the other input is mapped
by a one gate, and when it is 1 the other input is mapped by a not gate.
The only way the output can be 0 is if both inputs are 1, thus showing that
this is a nand gate. Another way of looking at this construction is that the
2×2 truth table of (left input)×(right input) has as its 0 row a one gate of
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the columns (1 1), and as its 1 row a not gate of the columns (1 0).
The importance of the nand gate is that it is universal (Mano, 1972).

That is, it can be used with interconnects and fanouts to construct any other
logical function. Thus we have shown that with the ability to “wire” we can
implement any logic using the Manakov model.

We note that other choices of input converters result in direct realiza-
tions of other gates. Using input converters that convert 0 and 1 to (zc, yc)
and (zn, yn), respectively, results in a truth table with first row (0 1) and
second row (1 0), an xor gate. Converting 0 and 1 to (zc, yc) and (z1, y1),
respectively, results in an or gate, and so on.

4.4 Time gating

We next take up the question of interconnecting the gates described above,
and begin by showing how the continuation of the input in the copy gate
can be restored without affecting the other signals. In other words, we show
how a simple “wire crossing” can be accomplished in this case.

For spatial solitons, the key flexibility in the model is provided by assum-
ing that input beams can be time-gated; that is, turned on and off. When a
beam is thus gated, a finite segment of light is created that travels through
the medium. We can think of these finite segments as finite light pulses, and
we will call them simply pulses in the remainder of this paper.

Figure 10(a) shows the basic three-collision gate implemented with pulses.
Assuming that the actuator and data pulses are appropriately timed, the
actuator pulse hits all three data pulses, as indicated in the projection below
the space-space diagram. The problem is that if we want a later actuator
pulse to hit the rightmost data pulse (to invert the state, for example, as in
the fanout gate), it will also hit the remaining two data pulses because of
the way they must be spaced for the earlier three collisions.

We can overcome this difficulty by sending the actuator pulse from the
left instead of the right. Timing it appropriately early it can be made to
miss the first two data pulses, and hit the third, as shown in Fig. 10(b). It
is easy to check that if the velocity of the right-moving actuator solitons is
algebraically above that of the data solitons by the same amount that the
velocity of the data solitons is algebraically above that of the left-moving
actuator solitons, the same state transformations will result. For example,
if we choose the velocities of the data and left-moving actuator solitons to
be +1 and −1, we should choose the velocity of the right-moving actuator
solitons to be +3. This is really a consequence of the fact that the g and h
parameters of Eqs. (6) and (8) in the linear fractional transformation depend
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actuator

data data

actuator

(a) (b)

Figure 10: (a) When entered from the right and properly timed, the actuator
pulse hits all three data pulses, as indicated in the projection at the bottom; (b)
When entered from the left and properly timed, the actuator pulse misses two
data pulses and hits only the rightmost data pulse, as indicated in the projection
at the bottom. Reprinted with permission from (Steiglitz, 2000). Copyright by
the American Physical Society.
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actuator

Memory

gate

out

in

Figure 11: The frame of this figure is moving down with the data pulses on
the left. A data pulse in memory is operated on with a three-collision gate
actuated from the left, and the result deposited to the upper right. Reprinted
with permission from (Steiglitz, 2000). Copyright by the American Physical
Society.

only on the difference in the velocities of the colliding solitons.

4.5 Wiring

Having shown that we can perform fanout and nand, it remains only to
show that we can “wire” gates so that any outputs can be fed to any inputs.
The basic method for doing this is illustrated in Fig. 11. We think of data
as stored in the down-moving pulses in a column, which we can think of
as “memory”. The observer moves with this frame, so the data appears
stationary.

Pulses that are horizontal in the three-collision gates shown in previous
figures will then appear to the observer to move upward at inclined angles.
It is important to notice that these upward diagonally moving pulses are
evanescent in our picture (and hence their paths are shown dashed in the
figure). That is, once they are used, they do not remain in the picture with a
moving frame and hence cannot interfere with later computations. However,
all vertically moving pulses remain stationary in this picture.

Once a diagonal trajectory is used for a three-collision gate, reusing it will
in general corrupt the states of all the stationary pulses along that diagonal.
However, the original data pulse (gate input) can be restored with a pulse
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actuator

gate

Memory

gate

actuator

copy

copy

Figure 12: A data pulse is copied to the upper right, this copy is copied to the
upper left, and the result put at the top of memory. The original data pulse can
then be restored with an inverse pulse and copied to the left in the same way.
Reprinted with permission from (Steiglitz, 2000). Copyright by the American
Physical Society.

in the state inverse to the actuator, either along the same diagonal as the
actuator, provided we allow enough time for the result (the gate output, a
stationary z pulse) to be used, or along the other diagonal.

