
138 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988

Embedding Computation in One-Dimensional
Automata by Phase Coding Solitons
KENNETH STEIGLITZ, FELLOW, IEEE, IRFAN KAMAL, AND ARTHUR WATSON

Abstrucf-We show that some kind of meaningful computa-
tion can be embedded in very simple, microscopically homogene-
ous, one-dimensional automata-filter automata with a parity
next-state rule.

A systematic procedure is given for generating moving,
periodic structures (“particles”). These particles exhibit soliton-
like properties; that is, they often pass through one another with
phase shifts. We then discuss ways to encode information in the
phase of these particles.

Finally, the search for useful logical operations is reduced to a
search for paths in certain graphs. As a demonstration of
principle, we give the details of implementing a carry-ripple
adder.

Index Terms-Cellular automata, parallel computation, soli-
tons.

I. INTRODUCTION

N [l] a class of one-dimensional automata was described, I called the parity-rule filter automata (parity-rule FA’S),
which support particles with soliton-like properties. That is,
although the operation of the automaton is nonlinear and
irreversible, moving persistent structures pass through one
another while preserving their identities. In this paper we will
study the systematic generation and properties of these
solitons. We will then show how they can be used to encode
information and perform useful computation-using the carry-
ripple adder to demonstrate the principle.

Embedding computation in a simple one-dimensional au-
tomaton has important practical advantages over the two-
dimensional alternative. One-dimensional structures are easier
to build and operate, they can be looped naturally, and no a
priori decisions need be made about the size of the array. A
one-dimensional automaton can be implemented in a highly
parallel way much more easily than can a two-dimensional
one, because the cell values can be streamed serially through
many cascaded processors. In [2], for example, a VLSI
implementation of a simple, fixed CA was described which
performs more than lo8 updates per second per chip. The
concatenation of many identical processors then results in a
highly concurrent machine with a fixed, regular structure.

The principal motivation of this work is the exploration of

microscopically homogeneous structures that support compu-
tation. Pseudoparticles then play a natural role in providing a
medium for transmitting information from one place to
another. As we will see, solitons are especially interesting
pseudoparticles from this point of view, because they bear
information in their carrier and envelope phase, and this
information is changed when solitons collide.

Carter [3] discusses the possibility of implementing logical
functions to build cellular automata (CA’s) using true (physi-
cal) solitons supported by chemical structures, while we
discuss the opposite: implementing logical functions using the
soliton-like structures that arise in certain automata. A further
practical aspect of our work is the possibility that we can use
true solitons in much the same way that we use those supported
by automata.

11. FILTER AUTOMATA

For the purposes of this paper we will restrict discussion to
the special class of one-dimensional, binary-state, filter
automata described in [l]. The site values will be denoted by
a:, i = 1, . e , n, where the superscript is the time variable t ,
0 I t 5 + 03, and the subscript is the space variable i, - 03
I i I + 00. The evolution of the automaton is determined by
the fixed rule F of the form

with

F(0, 0, ..., O)=O.

The next state is thus computed using the newly updated values
a:+:, a:+:+ ,, * * , a;:;, instead of a:-r, a;-r+ I , - * , a:- ,, as
in the usual cellular automaton. This is analogous to the
operation of an infinite impulse response digital filter,
whereas a cellular automaton corresponds to a finite impulse
response digital filter (see [4], for example).

It will be convenient to draw two-dimensional pictures that
represent the evolution of an FA, with time increasing
downward. In such a picture the FA “update window” looks
like

z 1 r - 1 r Manuscript received December 9, 1985; revised September 30, 1986. This
work was supported in part by NSF Grant ECS-8414674, U.S. Army
Research-Durham Contract DAAG29-85-K-0191, DARPA Contract
N00014-82-K-0549. and ONR Grant N00014-83-K-0275.

- r - r + l - 1 z
The authors are with the Department of Computer Science, Princeton

University, Princeton, NJ 08544.
IEEE Log Number 8716239.

where z represents the “center” of the window.
We will also be discussing only one kind of FA; the next-

0018-9340/88/0200-0138$01.00 0 1988 IEEE

STEIGLITZ et al. : EMBEDDING COMPUTATION IN AUTOMATA 139

state rule will be fixed for each neighborhood of radius r as
follows. Let the total number of 1’s in the argument of F be
denoted by S .

