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Eigenvectors and Functions of the 
Discrete Fourier Transform 

BRADLEY W. DICKINSON, MEMBER, IEEE, AND KENNETH  STEIGLITZ, FELLOW, IEEE 

Abstract-A  method  is presented for computing an orthonormal set 
of eigenvectors for the discrete Fourier  transform (DFT). The tech- 
nique is based on a detailed analysis of the eigenstructure of a special 
matrix  which commutes  with  the DFT.  It is also shown how fractional 
powers of  the  DFT can be  efficiently  computed, and possible applica- 
tions to multiplexing and  transform coding are suggested. 

T 
I. INTRODUCTION 

HIS paper  deals  with  some  mathematical  aspects  of  the 
discrete Fourier  transform  (DFT),  studied  with  linear 

algebra and  matrix  theory  methods.  The vast majority  of 
papers  on  the  DFT have concerned  computational issues, most 
notably  the  extensive  literature  on  the  fast  Fourier  transform 
(FFT)  algorithms  and  more  recently  the Winograd-Fouirier 
transform  algorithm.  Yet  the  importance of the  DFT  stems 
from  more  fundamental  physical  and  mathematical  principles 
of  harmonic analysis which  underlie  linear signal processing 
technology.  Thus  a  major goal of  this  paper is to present  some 
novel ways of thinking  about  properties of the  DFT in order 
to stimulate  further  research along more  technique-oriented 
lines. 

To be more  concrete,  let F denote  the  DFT,  regarded as a 
unitary  mapping of complex  N-space onto itself. With respect 
to  the  standard basis of N-space, F is simply an N X N matrix 
whose  elements are normalized  complex  exponentials 

(F)ik = ( e - j 2 n i k / N ) / f i ,  0 < i, k < N  - 1 .  (1) 

Thus  the  methods  of  linear algebra and matrix  theory  may be 
applied to  study  the  DFT. 

McClellan and  Parks [ 11 suggested that  the  eigenstructure of 
F,  being a  natural  linear algebraic way  of  decomposing  the 
matrix,  might be of  computational  interest as well. It was 
hoped  that  the diagonal form  of F with  respect to an eigen- 
vector basis of N-space  might  be  exploited.  Through  the use 
of highly original methods in [ 1 1 ,  the  multiplicities  of the 
eigenvalues of F were  determined and a set  of  eigenvectors was 
constructed. No computational  benefits over the  FFT were 
observed,  however,  and  the  eigenvectors  obtained are not 
orthogonal. 

It  turns  out  that  the eigenvalue multiplicity  problem  for F 
has a long  history, being equivalent  to  a  problem solved by 
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Gauss [2]. This was pointed  out  by  Good [3] and,  later, 
McClellan 241. Recently,  Auslander  and  Tolimieri [5] have 
elaborated  on  the  relationship  of  the  multiplicity  problem to 
certain constructions of abstract  harmonic  analysis, even 
showing how  the  FFT arises from  abstract  principles! 

The  structure  of  the eigenspaces of F is  less well understood. 
It appears  difficult to  obtain an analytical  form for an orthog- 
onal  set  of  eigenvectors.  This suggests that  a  computational 
approach  may be necessary,  and Yarlagadda [6] proposed  one 
such  method.  In  Section I1 of this  paper, we propose  a  dif- 
ferent  approach based on  the  theory  of  commuting  matrices. 
Some  interesting  analytical  results are obtained along the way. 

Functions  of  the  DFT are 'discussed  in  Section 111. The 
imbedding  of  the  DFT  into  a  family  of  transforms  has  been 
used by  Jain [7] to  study  the  variation of general properties 
of  the  transform  family,  especially  for  certain  data  compres- 
sion  purposes. We suggest another  imbedding  based  on  the 
idea of functions  of  a  matrix. We point  out  that  functions  of 
the  DFT  matrix F are simple to  compute  and  to use in compu- 
tation.  The  family  of (fractional)  powers Ft  is described  in 
detail.  Finally, a novel matrix  transform pair relationship, 
which generalizes the  DFT  relationship  between  vectors, is 
constructed  from  fractional  powers of F ,  and  some possible 
applications are mentioned. 