Suppose we want to start with a given data pulse in the memory column
and create two copies above it in the memory column. Figure 12 shows a
data pulse at the lower left being copied to the upper right with a three-
collision copy gate, initiated with an actuator pulse from the left. This
copy is then copied again to the upper left, back to a waiting z pulse in
the memory column. After the first copy is used, an inverse pulse can be
used along the lower left to upper right diagonal to restore the original data
pulse. The restored data pulse can then be copied to the left in the same
way, to a height above the first copy, say, and thus two copies can be created
and deposited in memory above the original.
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Figure 13: The introduction of a second speed makes true fanout possible.
For simplicity, in this and the next figure, data and operator pulses are indicated
by solid dots, and the y operator pulses are not shown. The paths of actuator
pulses are indicated by dashed lines. Reprinted with permission from (Steiglitz,
2000). Copyright by the American Physical Society.

4.6 A second speed and final FANOUT and NAND

There is one problem still remaining with a true fanout: When an original
data pulse in memory is used in a copy operation for fanout, two diagonals
are available, one from the lower left to the upper right, and the other from
the lower right to the upper left. Thus, two copies can be made, as was just
illustrated. However, when a data pulse is deposited in the memory column
as a result of a logic operation, the logical operation itself uses at least one
diagonal, which leaves at most one free. This makes a fanout of the output
of a gate impossible with the current scheme.

A simple solution to this problem is to introduce another speed, using
velocities ±0.5, say, in addition to ±1. This effectively provides four rather
than two directions in which a pulse can be operated on, and allows true
fanout and general interconnections. Figure 13 shows such a fanout; the
data pulse at the lower left is copied to a position above it using one speed,
and to another position, above that, using another.

Finally, a complete nand gate is shown in Fig. 14. The gate can be
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Figure 14: Implementation of a nand gate. A second speed will be necessary
to use the output. Reprinted with permission from (Steiglitz, 2000). Copyright
by the American Physical Society.

thought of as composed of the following steps:

• input 2 is copied to the upper left, and that copy transformed by a
z-converter to the upper right, placing the z pulse for the nand gate
at the top of the figure;

• after the copy of input 2 is used, input 2 is restored with an inverse
pulse to the upper left;

• input 2 is then transformed to the upper right by a y-converter;

• input 1 is copied to the upper right, to a position collinear with the z-
and y-converted versions of the other input;

• a final actuator pulse converts the z pulse at the top to the output of
the nand gate.

Note that the output of the nand has used two diagonals, which again
shows why a second speed is needed if we are to use the nand output as
an input to subsequent logical operations. The y operator pulses, middle
components in the three-collision copy and converter gates, are not shown
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in the figure, but room can always be made for them to avoid accidental
collisions by adding only a constant amount of space.

4.7 Universality

It should be clear now that any sequence of three-collision gates can be
implemented in this way, copying data out of the memory column to the
upper left or right, and performing nand operations on any two at a time in
the way shown in the previous section. The computation can proceed in a
breadth-first manner, with the results of each successive stage being stored
above the earlier results. Each additional gate can add only a constant
amount of height and width to the medium, so the total area required is no
more than proportional to the square of the number of gates.

The “program” consists of down-moving y and z operator pulses, enter-
ing at the top with the down-moving data, and actuator pulses that enter
from the left or right at two different speeds. In the frame moving with the
data, the data and operator pulses are stationary and new results are de-
posited at the top of the memory column. In the laboratory frame the data
pulses leave the medium downward, and new results appear in the medium
at positions above the old data, at the positions of newly entering z pulses.

4.8 Discussion

We have shown that in principle any computation can be performed by
shining time-gated lasers into a completely homogeneous nonlinear optical
medium. This result should be viewed as mathematical, and whether the
physics of vector soliton collisions can lead to practical computational de-
vices is a subject for future study. With regard to the economy of the model,
the question of whether time gating is necessary, or even whether two speeds
are necessary, is open.

We note that the result described here differs from the universality results
for the ideal billiard ball model (Fredkin and Toffoli, 1982), the Game of
Life (Berlekamp et al., 1982), and Lattice Gasses (Squier and Steiglitz, 1993),
for example, in that no internal mirrors or structures of any kind are used
inside the medium. To the author’s knowledge, whether internal structure
is necessary in these other cases is open.

Finally, we remark that the model used is reversible and dissipationless.
The fact that some of the gate operations realized are not in themselves
reversible is not a contradiction, since extra, “garbage” solitons (Fredkin and
Toffoli, 1982) are produced that save enough state to run the computation
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Figure 15: The basic cycle of three collisions. Reprinted with permission from
(Steiglitz, 2001). Copyright by the American Physical Society.

backwards.