- I r

S = a f I f + C
J = - r J = o

Then the new value of the site is given by

1
0 otherwise.

S even but not 0

(3)

(4)

We will call this rule the parity rule, and the class of FA’s
with this rule the parity-rule FA’s.

When r = 2 this rule corresponds precisely to Wolfram’s
rule-20 cellular automaton, discussed in [8], and implemented
in VLSI in [2]. In this paper we will be interested in using
persistent structures (“particles”) because they can be used to
encode information in obvious ways, and make the job of
building computational structures conceptually easier. How-
ever, particles are rare in the rule-20 cellular automaton, and
nondestructive collisions are extremely rare. By contrast, the
family of filter automata support a great profusion of particles,
and nondestructive collisions are quite common [11.

Although we allow the sites in an FA to extend from - 03 to
+ 03, we must assume that to the left, anyway, there are only a
finite number of sites containing nonzero values. This will
then give us an unambiguous way to compute the evolution of
the FA, using a left-to-right scan. We will always start with an
initial configuration that has only a finite number of nonzero
site values. Goldberg [9] has shown that the parity-rule FA’s
are stable: no state having only finitely many nonzero site
values can evolve to a state having infinitely many nonzero site
values.

In the usual CA all sites are thought of as being updated
simultaneously. This cannot be done in the implementation of
an FA, because of the dependence of new site values on the
new site values to the left but in the same generation. An FA
can, however, be implemented in a highly parallel way by
updating the site values along a diagonal frontier that extends
from the upper right to the lower left. This is equivalent to
what happens when the stream of sites is processed by a
cascade connection of identical processors, as described in [2].

111. PARTICLES
A remarkable property of the parity-rule FA’s is the

profusion of particles they support. Before we discuss methods
for cataloging these particles, we need some definitions.

Definition: Let r be fixed. A periodic sequence is a finite
sequence Ak of 0’s and l’s, starting and ending with 1 , with
the following properties: if the parity-rule FA with state a:
evolves from the initial condition determined by Ak sur-
rounded everywhere else by O’s, then

where p is the smallest integer with this property, called the
period. The integer d is called the displacement, and the ratio

0 d /p the speed of the periodic sequence.

We will be interested in a subclass of periodic sequences,
which we call particles, intuitively the indivisible building
blocks from which all periodic sequences are formed. A
precise definition, and one that is very useful for our purposes,
is due to Goldberg [9]. For this purpose, we first need to
define two terms.

Definition: A left particle boundary transition is the
update window

0 0 * . * 0 1

o o * * * o 0

and a right particle boundary transition is the update
window

0 0 * . - 0 0

1 0 * * . 0 0
Definition: A periodic sequence is called a particle if at

every two successive time steps the bit pattern corresponding
to a left particle boundary transition occurs exactly once, and

0
At each time step, every particle can be interpreted as an

odd binary number in the natural way, with the most
significant bit on the left. The resulting integer is called a
particle code. The evolution of a particle thus determines a p-
length sequence of particle codes, which we call the orbit of
the particle. The smallest integer in the orbit we call the
canonical code of the particle, and we identify the canonical
code with the particle itself.

Fig. 1 shows the evolution of four typical particles for the r
= 5 parity-rule automaton.

We will use the following interesting result of Goldberg [9]:
every state with only a finite number of nonzero site values
evolves to a periodic sequence, which can be decomposed into
particles. We will also need the following result, which has a
simple but instructive proof.

Lemma: The leftmost nonzero bit of a particle can never
move to the right.

Proof: Assume for a contradiction that the left edge can
move right; that is, that the leftmost 1 of a particle at time t is
the 1 in the window

similarly for a right particle boundary transition.