11. A METHOD FOR OBTAINING ORTHOGONAL 
EIGENVECTORS OF THE DFT 

A. The  General Approach 
First, we recall some  facts about  the  DFT  matrix F in (1). 

The minimal  polynomial  of F is h4 - 1 [ l ] ,  [3] - [ 5 ]  ; thus 
F obeys  the  equation 

F4 = I  (2) 

where I is the (N X N )  identity  matrix.  The  roots  of h4 - I 
are distinct, so F is simple or diagonaZizabZe [8] with eigen- 
values 

h k -  - d k = l z  0 < k < 3  (3) 
the  fourth  roots  of  unity.  The multiplicities of the eigen- 
values are known, as discussed in Section  I,  and are given in 
Table I. Since  they are not  distinct for N >  4, there are many 
possible sets of eigenvectors. 

As motivation  for  our  approach,  suppose  that we have a 
matrix S, with  distinct 'eigenvalues,  which commutes with F ,  
that is, 

FS = SF, (4) 
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TABLE I 

4 m  m l 1  m m m- 1 

4 m +  1 mi 1 m m m 

4m+2 rn+ 1 rn m+ 1 m 

4m+ 3 rn+l m a l  mcl m 

Let e be  an eigenvector  of S corresponding to eigenvalue A. 
Then 

S(Fe) = F(Se) = F@e) = We.  (5) 
So Fe is  also an  eigenvector of S corresponding to the same 
eigenvalue. However, S has  distinct eigenvalues and,  therefore, 
unique  (up to normalization  by  a  constant)  eigenvectors [8]. 
Thus,  for  some  constant 0 

Fe = pe (6) 
so e is  an eigenvector  of F also. 

If S is real and  symmetric,  its  eigenvectors will be real and 
orthogonal  and will be the desired set  of  eigenvectors  of F. 
The  computation  of  the eigenvectors  of  a real symmetric 

1 r: 2 c o s o  

Circular  convolution  of  time signals corresponds to pointwise 
multiplication in the transform  domain. The  action of the 
filter D ( z )  is thus represented by  multiplication of complex 
N-vectors (transforms) by  the  diagonal  matrix AD, which  has 
elements 

(AD)kk = D(eiznkIN ), O<k<N- 1. (9) 

The  correspondence  between  circular  convolution  and  point- 
wise multiplication gives the  matrix  equation 

FI'D = ADF. (10) 

From (lo), using the  symmetry of each  matrix  with respect to 
transposition, it follows that  the  matrix 

zD=I 'D   +AD (1 1) 

commutes  with F. 
This leaves the  problem  of  determining  a  set  of  filter  coeffi- 

cients  which  leads to distinct eigenvalues for E D .  In  Appen- 
dix I, we show, using perturbation  methods,  that  such a  choice 
is always  possible. We will bypass the  existence  question  by.a 
careful analysis  of the simplest  choice  of  filter, D(z)  = z + zY1, 
corresponding to  the  matrix 

0 . . .  0 1 

1 0 

i o  1 2 c o s 2 w  : I  

matrix  has  been  thoroughly  studied,  and reliable methods are 
available [9]. 

From knowledge that F has  a set of real eigenvectors [ 11, we 
are assured  of the existence of such  matrices S.  For every 
dimension,  it would  be desirable to have a  canonical  choice  of 
S whose eigenvectors  could be  obtained  analytically. No solu- 
tion is known  for this  problem.  However, we will give a simple 
choice  of S whose  structure is sufficiently rich to allow a 
complete analysis  of the associated  eigenproblem. 