5 Multistable soliton collision cycles

Bistable and multistable optical systems, besides being of some theoretical
interest, are of practical importance in offering a natural “flip-flop” for noise
immune storage and logic. We show in this section that simple cycles of
collisions of solitons governed by the Manakov equations can have more than
one distinct stable set of polarization states, and therefore these distinct
equilibria can, in theory, be used to store and process information. The
multistability occurs in the polarization states of the beams; the solitons
themselves do not change shape and remain the usual sech-shaped solutions
of the Manakov equations. This phenomenon is dependent only on simple
soliton collisions in a completely homogeneous medium.

The basic configuration considered requires only that the beams form
a closed cycle, and can thus be realized in any nonlinear optical medium
that supports spatial Manakov solitons. The possibility of using multistable
systems of beam collisions broadens the possibilities for practical application
of the surprisingly strong interactions that Manakov solitons can exhibit, a
phenomenon originally described in (Radhakrishnan et al., 1997). We show
here by example that a cycle of three collisions can have two distinct foci
surrounded by basins of attractions, and that a cycle of four collisions can
have three.

5.1 The basic three-cycle and computational experiments

Figure 15 shows the simplest example of the basic scheme, a cycle of three
beams, entering in states A, B, and C, with intermediate beams a, b, and
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c. For convenience, we will refer to the beams themselves, as well as their
states, as A, B, C, etc. Suppose we start with beam C initially turned off, so
that A = a. Beam a then hits B, thereby transforming it to state b. If beam
C is then turned on, it will hit A, closing the cycle. Beam a is then changed,
changing b, etc., and the cycle of state changes propagates clockwise. The
question we ask is whether this cycle converges, and if so, whether it will
converge with any particular choice of complex parameters to exactly zero,
one, two, or more foci. We answer the question with numerical simulations
of this cycle.

A typical computational experiment was designed by fixing the input
beams A, B, C, and the parameters k1 and k2, and then choosing points
a randomly and independently with real and imaginary coordinates uni-
formly distributed in squares of a given size in the complex plane. The
cycle described above was then carried out until convergence in the complex
numbers a, b, and c was obtained to within 10−12 in norm. Distinct foci of
convergence were stored and the initial starting points a were categorized by
which focus they converged to, thus generating the usual picture of basins of
attraction for the parameter a. Typically this was done for 50,000 random
initial values of a, effectively filling in the square, for a variety of parameter
choices A, B, and C. The following results were observed:

• In cases with one or two clear foci, convergence was obtained in every
iteration, almost always within one or two hundred iterations.

• Each experiment yielded exactly one or two foci.

• The bistable cases (two foci) are somewhat less common than the cases
with a unique focus, and are characterized by values of kR between
about 3 and 5 when the velocity difference ∆ was fixed at 2.

Figure 16 shows a bistable example, with the two foci and their corre-
sponding basins of attraction. The parameter k is fixed in this and all the
examples in this paper at 4± i for the right- and left-moving beams of any
given collision, respectively. The second example, shown in Fig. 17, shows
that the basins are not always simply connected; a sizable island that maps
to the upper focus appears within the basin of the lower focus.

5.2 A tristable example using a four-cycle

Collision cycles of length four seem to exhibit more complex behavior than
those of length three, although it is difficult to draw any definite conclusions
because the parameter spaces are too large to be explored exhaustively, and

25



-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

im
ag

in
ar

y

real

Figure 16: The two foci and their corresponding basins of attraction in the first
example, which uses a cycle of three collisions. The states of the input beams
are A = −0.8 − i · 0.13, B = 0.4 − i · 0.13, C = 0.5 + i · 1.6; and k = 4 ± i.
Reprinted with permission from (Steiglitz, 2001). Copyright by the American
Physical Society.
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Figure 17: A second example using a cycle of three collisions, showing that
the basins need not be simply connected. The states of the input beams are
A = 0.7 − i · 0.3, B = −1.1 − i · 0.5, C = 0.4 + i · 0.81; and k = 4 ± i.
Reprinted with permission from (Steiglitz, 2001). Copyright by the American
Physical Society.
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Figure 18: A case with three stable foci, for a collision cycle of length four.
The states of the input beams are A = −0.39 − i · 0.45, B = 0.22 − i · 0.25,
C = 0.0 + i · 0.25, D = −0.51 + i · 0.48; and k = 4 ± i. Reprinted with
permission from (Steiglitz, 2001). Copyright by the American Physical Society.

there is at present no theory to predict such highly nonlinear behavior. If one
real degree of freedom is varied as a control parameter, we can move from
bistable to tristable solutions, with a regime between in which one basin
of attraction disintegrates into many small separated fragments. Clearly,
this model is complex enough to exhibit many of the well-known features of
nonlinear systems.