1 0 * * * 0 0

o o * - * o 0

Move the window to the right until the next 1 at time t is
encountered. The window then looks like

0 0 * . * 0 1

o o - . * o 0

which is a second left particle boundary transition, contradict-
ing the assumption that we are dealing with a single particle.
Thus, there is no second 1 , so at time t the entire particle must
be

* * * 0 0 1 0 0 * ‘

This evolves at time t + 1 to the null state, implying that our
0 initial configuration was not a particle.

140 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 2, FEBRUARY 1988

Fig. 1 . Four typical particles supported by the r = 5 parity-rule filter
automaton, all with speed 2. From left to right the canonical codes and
displacement-period pairs are 133 (12/6), 3 (4/2), 8519 (8/4), 9 (m).

rv. CATALOGING PARTICLES

In this section we will describe two methods for finding
particles: the first uses a simple enumeration strategy, and the
second a constructive algorithm. Corresponding algorithms
for cellular automata have been described independently by
Wolfram [7].

In the enumerative method, the integers from 1 to some
fixed large number, say N,,,, are decoded into binary bit
patterns and used to initialize the sites in an FA for a given
rule-radius r. The FA is then run forward a fixed number of
generations, and the resulting bit patterns analyzed for
periodic sequences. Those periodic sequences are then parsed
into particles. This enumerative method lends itself to the
dictionary approach, where all particles up to some length are
produced at one time and stored for later use. That is how the
main database of particles used later on was produced. In
producing the database we actually parsed into subsequences
that have no internal gap of consecutive 0’s longer than 2r -
1. This condition differs from requiring true particles in that
very rarely multiple particles traveling close together in
parallel will be mistaken for a single particle. At the time we
built our initial database of particle information we lacked a
precise definition of particle, and used this condition as a
working definition. The extra few “composite particles”
generated presented no problem, so we left them in. In theory,
we may detect all possible particles with this method: replace
the limit on the number of generations allowed with the
condition that the width of the state may never grow beyond
the width of the initial seed state. This puts a bound on the
number of generations required before a repetition of state
occurs, and will detect a particle if the initial seed corresponds
to the maximum-width state in the particle’s orbit. Of course,
the bound on the number of generations is offensively large:
for our purposes, running the FA for 32 generations without
width pruning was sufficient when generating particles up to
width 16 with radii up to 6.

Particle histograms based on these dictionaries are given in
[l] for widths up to 16 bits, and radii from 2 to 6. The number
of particles with canonical code less than a given width
increases sharply with the value of r. For example, for r = 2,
3 , 4 , 5 , and 6, there are 8, 198,682,6534, and 13109 distinct
particles with canonical code widths up to 16 bits, respec-
tively.

The enumerative method has a few drawbacks, all springing
from the fact that the initial bit patterns are not strongly related
to the particles that they generate. First, the time required to
classify the particles that result from each initial pattern is
rather large, although in practice it is almost constant as a
function of particle length. Second, to generate all particles of
length up to L requires N , , = 2L iterations of the main loop,
so large particles cannot be generated in practice. Since the
mapping of initial seeds onto particles is many-to-one, it is
reasonable to hope for a more efficient method. Last, the
method does not lend itself to modifications for finding
specialized types of particles more efficiently. That is, if we
wanted to search only for particles with some special
characteristic, such as speed or period, we would still be
required to find all the other particles with the same width as
well.

The remainder of this section is devoted to describing the
constructive algorithm, which can generate very large parti-
cles, and which is also not without some theoretical interest.
The algorithm generates all FA particles for a given radius r
whose periods divide a given number. Among other things it
will enable us to generate all particles with period 1, those
which have only one orbital state. The running time is only
linear in the maximum size of the particle being searched for,
as opposed to exponential for the enumerative method, and
this allows particles of length over 100 to be discovered
quickly, as opposed to the practical limit of around 18 imposed
by the first method.

As a prelude to the statement of the algorithm, consider the
“leftmost edge” of a particle: the pattern formed by the
leftmost nonzero bit of each orbital phase of the particle over
one complete cycle. The algorithm is based on the observation
that, given the leftmost edge of a particle, the parity update
rule uniquely determines the entire particle.

Consider a given FA “update window” over a section of
the particle. It looks like

2 1 * * * r - 1 r

- r - r + l ... - 1 z

Now in an ordinary update procedure the contents of all but
the bottom z position are known at each step, and this is filled
in according to the number of 1’s in the remaining cells.