B. A Class of Matrices Commuting  with F 
Our  choice  for the  matrix S will come  from  a class of 

Let D(z )  be  any real even FIR digital filter  written  in  the 

D(z )=ao  + a 1 ( z + z - ' ) + . . - + a p ( z P + z - p ) ,  p < N / 2  

where  time  shifts are taken  in  the circular or  mod N sense. 
The  action of this  filter on  complex N-space  (time signals) 
corresponds to circular  convolution  or,  equivalently,  to  multi- 
plication  by the circulant  matrix (N X N )  

aoala2 . * . ap 0 .  * 0 a p  * . . a4a3u2a1 
alaOal . * . . . . as  a4a3a2 

matrices  which all commute  with F constructed as follows. 

form 

(7) 

aza1ao * . * . . . a6a5a4a3 . (8) I 

0 

1 

where o = 21r/N.  While  we  have been  unable to make  a  com- 
plete  analysis, we  will show  that  there is no  difficulty  in find- 
ing a  complete  set  of real orthogonal  eigenvectors  for S which 
are also eigenvectors  of F ,  even when S has  multiple eigen- 
values.  Based on extensive  numerical  evidence, as well  as the 
analytical  results to  be  presented  next,  we  make  the following 
conjecture:  the eigenvalues of  the N X N matrix S [(12)] are 
distinct  except  when N is divisible by 4. (When N is divisible 
by four  it can  be  proved that S has  two  zero eigenvalues. We 
also conjecture  that  this is the  only  multiplicity  which ever 
occurs.) 

C The Eigenstructure of  S 
For every N > 2,  the  matrix S has all of  its eigenvalues in 

the interval [-4, 41 by Gershgorin's  criterion [8]. To get 
more  refined  results, we will recall some  facts  about  the rela- 
tions  between  the eigenvalues  of a  matrix  and  those  of  its 
principal  submatrices; see [9] and [lo], for example. 

Let Ti be the following i by i principal  submatrix  of S :  

2 c o s o  1 o . . .  
1 2 cos2w 1 oi 

1 

. . .  
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Ti is a  symmetric,  tridiagonal  Jacobi  matrix  and  has  distinct 
real eigenvalues [9, p. 3001. Let p1 > p2 >. . . > p ~ - ~  be the 
eigenvalues  of T N - ~  and  let Al  2 h2 2 .  * - 2 AN be the eigen- 
values  of S. The interlacing inequalities for  these eigenvalues 
are the inequalities [9,  p.  1031, [ 111,  and [ 121 

A1 >h2 > p 2  > * * * > p N - l  > A N .  (14) 

From  the  distinctness  of  the cui} two  important  conclusions 
may be drawn: 1) no eigenvalue of S has  multiplicity  greater 
than  2, and  2) any  multiple eigenvalue of S is  also  an  eigen- 
value  of T N - ~ .  

The eigenvalues of Ti are the  roots of the  polynomial 

ri(p) = det (Ti - PI) ,  i > 1. (15) 

By expanding  the  determinant  these  polynomials  are  found to 
obey  the recursions [9,  p. 4231 

r i ( p )  = (2  cos iu - p)rj-l (p) - ri-2 &) (16) 

where ro(p)  = 1  and r1 (p) = 2  cos o - p. A set of unnormal- 
ized eigenvectors for T N - ~  is obtained  when these polynomials 
are evaluated at  the eigenvalues of TN-1 [9,  p.  3 161 

((1 9 -r1 (pi>> r2 (p i ) ,  . . . 9 (- 11N-’rN-2 (pi))’; 

1 < i < N -  1) (17) 

where  prime (‘) denotes  transposition 
Since the  roots of rN-2(p) are  eigenvalues of T N - ~ ,  a  princi- 

pal  submatrix of TN-I, whose eigenvalues  are { p i } ,  the  inter- 
lacing  inequalities may again be  applied. By considering the 
signs  of the highest  power  of p in riv-&>, we find  the values 
of rN-.,(p) at { p i }  satisfy 

rN-Z(P1) > 0, rN-Z(p2) < 0,. . . > ‘N-Z(pN-l)> 0, 

N even 

‘N-2 (111) < 0, rN-2 (p2) > 0, . Y rN-2 (PN-1) > 0, 

Nodd .  (18) 