Fortunately, it is not difficult to find choices of parameters that result
in very well behaved multistable solutions. For example, Fig. 18 shows
such a tristable case. The smallest distance from a focus to a neighboring
basin is on the order of 25% of the interfocus distance, indicating that these
equilibria will be stable under reasonable noise perturbations.
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5.3 Discussion

The general phenomenon discussed in this section raises many questions,
both of a theoretical and practical nature. The fact that there are simple
polarization-multistable cycles of collisions in a Manakov system suggests
that similar situations occur in other vector systems, such as photorefractive
crystals or birefringent fiber. Any vector system with the possibility of a
closed cycle of soliton collisions becomes a candidate for multistability, and
there is at this point really no compelling reason to restrict attention to the
Manakov case, except for the fact that the explicit state-change relations
make numerical study much easier.

The simplified picture we used of information traveling clockwise after
we begin with a given beam a gives us stable polarization states when it con-
verges, plus an idea of the size of their basins of attractions. It is remarkable
that in all cases in our computational experience, except for borderline tran-
sitional cases in going from two to three foci in a four-cycle, this circular
process converges consistently and quickly. But understanding the actual
dynamics and convergence characteristics in a real material requires careful
physical modeling. This modeling will depend on the nature of the medium
used to approximate the Manakov system, and is left for future work. The
implementation of a practical way to switch from one stable state to an-
other is likewise critically dependent on the dynamics of soliton formation
and perturbation in the particular material at hand, and must be studied
with reference to a particular physical realization.

We remark also that no iron-clad conclusions can be drawn from com-
putational experiments about the numbers of foci in any particular case, or
the number possible for a given size cycle—despite the fact that we regularly
used 50,000 random starting points. On the other hand, the clear cases that
have been found, such as those used as examples, are very characteristic of
universal behavior in other nonlinear iterated maps, and are sufficient to es-
tablish that bi- and tristability, and perhaps higher-mode multistability, is a
genuine mathematical characteristic, and possibly also physically realizable.
It strongly suggests experimental exploration.

We restricted discussion in this section to the simplest possible structure
of a single closed cycle, with three or four collisions. The stable solutions
of more complicated configurations are the subject of continuing study. A
general theory that predicts this behavior is lacking, and it seems at this
point unlikely to be forthcoming. This forces us to rely on numerical studies,
from which, as we point out above, only certain kinds of conclusions can be
drawn. We are fortunate, however, in being able to find cases that look
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familiar and which are potentially useful, like the bistable three-cycles with
well separated foci and simply connected basins of attraction.

It is not clear however, just what algorithms might be used to find equi-
libria in collision topologies with more than one cycle. It is also intriguing to
speculate about how collision configurations with particular characteristics
can be designed, how they can be made to interact, and how they might be
controlled by pulsed beams. There is promise that when the ramifications of
complexes of vector soliton collisions are more fully understood they might
be useful for real computation in certain situations.

5.4 Application to noise-immune soliton computing

Any physical instantiation of a computing technology must be designed to be
immune from the effects of noise buildup from logic stage to logic stage. In
the familiar computers of today, built with solid-state transistors, the noise-
immunity is provided by physical state restoration, so that voltage levels
representing logical “0” and “1” are restored by bistable circuit mechanisms
at successive logic stages. This is state restoration at the physical level.

For another example, proposed schemes for quantum computing would
be impractical without some means of protecting information stored in
qubits from inevitable corruption by the rest of the world. The most common
method proposed for accomplishing this is error correction at the software
level, state restoration at the logical level.

In the collision-based scheme for computing with Manakov solitons de-
scribed in section 4, there is no protection against buildup of error from
stage to stage, and some sort of logical state-restoration would be necessary
in a practical realization. The bistable collision cycles of Manakov solitons
described in this section, however, offer a natural computational building
block for soliton computation with physical state restoration. This idea is
explored in (Rand et al., 2005). Figure 19 illustrates the approach with
a schematic diagram of a nand gate, implemented with bistable cycles to
represent bits. The input bits are stored in the collision cycles (1) and (2),
which have output beams that can be made to collide with input beam A of
cycle (3), which represents the output bit of the gate. These inputs to the
gate, shown as dashed lines, change the state of beam A of the ordinarily
bistable cycle (3) so that it becomes monostable. The state of cycle (3) is
then steered to a known state. When the input beams are turned off, cycle
(3) returns to its normal bistable condition, but with a known input state.
Its state then evolves to one of two bits, and the whole system of three
collision cycles can be engineered so that the final state of cycle (3) is the
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Figure 19: Schematic of nand gate using bistable collision cycles. Reprinted
with permission from (Rand et al., 2005). Copyright by Old City Publishing.

nand of the two bits represented by input cycles (1) and (2). (See (Rand
et al., 2005) for details.)