STEIGLITZ et al. : EMBEDDING COMPUTATION IN AUTOMATA 14 1

However, suppose that all cells are known except the r cell at
the upper right. Then its contents are obviously determined by
the remaining cells in all but the two cases where everything in
the window except perhaps the lower z cell is filled with a 0:

1) If the lower z contains a 1, then there is no way to fill in
the upper r cell and be consistent with the update rule. When
this situation is reached in the algorithm, it means that no
particle with the current left edge exists, so another is tried.

2) If the lower z contains a 0, then the upper r cell can be
filled with either a 0 or a 1 and still be consistent with the
update rule. In the algorithm it is filled with a 0. To fill it with
a 1 would create a second left particle boundary transition,
which a single particle cannot contain.

Now it becomes clear how the algorithm proceeds. There
are only rp possible left ends to a period-p particle, because of
the “speed of light,” r - 1, and the fact that the left edge of a
particle cannot move to the right. Furthermore, such initial
configurations can be generated easily in lexicographic order,
complete with r 0’s to the left of each initial 1. We begin, then,
with p - 1 (staggered) stacked “windows,” the top of each
one residing on its own orbital row (excluding the bottom
row), each having one of the initial 1’s in its upper (r - 1)st
position. Then, as described above, we proceed upward from
the bottom window, filling in the second cell of the particle at
each orbital position. When we have filled in the second cell of
the top orbital position, we copy the contents to the second cell
of the bottom orbital position, to enforce the period-p
condition. Then we advance all of the windows one step, and
proceed for succeeding iterations just as in the first. This main
loop terminates when one of the following three conditions is
satisfied.

1) A gap of 2r + 3 consecutive 0’s is found in the particle,
in which case it is recorded and the next initial configuration is
considered.

2) A state is reached where there is no possible way to fill in
one of the cells, in which case the next initial configuration is
considered.

3) The maximum particle length being searched is ex-
ceeded, in which case the next initial configuration is
considered.

Thus, an outline of the algorithm is

for each of the rp left edges
while (a. max particle length not exceeded and

b. dead end not reached and
C. particle not isolated)

begin
update windows;
record particle if appropriate

end.

The complexity of the algorithm is easily seen from the
above outline. There are r p steps, each consisting of a
maximum of L (= maximum desired particle length) itera-
tions of a constant time loop. Therefore, the “practical”
complexity of the algorithm is best stated as O(rpL),
especially since we are usually concerned with particles
smaller than some given value of L ; for instance L = 32 gives
all particles which are codable by an integer on a VAX, or L

= 80 gives all particles whose pictures fit on a CRT screen.
However, we can use the algorithm to generate all particles

of periodp regardless of size. To see this, consider the state of
the construction procedure at a given instant. Note that the
current state, and thus the entire future of the procedure, is
completely determined by the contents of the current win-
dows. Thus, an exact repetition of the contents of all of the
window cells at some time during the procedure is equivalent
to nontermination of the main loop (if the maximum length
condition is dropped), since then the same repetition would
occur forever. This is clearly equivalent to the nonexistence of
a period-p particle with the left end which is currently being
considered. Now there are no more than 2(r + l) (p - 1)
window cells, and since each can have only two possible
values, there are at most 4(‘+’)@-’) distinct contents. Thus,
there must be some repetition of contents some time within the
first 4(‘+’)@-’) iterations of the main loop, assuming that no
particle was found before then. At that time we may conclude
that no particle is forthcoming, and go on to the next initial left
edge. Thus, taking L = 4(‘+’)@-’), we have an algorithm for
generating all particles of period p for a given r, with the time
complexity of O(rp4(‘+ ‘) @ - I)) .

As a bonus, the argument above establishes the following
fact.

Theorem I : The number of particles with period p for any
0 radius-r filter automaton is no greater than r p .