Actually,  more  can be said. By the even symmetry  of  the 
cosine function, T N - ~  is a centrosymmetric matrix, meaning 

T N - ~  = JTN-I J (19) 

where J is the N - 1 X N - 1 matrix  with ones on  the  anti- 
diagonal. By centrosymmetry, if e is an eigenvector  of TN-1 
corresponding to eigenvalue pi, then  the reversed vector Je is 
also  an eigenvector  corresponding to p i .  Je and e have the 
same length,  and since the eigenvector is unique up to a scale 
factor,  the  form  of  the eigenvectors in (17)  implies 

rN-2 ( p i )  = f 1  (20) 

with  the choice of sign determined by (18). 
We are  concerned  with  repeated eigenvalues  of S, if  any, 

because these may cause  difficulty  in  determining  eigenvectors 
of F. Because a  repeated eigenvalue must also be  an eigenvalue 
of TN-1, by interlacing, we need  a  criterion  for  “inheritance 
of  eigenvalues”  of T N - ~  by S. Writing S in  partitioned  form 

where a’ = (1 0 0 l), we examine  the  equations  required 

to hold if pi is to be  an  eigenvalue of S to  obtain  the  condition 
PO, P. 901 

rank [a,&r-‘T~-l] = N -  2. (22) 

There  are  a number of equivalent  ways to express this  condi- 
tion [ 111 , but because T N - ~  has  eigenvectors  of known  form 
(17), the  most useful is that  the  vector a = (1 0 * 0 1)’ be 
orthogonal to‘the eigenvector  of T N - ~  corresponding to eigen- 
value p i .  (These conditions  are  related to controllability  con- 
ditions  for a  particular  linear  system [ 121 .) From (17)  this 
condition  becomes 

(- 1 y - 2  rN-2 (pi) = - 1, (23) 

Thus  the eigenvalues inherited  are  the  ones  corresponding to 
eigenvectors, e (p j ) ,  of T N - ~  satisfying 

e ( p d  = -Je(pi>. (24) 

From (18) and (20) the  number  of  inherited eigenvalues, and 
hence potential double eigenvalues of S is 

(N- 1)/2, N o d d  

(N- 2)/2, Neven. (25) 

We now use the  condition  for eigenvalue inheritance, to- 
gether  with  the  form  of  the eigenvectors  of T N - ~ ,  to obtain 
a  description  of the eigenspace of S corresponding to an  in- 
herited eigenvalue. We show that if the  multiplicity  of an 
inherited eigenvalue  of S is  two,  then we can easily find  two 
orthogonal  eigenvectors  which are  also eigenvectors  of F.  
This will follow from  certain  even/odd  symmetries  of  the 
eigenvectors of S. 

Let pi be an inherited eigenvalue of S .  One  eigenvector is 
then given by u(&) = (UO, u1, * , UN-1)’ where 

u(p i )  = (0,1,  (p i ) ,  * * * 3 (- (pi))’. (26) 

This  follows from  the  partitioned  form  of S [(21)]  and the 
inheritance  condition  [(23)].  From  (24) it follows that  this 
eigenvector has odd symmetry, in  the usual  (circular) sense 

u .  = - u  - i m o d ~  O < i < N -  1. (27) 
From (21) and  the  distinctness  of eigenvalues of TN-1, the 
eigenvector u(pJ [(26)] is the only possible eigenvector of S 
corresponding to eigenvalue pi and having a  zero  first  compo- 
nent.  Thus, if p i  is a  double eigenvalue of S, we may assume 
a  second  eigenvector  of the  form u^(pi) = ( G o ,  G l ,  . . * , i i N - l ) ’ ,  
with G o  = 1. Again,  using the partitioned  form of S [(21)] we 
obtain  two  equations satisfied by  the eigenvector u^(pi) 