A computer based on such bistable collision cycles is closer in spirit
to present-day ordinary transistor-based computers, with a natural noise-
immunity and state-restoration based on physical bistability. As mentioned
in the previous subsection, however, the basic bistable cycle phenomenon
awaits laboratory verification, and much remains to be learned about the
dynamics, and eventual speed and reliability of such systems.

6 Experiments

The computation schemes described in the previous sections obviously rely
on the correct mathematical modeling of the physics proposed for realiza-
tion. We next describe experiments that verify some of the required soliton
phenomenology in optical fibers. Specifically, we highlight the experimental
observation of temporal vector soliton propagation and collision in a birefrin-
gent optical fiber (Rand et al., 2007). This is both the first demonstration
of temporal vector solitons with two mutually-incoherent component fields,
and of vector soliton collisions in a Kerr nonlinear medium.

Temporal soliton pulses in optical fiber were first predicted by Hasegawa
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and Tappert (1973), followed by the first experimental observation by Mol-
lenauer et al. (1980). In subsequent work, Menyuk accounted for the bire-
fringence in polarization maintaining fiber (PMF) and predicted that vector
solitons, in which two orthogonally polarized components trap each other,
are stable under the proper operating conditions (1987; 1988). For birefrin-
gent fibers, self-trapping of two orthogonally polarized pulses can occur when
XPM-induced nonlinearity compensates the birefringence-induced group ve-
locity difference, causing the pulse in the fiber’s fast axis to slow down and
the pulse in the slow axis to speed up. The first demonstration of temporal
soliton trapping was performed in the subpicosecond regime (Islam et al.,
1989), in which additional ultrashort pulse effects such as Raman scattering
are present. In particular, this effect results in a red-shift that is linearly
proportional to the propagation distance, as observed in a later temporal
soliton trapping experiment (Nishizawa and Goto, 2002). Recently, soli-
ton trapping in the picosecond regime was observed with equal amplitude
pulses (Korolev et al., 2005). However, vector soliton propagation could
not be shown, because the pulses propagated for less than 1.5 dispersion
lengths. In other work, phase-locked vector solitons in a weakly birefringent
fiber laser cavity with nonlinear coherent coupling between components was
observed (Cundiff et al., 1999).

The theoretical model for linearly birefringent fiber is the following cou-
pled nonlinear Schrödinger equation (CNLSE):
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(10)

where t is the local time of the pulse, z is propagation distance along the
fiber, and Ax,y is the slowly varying pulse envelope for each polarization
component. The parameter β1x,y is the group velocity associated with each
fiber axis, and β2 represents the group velocity dispersion, assumed equal
for both polarizations. In addition, we neglect higher order dispersion and
assume a lossless medium with an instantaneous electronic response, valid
for picosecond pulses propagating in optical fiber.

The last two terms of Eqs. (10) account for the nonlinearity due to
SPM and XPM, respectively. In linearly birefringent optical fiber, a ratio
of 2/3 exists between these two terms. When this ratio equals unity, the
CNLSE becomes the integrable Manakov system of Eqs. (4). On the other
hand, solutions of Eqs. (10) are, strictly speaking, solitary waves, not soli-
tons. However, it was found in (Yang, 1997) that the family of symmetric,
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single-humped (fundamental or first-order) solutions, to which the current
investigation in this section belongs, are all stable. Higher-order solitons,
characterized by multiple humps, are unstable. Furthermore, it was shown
in (Yang, 1999) that collisions of solitary waves in Eqs. (10) can be described
by application of perturbation theory to the integrable Manakov equations,
indicating the similarities between the characteristics of these two systems.

6.1 Experimental setup and design

The experimental setup is shown in Fig. 20. We synchronized two actively
mode-locked erbium-doped fiber lasers (EDFLs)—EDFL1 at 1.25 GHz repe-
tition rate, and EDFL2 at 5 GHz. EDFL2 was modulated to match with the
lower repetition rate of EDFL1. Each pulse train, consisting of 2 ps pulses,
was amplified in an erbium-doped fiber amplifier (EDFA) and combined in
a fiber coupler. To align polarizations, a polarization loop controller (PLC)
was used in one arm, and a tunable delay line (TDL) was employed to tempo-
rally align the pulses for collision. Once combined, both pulse trains passed
through a linear polarizer (LP) and a half-wave plate to control the input po-
larization to the PMF. Approximately 2 m of high birefringence (HB) PMF
preceded the specially designed 500 m of low birefringence (LB) PMF used
to propagate vector solitons. Although this short length of HB-PMF will
introduce some pulse splitting (on the order of 2-3 ps), the birefringent axes
of the HB- and LB-PMF were swapped in order to counteract this effect.
Each component of the vector soliton was then split at a polarization beam
splitter, followed by an optical spectrum analyzer (OSA) for measurement.