V . CODING INFORMATION IN PARTICLE PHASE

A particle can be viewed as carrying information in the
following way. Assume that we establish an absolute origin in
space (x = 0) and time (t = 0), and a reference particle that
starts in the state corresponding to its canonical code with its
left end at x = 0. Given any instance of a particle, run it
backwards in time to t = 0 and measure its orbital state s and
the position x of its left end. The orbital state so obtained will
be called the orbital phase of the particle, and will take on
values s = 0, 1, e , p - 1, wherep is the period, and s = 0
corresponds to the canonical code of the particle. The position
x so obtained is called the translationalphase. Thus, when no
collision takes place, the orbital and translational phases of a
particle both remain 0. We might wish to keep track of the
translational phase only modulo the particle’s displacement d,
in which case the particle has p x d distinct phase states.

We will choose to do things a little differently, however,
because we will be studying the effects of collisions between
pairs of particles. To go further we need to discuss collisions
in some detail. First, we note that if two particles start close
enough together, it may happen that they interact in a way that
is impossible when they start far apart. In such cases, we say
the collision is improper; otherwise we say it is proper. We
will restrict our attention to proper collisions, because we will
always provide an initial spacing large enough to ensure a
typical collision. Next, two collisions will be said to be the
same if they can be put in concordance by a shift in space and
time. Otherwise, they will be different. Finally, we need the
following fact, which is proved in [l].

Theorem 2: Let two particles have disp!xements d l , d2,
periods p l , p2, and speeds dl/pl < d2/p2, so that particle 2

142

16
17
18
19
20

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988

11 2 3 155 2 2
11 1 2 155 0 0
11 2 3 155 2 2
11 2 3 155 2 2
659 - 3 -

can hit 1. Let the difference in speeds be As = d2/p2 - dl/p,.

Then the number of different proper collisions is no larger
than

16
17
18
19
20

D E T = P I P ~ * As=p,d2-~2di

and displacing one particle by DET results in the same
collision, as long as it remains proper.

We call DET the determinant of the collision, it being the 2
0

It is now clear that if we have particles with only two
different displacement-period pairs, then it is the relative
positions of particles modulo DET that count, insofar as the
results of collisions are concerned. For this reason, we will
measure translational phase modulo DET, and a particle in
such a collision system will have p x DET phase states.

In what follows we will place particles in the initial array of
the automaton at predetermined positions and in predeter-
mined orbital states. Collisions will then take place, and the
final results of those collisions will arrive at some arbitrary
fixed position far to the left, which will be thought of as the
“output” position. We assume that an observer can measure
the time of arrival and orbital state of each particle that arrives
at the output position, and thereby determine its orbital and
translational phase.

VI. COLLISION TABLES

We now describe a table that determines the results of
pairwise collisions between two given particles. The particular
form of the table is not the only one possible, but is one that
will be useful to us in the carry-ripple example. The table is
constructed empirically, by simply simulating the parity-rule
automaton.

A typical table (Table I) is given below for collisions in the r
= 5 parity-rule filter automaton between the code 155 particle
with displacement-period pair (22/8), and the faster code-1 1
particle with d/p = (9/3). There are three sections in the
table, each corresponding to a possible initial orbital state of
the fast particle; the codes in the orbit of the fast particle are
given in the headings, namely 11, 25, 37. Within each section
there is one row for DET consecutive spacings, starting with a
value large enough to ensure that all collisions are proper; in
this case 3 r = 15. The numerical value of the spacing is the
number of cells between the right end of the slow particle and
the left end of the fast. In each row we record the code of the
resulting fast particle, and if it is in the orbit of the original fast
particle (that is, if the identity of the fast particle is unchanged
by the collision), we follow this with the changes in its orbital
and translational phases (AVO and A p t) . The same information
for the slow particle follows in that row.

Because there can be only DET distinct collisions, it should
be clear that the second and third sections of the table are
derivable from the first, given the displcement-period pairs of
the particles and the widths of the orbital codes. We will see
that this redundant form of the table is convenient when
searching for useful logical operations, as described in the next
section.

This table has all the information we need to predict the
result of any collision between a fast and slow particle, given

x 2 determinant with rows plp2 and dld2.