(pi1 - T N - ~ )  u = a (28a) 

& - 2 - u 1  - u N - l  = o  A A  

(28b) 
where u = (G1, . . . , G N ) ’ ,  and a =, (1 0.  0 1)’ as above. 
Since a = Ja, and  since the eigenvector e(pi)  of TN-1 [(24)] 
spans the null space of ( p i I  - T N - ~ ) ,  there is a  unique  solution 
u to (28a) satisfying u = Ju. (For  any  solution G, take u = 
( 5  + Jv“)/2.) If, in addition,  (28b) is satisfied, then p i  is a 
double eigenvalue  of S. Using the reversal symmetric  solution 
u to (28a),  we obtain  an  eigenvector a(pi) for S having even 
symmetry, in the sense 

A A  
U i = U - i m o d ~ ,  O<i<N-  1. (29) 
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The  DFT is known to map even (respectively, odd) signals 
into even (respectively, odd)  transform  sequences.  Therefore, 
by considering even and odd  symmetry we  are still able to 
conclude, as in (4)-(6), that u and û  are eigenvectors  of F ,  
even though  they  come  from  a  double eigenvalue of S.  Fur- 
thermore, u and are orthogonal since they are  of  opposite 
symmetry  types. 

This  completes  the  theoretical  derivation  of  our  main  result. 
However,  there  are  a few other  properties to be pointed  out. 

Using DFT real/imaginary symmetry  properties, we may 
conclude  that  the even eigenvectors  correspond to  the eigen- 
values k1 of F and  the  odd eigenvectors  correspond to  the 
eigenvalues fj of F. All of  the  odd eigenvectors are accounted 
for  by eigenvalues of S inherited  from T N - ~ .  Note  that  none 
of  the even eigenvectors  can have zero as its first component; 
such  a  vector  would  satisfy  the  inheritance  condition (22), 
which is impossible. As a  check, we can see that  the  number 
of fj eigenvalues  of F from  Table  I  equals the  number  of 
inherited eigenvalues (25). 

D. Computational  Considerations 
We want to emphasize that  the  construction of the  odd- 

symmetric  eigenvectors  of S ,  given by (26), should not be 
used  as the basis for a computational  procedure.  The evalua- 
tion of the recurrence  relations [ (1 6)] is highly  susceptible to 
numerical  instability [9, p. 3161. However,  there  are many 
standard  numerical methods available which  are well suited to 
obtaining  the  eigenvectors  of S. For example,  the eigenprob- 
lemp for a class of  matrices (Hill’s matrices [ 131) arising from 
the  discretization  of  periodic  boundary value problems is dis- 
cussed by Bjork and  Golub [14]. While this class contains 
matrix S [(12)], there are additional  symmetries  which  may  be 
exploited  in  the eigenanalysis of S arising from  the  centrosym- 
metric  nature  of T N - ~  [( 19)]. 

For simplicity, we treat  the case of N odd, since the general 
case  is notationally  more  cumbersome [ 151, [ 161. The  matrix 
TN-1 can be  written  in  partitioned  form as 

where 

r 2  cos 1 .  0 1 

and J is the appropriate-sized  interchange matrix as before. As 
above,  centrosymmetry gives the eigenvectors  of T N - ~  the 
forms [x’, -x’J] ’ and [ y‘, y’J]’ for  vectors x and y of size 
(N - 1)/2. It is an easy verification that  the  vector [x’,  -x’J] ‘ 
(respectively, [y’, $4‘) is an  eigenvector of T N - ~  with eigen- 
value pi, if and  only  if  the  vector x (respectively, y )  is an 
eigenvector  of the  matrix A - B (respectively, A + B )  corre- 
sponding to eigenvalue pi [ 151, [ 161. 