The design of the LB-PMF required careful control over three character-
istic length scales: the (polarization) beat length, dispersion length Ld, and
nonlinear length Lnl. A beat length Lb = λ/∆n = 50 cm was chosen at a
wavelength of 1550 nm, where ∆n is the fiber birefringence. According to the
approximate stability criterion of (Cao and McKinstrie, 1993), this choice
allows stable propagation of picosecond vector solitons. By avoiding the sub-
picosecond regime, ultrashort pulse effects such as intrapulse Raman scat-
tering will not be present. The dispersion D = 2πcβ2/λ2 = 16 ps/km nm
and Ld = 2T 2

0 /|β2| ≈ 70 m, where T0 = TFWHM/1.763 is a characteristic
pulse width related to the full width at half maximum (FWHM) pulse width.
Since Ld À Lb, degenerate four-wave mixing due to coherent coupling be-
tween the two polarization components can be neglected (Menyuk, 1989).
Furthermore, the total propagation distance is greater than 7 dispersion
lengths.

Polarization instability, in which the fast axis component is unstable,
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Figure 20: Experimental setup. EDFL: Erbium-doped fiber laser; EDFA:
Erbium-doped fiber amplifier; MOD: modulator; D: tunable delay line; PLC:
polarization loop controller; 2:1: fiber coupler; LP: linear polarizer; λ/2:
half-wave plate; HB-PMF and LB-PMF: high and low birefringence polar-
ization maintaining fiber; PBS: polarization beam splitter; OSA: optical
spectrum analyzer. Reprinted with permission from (Rand et al., 2007).
Copyright by the American Physical Society.
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occurs when Lnl = (γP )−1 is of the same order of magnitude or smaller than
Lb, as observed in (Barad and Silberberg, 1997). The nonlinearity parameter
γ = 2πn2/λAeff = 1.3 (km W)−1, with Kerr nonlinearity coefficient n2 =
2.6 × 10−20 m2/W and measured effective mode area Aeff = 83 µm2. In
the LB-PMF, the fundamental vector soliton power P ≈ 14 W, thus Lnl =
55 m À Lb, mitigating the effect of polarization instability.

6.2 Vector soliton propagation

We first studied propagation of vector solitons using both lasers indepen-
dently. The wavelength shift for each component is shown in Fig. 21(a) as a
function of the input polarization angle φ, controlled through the half-wave
plate. Due to the anomalous dispersion of the fiber at this wavelength, the
component in the slow (fast) axis will shift to shorter (longer) wavelengths
to compensate the birefringence. The total amount of wavelength shift be-
tween components ∆λxy = ∆β1/D = 0.64 nm, where ∆β1 = |β1x − β1y| =
10.3 ps/km is the birefringence-induced group velocity difference and dis-
persion D = 2πcβ2/λ2 = 16 ps/km nm.

As φ approaches 0◦ (90◦), the vector soliton approaches the scalar soli-
ton limit, and the fast (slow) axis does not shift in wavelength, as expected.
At φ = 45◦, a symmetric shift results. For unequal amplitude solitons,
the smaller component shifts more in wavelength than the larger compo-
nent, because the former experiences more XPM. Numerical simulations of
Eqs. (10), given by the dashed lines of Fig. 21(a), agree very well with the
experimental results. Also shown in Fig. 21 are two cases, φ = 45◦ and 37◦,
as well as the numerical prediction. The experimental spectra show some
oscillatory features at 5 GHz, which are a modulation of the EDFL2 repe-
tition rate on the optical spectrum. A sample input pulse spectrum from
EDFL1 is shown in the inset of Fig. 21, which shows no modulation due to
the limited resolution of the OSA. Vector solitons from both lasers produced
similar results. In this and all subsequent plots in this section, the slow and
fast axis components are depicted by solid and dashed lines, respectively.

As the two component amplitudes become more unequal, satellite peaks
become more pronounced in the smaller component. These features are
also present in the simulations, but are not as dominant (cf. Figs. 21(d)
and (e)). We attribute this to the input pulse, which is calibrated for the
φ = 45◦ case, because the power threshold for vector soliton formation in
this case is largest due to the 2/3 factor between SPM and XPM nonlinear
terms in the CNLSE. As the input is rotated towards unequal components,
there will be extra power in the input pulse, which will radiate in the form
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Figure 21: Arbitrary-amplitude vector soliton propagation. (a) Wavelength
shift vs. angle to fast axis φ, numerical curves given by dashed lines; (b)
and (d) experimental results for φ = 45◦ and 37◦ with EDFL2, respectively.
Inset: input spectrum for EDFL1; (c) and (e) corresponding numerical sim-
ulations of φ = 45◦ and 37◦, respectively. The slow and fast axis components
are depicted by solid and dashed lines, respectively. Reprinted with permis-
sion from (Rand et al., 2007). Copyright by the American Physical Society.