11 2 5 155 2 2
659 - 3 -
11 0 2 167 -
11 2 5 155 2 2
11 1 3 155 0 0

TABLE I

TWO PARTICLES
AN EXAMPLE OF A STATE-TRANSITION TABLE FOR THE COLLISION OF

start 15522 8 11 9 3
ipacing 1 code AV, Avt I code A ~ .
15 11 0 2 1 167 -

next 155 25

18 11 155
19 11 1 155

11 2 4 I 155 2 2
next 155 37

15 11 11 2 5 1 155 2 2

end

Each of the three sections corresponds to a different initial orbital state of
the fast particle (namely 1 1 , 25, and 37); each row within each section
corresponds to an initial spacing; AV,, corresponds to the shift in orbital phase;
Ap, corresponds to the shift in translational phase, measured positive to the
left for the slow particle, and positive to the right for the fast. When the
identity of a particle changes, the phase shifts are undefined.

that in the initial state the slow particle is in its canonical state.
As an example, suppose that the fast particle (1 1) is in orbital
state 25 and its left end is positioned 101 cells to the right of
the right end of the slow particle, which is in its canonical state
of 155. The progression of states is periodic modulo the
determinant, 6, so we need to enter the table at the row
corresponding to a spacing of 17 = 101 mod 6. The entry in
the code-25 section of the table then shows that the fast particle
emerges with its identity intact, and with an orbital phase shift
of 0 and a translational phase shift of 2, while the slow particle
is changed to one with canonical code 167.

VII. SEARCHING FOR LOGICAL OPERATIONS
There are many ways we might try to encode and process

information using solitons, and we will describe here only
one, our goal being to demonstrate the principle.

In the basic scheme we will study, the fast particle is in one
of two states, identified with “0” and “1,” and it passes
through a number of composite structures, each composed of
one or more slow particles in their canonical states but with
variable spacing, and with identical displacement-period pairs.
(See Fig. 2.) These composite structures will be called
particle bundles.

Because the slow particles are all in their canonical states,
the results of all the collisions can be predicted from the
collision tables described in the previous section, and in fact
the “0” and “1” states of the fast particle can be associated
with two particular rows of the table. The problem is to choose

STEIGLITZ et al.: EMBEDDING COMPUTATION IN AUTOMATA

- + e

143

offset offset offset

I e zero rnoddet -+ I t f ixed space -t I
Fig. 2. The collision scheme studied here. A single fast particle passes

through several slow particles in their canonical states, comprising a
particle bundle.

the two rows so that the effects of collisions correspond to the
logical operations we wish to perform.

We can automate the search for the slow particle bundle as
follows. Create a directed graph G = (V , A) with one node
for each pair of rows in the collision table. Choose a fast
particle and a set of slow particles with a given displacement-
period pair. Suppose passage of the fast particle through a
particular slow particle, at a particular spacing offset relative
to an arbitrary reference (see Fig. 2), maps row i to row i’ and
row j to row j ’ . Then create an arc that goes from the node
corresponding to row-pair i j to the node corresponding to i‘ j‘ ,
and label this arc with the code of the slow particle and the
spacing offset that produced this result. Do this for all possible
collisions between the given fast particle and the given set of
slow particles.

If now we want to map the fast particle state “0” to “X”
and “1” to “Y,” where Xand Yare each 0 or 1, we need to
find a path in the graph G that goes from a node of the form
A B to a node of the form CD, where C = A if X = 0, C = B
if X = 1, and similarly for D and Y. (For example, if we want
the complementation operation, we search for a path from a
node of the form AB to a node of the form BA .) Each arc on
the path represents a slow particle at a particular spacing offset
in the bundle that we need to pass through to effect the
operation.

The problem of implementing a particular set of logical
operations thus reduces to that of finding a corresponding set
of paths in a directed graph. The graph has (D E T ~ P ~) ~ nodes,
where p2 is the period of the fast particle; and DET arcs
leaving each node for each slow particle allowed in a bundle.
We should use breadth-first search to implement the path
search so as to find paths with the minimum number of arcs.

To make these ideas more concrete, we describe the
embedding of a simple carry-ripple adder.