Thus,  nearly  half  of the eigenvalues and  eigenvectors of S 
can  be obtained  from  those  of A - B ;  these are the  odd eigen- 
vectors  of S.  The rest of the eigenvalues must be found  by 
using methods such  as  those  described  in [ 141. However, the 
eigenvectors  may  be  determined from half-size problems as 
follows.  Let u ( X i )  = (uo, u l ,  . . . , UN-1)’ be  an eigenvector  of 
S with  (noninherited) eigenvalue hi. By  multiplication  by 
(XiI - S), we  obtain 

where ti = ( u l ,  * . , u ~ - ~ ) ’ ,  a = (1 0 * - - 0 1)’ and ti = Jti. Equa- 
tion  (33b) is easily reduced to half size by reversal symmetry. 

E. A Comment  on  Limiting  Behavior 
In  this  section, we will show  that  the  problem  of  determin- 

ing the  eigenstructure  of  the  matrix S is a  discrete counterpart 
of  the eigenproblem for  the Mathieu equation [ 171,  a well- 
known periodic  second-order  self-adjoint  differential equation. 

Let e = (e,,, e l ,  , eN-l)’ be  an eigenvector  of the  matrix S 
corresponding to eigenvalue X. Using the  form  of S ,  the  de- 
fining equations (S - W )  e = 0 may  be  rewritten in the  form  of 
a  linear  difference  equation  for  the  coordinate  sequence 

(2 COS kW - X )  ek t ek+l t ek-1 = 0; w = 2a/N. (34) 

This equation will hold  for all integers k if  we define the  ex- 
tended ek sequence to be  periodic: ek = ek  mod^. Using the 
central  second  difference  operator 6 ’ , where 

62ek = ek+l - 2ek + ek-1 (3 5) 

(34) becomes 

62ek + (2 COS k o  - ( h  - 2))  ek = 0. (36) 

Now suppose we  view ek as the sampled value  of a contin: 
uous  time signal e( t )  at  time t k  = k/N; as N gets large, (36) is 
the  finite-difference  approximation to  the following  second- 
order  differential  equation  for e ( t )  

whose periodic  solutions are the Mathieu  functions [17]. 
Thus, the eigenvectors  of S ,  and,  hence,  the  eigenvectors of the 
DFT,  may be thought of  as discrete  Mathieu  functions. 

111. FUNCTIONS OF THE DFT AND FRACTIONAL 
TRANSFORMS 

We are accustomed to  the usual interpretations  of  complex 
N-space  as the  time  domain and of the image of  this space 
under  the  DFT as the  frequency  domain. By  using the defini- 
tion of functions  of a matrix, we may define the fractional 
DFT F t  for 0 < t < 1 ,  and regard the image  of Ft as a gen- 
eralization  of the  time and  frequency  domains.  This will allow 
the consideration of generalizations  of  such ideas as multi- 
plexing and  transform  coding. 

The  definition of the  matrix  function F t  follows the  standard 
approach [X] since F is diagonalizable. For  any  function g(F)  
we  have 
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where 

h k -  -e ikT/ ’ ,  O<k<3 (3 9) 

and $k (u) is the Lagrange interpolation  polynomial  of degree 3 
takingvalue 1 a t u  = h k a r i d v a l u e O a t u = h i , i # k , 0 < i < 3 .  
It  follows  that 

For  the  tth  power  function, we take  principal  tth  roots of the 
eigenvalues hk (39) giving 

g ( l )  = 

g(e ikn /2 )  = eiknt/2 

The  formula  for  the  fractional  transform is 

F r  = Fiai(t) 
3 

i= 0 

where 

O<i<3. (43) 
k=l  

Of course,  the eigenvector-eigenvalue decomposition  of F 
can also be used to  define  functions g(F),  but because F has 
only  four  distinct eigenvalues and is diagonalizable,  much 
simpler  and  more  explicit  results are obtained using (38). 
From (42) we see that  matrix  multiplication  by F f  can be 
accomplished  efficiently  by  employing  the  FFT  algorithm 
once (to  compute  the  products involving F and F3 = F * F 2 )  
and using linearity;  multiplication  by F2 is trivial since 