36



of dispersive waves as the vector soliton forms. Due to the nature of this
system, these dispersive waves can be nonlinearly trapped, giving rise to the
satellite features in the optical spectra. This effect is not as prevalent in
the simulations because the threshold was numerically determined at each
input angle φ.

6.3 Vector soliton collision

To prepare the experiment for a collision, we operated both lasers simulta-
neously, detuned in wavelength to allow for dispersion-induced walkoff, and
adjusted the delay line in such a way that the collision occurred halfway
down the fiber. We define a collision length Lcoll = 2TFWHM/D∆λ, where
∆λ is the wavelength separation between the two vector solitons. For our
setup, ∆λ = 3 nm, and Lcoll = 83.3 m. An asymptotic theory of soliton
collisions, in which a full collision takes place, requires at least 5 collision
lengths. The total fiber length in this experiment is equal to 6 collision
lengths, long enough to ensure sufficient separation of solitons before and
after collision. In this way, results of our experiments can be compared to
the asymptotic theory, even though full numerical simulations will be shown
for comparison. To quantify our results, we introduce a quantity R ≡ tan2 φ,
defined as the amplitude ratio between the slow and fast components.

Recall that in Section 3, we introduced the Manakov equations (Eqs. (4)),
and described collision-induced transformations of the polarization state of
the soliton, which come about due to the asymptotic analysis of the soliton
collision. The polarization state is the ratio between the two components
ρ ≡ Ax/Ay = cotφ exp(i∆θ), and is therefore a function of the polariza-
tion angle φ and the relative phase ∆θ between the two components. In
the context of the experiments described in this chapter, these state trans-
formations (Eqs. (5) and (7)) predict that the resulting energy exchange
will be a function of amplitude ratios R1,2, wavelength separation ∆λ, and
the relative phase ∆θ1,2 between the two components of each soliton, where
soliton 1 (2) is the shorter (longer) wavelength soliton.

A word of caution is in order at this point. An interesting consequence
of the 2/3 ratio between SPM and XPM, which sets the birefringent fiber
model apart from the Manakov model, is the relative phase between the
two components. For the Manakov soliton, each component ‘feels’ the same
amount of total nonlinearity, because the strengths of both SPM and XPM
are equal. Therefore, regardless of the polarization angle, the amount of
total nonlinear phase shift for each component is the same (even though
the contributions of SPM and XPM phase shifts are in general not equal).
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As a result, the relative phase between the two components stays constant
during propagation, as does the polarization state. This is not the case
for vector solitons in birefringent fiber. For the case of equal amplitudes,
each component does experience the same amount of nonlinear phase shift,
and therefore the polarization state is constant as a function of propagation
distance. However, for arbitrary (unequal) amplitudes, the total phase shift
for each component will be different. Consequently, the relative phase will
change linearly as a function of propagation distance, and the polarization
state will not be constant. As a result, the collision-induced change in
polarization state, while being a function of the amplitude ratios R1,2 and
wavelength separation ∆λ, will also depend upon the collision position due
to the propagation dependence of the relative phase ∆θ1,2(z). To bypass
this complication, we ensure that all collisions occur at the same spatial
point in the fiber.

Because only one half-wave plate is used in our experiment (see Fig. 20),
it was not possible to prepare each vector soliton individually with an ar-
bitrary R. In addition, due to the wavelength dependence of the half-wave
plate, it was not possible to adjust ∆λ without affecting R.

First, we investigated the phase dependence of the collision. This was
done by changing the length of the HB-PMF entering the LB-PMF, while
keeping R and ∆λ constant. As a result, we could change ∆θ1,2 due to
the birefringence of the HB-PMF. Approximately 0.5 m of HB-PMF was
added to ensure that the total amount of temporal pulse splitting did not
affect the vector soliton formation. The results are shown in Fig. 22, where
Figs. 22(a-c) and (d-f) correspond to the short and long HB-PMFs, respec-
tively. Figs. 22(a) and (d) show the two vector solitons, which propagate
independently when no collision occurs; as expected, the two results are sim-
ilar because the OSA measurement does not depend on ∆θ1,2. The result of
the collision is depicted in Figs. 22(b) and (e), along with the corresponding
simulation results in Figs. 22(c) and (f).