VIII. THE CARRY-RIPPLE ADDER
To implement a carry-riDple adder, we will encode each

pair of addend bits to one oL three different particle bundles: w
for the case when the addend bits are both 0, x when one is 0
and the other 1, and y when they are both 1. (See Fig. 3 for an
example.) The resulting sequence of particle bundles is then
transmitted (at the slow speed of the particles used to construct
the particle bundles) to the left, most significant bit-pairs first.
They are separated by a distance that is 0 mod DET, so that the
collisions with the fast particle will be in accordance with the
collision table; but a distance large enough to ensure proper
collisions. The fast particle, which represents the carry bit, is
then sent in from the right, at an initial spacing that is equal
mod DET to the initial spacing chosen for the collision table
(in the example of Table I, a spacing of 15).

Given this particular structure, it is now easy to write down
the transition rules that the collisions between the fast particle
and the slow-particle bundles need to satisfy. Letting c be the
state of the carry bit, we require

wc+Ow’
XC+CX’

yc-’ ly ’ .
In these rules, wc represents the configuration with the particle
bundle w to the left of the carry bit c, the arrow indicates the
result of the collision, and Ow means that the fast particle is
moved to its “0” state, and emerges to the left of the particle
bundle w ‘ .

For this scheme to operate properly as an adder, we must be
able to decode the resulting slow-particle bundles, and that
means that the result w’ when c = “0” must be different
from w ’ when c = ‘ ‘ 1, ” and similarly for x ’ and y ’ . We call
this the distinguishability criterion. Finally we require that all
the particles taking part in collisions have their speed
unchanged by the collisions, so that the results of the collisions
can be easily interpreted.

The graph-search problem that results from this formulation
of the carry-ripple adder is not difficult, and many solutions
have been obtained. One such solution for r = 5 , and two slow
particles in each each slow-particle bundle, is the following:

fast particle: code 11, d/p = 9/3
fast particle state “0” = orbital state 0, offset 0
fast particle state “1” = orbital state 0, offset 2
slow particle d/p = 22/8, DET = 6
slow-particle bundle w: code 155 (offset 2) code 155 (offset
4)
slow-particle bundle x : code 165 (offset 2) code 207 (offset
3)
slow-particle bundle y : code 155 (offset 0) code 165 (offset
2).

Fig. 4 shows a typical collision in this adder, the collision yc
when c is in state “0.”

Another solution was found for r = 3, with three slow
particles in each slow-particle bundle

fast particle: code 7, d/p = 513
fast particle state “0” = orbital state 0, offset 0
fast particle state “1” = orbital state 0, offset 1
slow particle d/p = 14/10, DET = 8
slow-particle bundle w: code 919 (offset 3) code 919 (offset
0) code 919 (offset 5)
slow-particle bundle x : code 919 (offset 3) code 919 (offset
0) code 731 (offset 2)
slow-particle bundle y : code 73 1 (offset 7) code 919 (offset
0) code 731 (offset 2)

IX. DISCUSSION
We have demonstrated that some kind of meaningful

computation can be embedded in a very simple, microscopi-
cally homogeneous, one-dimensional automaton. This embed-
ding differs in one important aspect from the ones used to
show the universality of two-dimensional cellular automata. In

144 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 2, FEBRUARY 1988

addend codes

a a d d e n d 1

end 0 addend 2
c a r r y

L
I O 0 0 1 I 1 O t u m

fast
B C A B B A C (c a r r u bi t)

U
r; P t single

slow- particle bundle!, bundle
An example of the form of a carry-ripple adder. The fast particle Fig. 3.

travels through the slow-particle bundles, propagating the carry bit.

Fig. 4. The collision implementing yc --t ly’ when c is “0”-the carry bit
goes high. The particle codes are, from left to right, 155 (22/8), 165 (22/8),
1 1 (9/3), and the offsets 0 , 2 , 0 . Note that the identity of the 155 is changed,
to code 167 (2218). (The picture is circularly wrapped to tit on the page.)

the latter, many cells must be put in their proper initial states
before computation can proceed, and bits are stored by the
presence or absence of particles [5] , [6] . In the one-
dimensional structure discussed here, all the information
necessary for computation to take place can enter in bit-serial
form, with all the initial states zero. The question of whether
filter automata are universal, however, remains open.