(F2) ik  = ( R ) i k   = 6 ( i + k ) m o d ~ ,  0 < Z, k < N -  1 (44) 

is the reflection operation.  Finally we note  that F f  defined 
by (42) and (43) is a  periodic  matrix  function  with  period 4 
which agrees with  the  property F4 = I .  Some  correhponding 
identities for  the  coefficients  of the  polynomials  defining 
various powers  of F include 

az(t + 1) = aT(-t), where I = -(i - 1) mod 4. (45) 

q( t )  = aF(-t), where I = -i mod 4. (46) 

Since F is unitary, F t  is also unitary  for  any t arid’  Parseval’s 
relationship  remains valid between signals in complex  N-space 
and their  fractional DFT’s computed  by  multiplication  by F f .  

A nice geometric  picture  of  the  generalization of time  and 
frequency  domains  is  obtained  by  considering  a  function  de- 
fined  on N circles of  radii 0 < ri < r i+ l ,  0 <,i  < N - 1 ,  cen- 
tered  at  the origin of  the  complex  plane.  The  function values 
at  the  points  on  the positive real axis are the  time  domain 
(signal) values. The  function values along a ray of angle tn/2 
with  respect to  the positive real axis correspond to the image 
of  the  time  domain values under Fr ,  the fractional  DFT 
(transform) values. Hence, every signal may be imbedded  into 

a  family  of  periodic  functions  in  a  way  parametrized  by an 
angle which  determines  a generalized frequency  domain. 

Several problems  of signal design and  analysis can now  be 
posed. We can ask for  the  optimum value of t, (angle) for 
separating  two signals. By this we would  mean  the slick of  the 
associated  function along which  the  fractional DFT’s over- 
lapped  the  least  according to some  measure.  Cryptographic 
applications,  where the effects  of an additive  “pseudonoise” 
sequknce  could be easily removed  if a  “key” angle t were 
known, can be visudized. Because the  computational  com- 
plexity  of  the  fractional  DFT is about  the same as the  FFT, 
such  methods  would  be practically  implementable.  Both  of 
these  ideas  show  how  the  concept  of  a generalized time  and 
frequency  domain suggests applications &in to  multiplexing. 

Another  application  for  the  fractional  DFT is in  transform 
coding [18], [19] for  data  compression  purposes.  Transform 
coding  amounts  to  quantization of the  transformed signal 
or  data  before  storage  or  transmission.  This results in lower 
storage  or  bandwidth  requirements.  The  data  may be approx- 
imately  reconstructed  by  applying  the inverse transform 
operation. 

Various  fractional DFT’s could be used as part  of  a trans- 
form  coding  scheme.  However,  here we suggest a novel way 
of  exploiting  the  fractional-DFT to  obtain a twq-dimensional 
transform  for  this  purpose. We consider  the  following  in- 
triguing  transform  pair  relationships 

(47) 

Here W is an N X N matrix  which generalizes the  notion  of 
the  primitive  root  of  unity: we have (I - W i )  invertible  for 
1 < j < M - 1 .  The  “data” { x k )  and  “transform values” 
(X , )  are N by L matrices  (discrete images or subimages, for 
example). By taking M > 4, an acceptable  choice  for W is 
the fractional  DFT F f ,  where t = 4/34, since the eigenvalues 
of Ft are [from (41)] eikn*l2, 1 < k < 4. It is doubly in- 
triguing to observe that  the  usual signal, flowgraph  for  the FFT 
algorithm  holds  for  this  transform  with  the  appropriate  sub- 
stitution  of  matrix  operations  with  the  matrix W playing  the 
role of  the  complex  multiplications  in  the  butterflies.  From 
above, we know  that  multiplication  by W can, itself, be per- 
formed using FFT  methods.  It seems  worthwhile  to  note 
that since matrix  multiplication is noncommutative,  there is 
no  substantial  generalization  of  the  convolution  theorem  of 
the  DFT  to this matrix  transform.  However,  for  transform 
coding  applications,  only  the  transform  pair  relationship, 
(47), is required. 