In both of these collisions, an energy exchange between components oc-
curs, and two important relations are satisfied: the total energy in each
soliton and in each component is conserved. It can be seen that when one
component in a soliton increases as a result of the collision, the other com-
ponent decreases, with the opposite exchange in the second soliton. The
difference between these two collisions is dramatic, in that the energy re-
distributes in opposite directions. For the simulations, idealized sech pulses
for each component were used as initial conditions, and propagation was
modeled without accounting for losses. The experimental amplitude ratio
was used, and (without loss of generality (Manakov, 1973; Radhakrishnan
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(a)

(f)(c)

(e)(b)

(d)1.13 1.89

1.27 1.47

1.41 1.58

1.17 1.87

0.86 2.23

0.96 2.57

Figure 22: Demonstration of phase-dependent energy-exchanging collisions.
(a-c) Short HB-PMF; (d-f) long HB-PMF; (a, d) experiment, without colli-
sion; (b, e) experiment, with collision; (c, f) simulated collision result with
(c) ∆θ2 = 90◦ and (f) ∆θ2 = 50◦. Values of slow-fast amplitude ratio R are
given above each soliton. The slow and fast axis components are depicted by
solid and dashed lines, respectively. Reprinted with permission from (Rand
et al., 2007). Copyright by the American Physical Society.
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et al., 1997; Jakubowski et al., 1998)) ∆θ2 was varied while ∆θ1 = 0. Best
fits gave ∆θ2 = 90◦ (Fig. 22(c)) and 50◦ (Fig. 22(f)). Despite the model
approximations, experimental and numerical results all agree to within 15%.

In the second set of results (Fig. 23), we changed R while keeping all
other parameters constant. More specifically, we used the short HB-PMF,
with initial phase difference ∆θ2 = 90◦, and changed the amplitude ratio.
In agreement with theoretical predictions, the same direction of energy ex-
change is observed as in Figs. 22(a-c).

6.4 Spatial soliton collisions

We mention here analogous experiments with spatial solitons in photorefrac-
tive media by Anastassiou et al. In (Anastassiou et al., 1999), it is shown
that energy is transferred in a collision of vector spatial solitons in a way con-
sistent with the predictions for the Manakov system (although the medium
is a saturable one, and only approximates the Kerr nonlinearity). The ex-
periment in (Anastassiou et al., 2001) goes one step farther, showing that
one soliton can be used as an intermediary to transfer energy from a second
soliton to a third. We thus are now at a point where the ability of both
temporal and spatial vector solitons to process information for computation
has been demonstrated.

7 Future Directions

This article discussed computing with solitons, and attempted to address the
subject from basic physical principles to applications. Although the nonlin-
earity of fibers is very weak, the ultralow loss and tight modal confinement
make them technologically attractive. By no means, however, are they the
only potential material for soliton-based information processing. Others in-
clude photorefractive crystals, semiconductor waveguides, quadratic media,
and Bose-Einstein condensates, while future materials research may provide
new candidate systems.

From a computing perspective, scalar soliton collisions are insufficient.
Although measurable phase and position shifts do occur, these phenomena
cannot be cascaded to affect future soliton collisions and therefore cannot
transfer information from one collision to the next. Meaningful computation
using soliton collisions requires a new degree of freedom; that is, a new com-
ponent. Collisions of vector solitons display interesting energy-exchanging
effects between components, which can be exploited for arbitrary computa-
tion and bistability.
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(a)

(f)(c)

(e)(b)

(d)0.97 1.47

1.18 1.12

1.15 1.24

2.14 2.56

2.78 1.92

2.73 2.29

Figure 23: Additional energy-exchanging collisions. (a, d) Experiment,
without collision; (b, e) experiment, with collision; (c, f) simulated colli-
sion result, using ∆θ2 = 90◦ inferred from the experiment of Fig. 22. Val-
ues of slow-fast amplitude ratio R are given above each soliton. The slow
and fast axis components are depicted by solid and dashed lines, respec-
tively. Reprinted with permission from (Rand et al., 2007). Copyright by
the American Physical Society.
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The vector soliton experiments of section 6 were proof-of-principle ones.
The first follow-up experiments with temporal vector solitons in birefringent
fiber can be directed towards a full characterization of the collision process.
This can be done fairly simply using the experimental setup of Fig. 20 up-
dated in such a way as to allow independent control of two vector soliton
inputs. This would involve separate polarizers and half-waveplates, followed
by a polarization preserving fiber coupler.

Cascaded collisions of temporal solitons also await experimental study.
As demonstrated in photorefractive crystals with a saturable nonlinear-
ity (Anastassiou et al., 2001), one can show that information can be passed
from one collision to the next. Beyond a first demonstration of two collisions
is the prospect of setting up a multi-collision feedback cycle. Discussed in
section 5, these collision cycles can be bistable and lead to interesting ap-
plications in computation.

Furthermore, the recent work of Ablowitz et al. (2006) shows theoreti-
cally that the useful energy-redistribution properties of vector soliton colli-
sions extend perfectly to the semi-discrete case: that is, to the case where
space is discretized, but time remains continuous. This models, for example,
propagation in an array of coupled nonlinear waveguides (Christodoulides
and Joseph, 1988). The work suggests alternative physical implementations
for soliton switching or computing, and also hints that the phenomenon of
soliton information processing is a very general one.
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