REFERENCES

[l] J . K. Park, K. Steiglitz, and W. P. Thurston, “Soliton-like behavior in
automata,” Physica D, vol. 19D, pp. 423432. Reprinted in Theory
and Applications of Cellular Automata, S. Wolfram, Ed. Hong
Kong: World Scientific, 1986, pp. 333-342.

121 K. Steiglitz and R. R. Morita, “A multi-processor cellular automaton
chip,” in Proc. 1985 IEEE Int. Conf. Acoust., Speech, Signal
Processing, Tampa, FL, Mar. 1985.

[3] F. L. Carter, “The molecular device computer: Point of departure for
large scale cellular automata,” in Cellular Automata, D. Farmer, T.
Toffoli, and S. Wolfram, Eds. Amsterdam, The Netherlands: North-
Holland Physics, 1984, pp. 175-194.

[4] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing.
Englewocd Cliffs, NJ: Prentice-Hall, 1975.

[5] E. R. Berlekamp, J. H. Conway, and R. K. Guy, “What is life?” in
Winning Ways for Your Mathematical Plays, Vol. 2: Games in
Particular.

[6] F. Nourai and R. S . Kashef, “A universal four-state cellular com-
puter,” IEEE Trans. Comput., vol. C-24, pp. 166-176, Aug. 1975.

171 S. Wolfram, “Glider gun guidelines,” unpublished manuscript, Mar.
1985. (Available from Scient$ Amer.)

[SI -, “Universality and complexity in cellular automata,” Physica D ,
vol. IOD, pp. 1-35, 1984. Reprinted in Theory and Applications of
Cellular Automata, S. Wolfram, Ed. Hong Kong: World Scientific,

C. H. Goldberg, manuscript in preparation.

New York: Academic, 1982, ch. 25.

1986, pp. 91-125.
[9]

STEIGLITZ et al.: EMBEDDING COMPUTATION IN AUTOMATA 145

Kenneth Steiglitz (S’57-M’64-SM’79-F’81) was
born in Weehawken, NJ, on January 30, 1939. He
received the B.E.E., M.E.E., and Eng.Sc.D. de-
grees from New York University, New York, NY,
in 1959, 1960, and 1963, respectively.

Since September 1963 he has been at Princeton
University, Princeton, NJ, where he is now Profes-
sor of Computer Science, teaching and conducting
research on VLSI design and implementation of
signal processing, optimization algorithms, and the
foundations of computing. He is the author of

Introduction to Discrete Systems (New York: Wiley, 1974), and coauthor,
with C. H. Papadimitriou, of Combinatorial Optimization: Algorithms and
Complexity (Englewood Cliffs, NJ: Prentice-Hall, 1982).

Dr. Steiglitz is a member of the VLSI Committee of the IEEE ASSP
Society, is serving his second term as member of the Administrative
Committee, and has also served on the Digital Signal Processing Committee,
and as Awards Chairman of that Society. He is an Associate Editor of the
journal Networks, and is a former Associate Editor of the Journal of the
Association for Computing Machinery. A member of Eta Kappa Nu, Tau
Beta Pi, and Sigma Xi, he received the Technical Achievement Award of the
ASSP Society in 1981, the ASSP Society Award in 1986, and the IEEE
Centennial Medal in 1984

Irfan Kamal, a citizen of Bangladesh, was born on
July 1, 1965. He received the B.S.E. degree (with
Honors) in electrical engineering and computer
science from Princeton University, Princeton, NJ,
in 1986.

His interests include novel computer architec-
tures, graph theory, and the design and analysis of
learning systems. At present he is on leave from the
field, working as an analyst at Memll Lynch.

Mr. Kamal has been a member of Tau Beta Pi
since 1985.

Arthur Watson was born in New York on Novem-
ber 25, 1964. He received the A.B. degree in
mathematics from Princeton University, Princeton,
NJ, in 1986.

He is currently working towards the Ph.D.
degree in computer science at Princeton University.
His current interests include algorithm and automata
theory and computer games.