As a closing note, we might  point  out  that  other  unitary 
transforms  may be used in place  of  the  DFT  to  obtain  a  matrix 
W for use in the  transform pair (47). The  properties  required 
are that  the  minimal  polynomial  of  the  transform  takes  the 
form hr - 1 for small r and  that  a fast  implementation  of  the 
transform  be available for  computing  the  polynomial  expres- 
sion  for W ,  defined as a fractional  power. For  example,  the 
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unitary Walsh-Hadamard transform [ 181 has r = 2  and with 
W equal to  the 2/Mth  power  of the  transform,  multiplication 
by W is performed by taking the  appropriate  linear  combina. 
tion  of  the signal vector  and its Walsh-Hadamard transform 
vector. 

IV. CONCLUSIONS 
We have described two  applications  of  linear algebra  and 

matrix  theory  to  the  DFT. Using commuting  matrices,  the 
eigenanalysis  of the  DFT can  be performed using standard 
numerical  methods.  Fractional  powers  of the  DFT  may be 
easily computed; also they suggest  new signal processing tech- 
niques for  multiplexing and  transform  coding. These problems 
will be investigated in  future research. 

APPENDIX I 
EXISTENCE OF A MATRIX I;D HAVING DISTINCT 

EIGENVALUES 

Using perturbation  methods  on  the  matrix S [(12)] , we will 
show that  it is always possible to construct a matrix E D  as 
described in (7)-(I 1) whose  eigenvalues are  distinct. Let e be 
a  complex  number  and  define  the  parametric  family of filters 
W Z ,  €11 by 

M 
z + z - l  + E  2 Zk, 

k = - M  

N odd ,M= ( N -  1)/2 
D(z, E )  = 

z + z-1 + e Z k  t (e/2)(zN/’ t z - w ) ,  
M 

k=-M 

I Neven,M=N/2 - 1. (Al)  

Applying the  construction  of (7)-(1 I), we obtain  the para- 
metric  family of matrices  commuting  with F 

2 D  ( E )  = S + es, (-42) 

where S is  given by (1 2) and 

/ N t 1  I 1 \ 

The  elements of E D  (E) are  analytic  (linear!)  functions  of e, 
and E D ( € )  is real and  symmetric  for real E. Thus  the eigen- 
values and  the  projections onto  the eigenspaces of 2 D (e) are 
analytic functions of E in a  neighborhood  of 0 in the  complex 
E-plane [20]. Being continuous  functions of E, two  distinct 
eigenvalues of S cannot coalesce for small E ,  so we must show 
that  the  multiple  (double) eigenvalues of ED (0) = S split  apart 
for small e to show that Z D ( e )  has  distinct eigenvalues for 
sufficiently small nonzero E. 

Let p be  a  double eigenvalue of S with  odd  normalized eigen- 
vector u and even normalized  eigenvector u^ as  described in 
Section 11. Let pl (e) and p2(e )  be the  analytic  functions 
describing the eigenvalues of E D  ( E ) ,  where p1 (0) = p2 ( 0 )  = p. 

Let P(p, e) be the eigenprojection onto  the space spanned 
by the  eigenvectors  of I ; D ( E )  corresponding to eigenvalues 
y1 (e) and p 2 ( e ) .  Then  [20] 

m 

i= 1 

and 

P(y, E) =Po + P i E i  
m 

i=1 

where 

Po = UUI t tic’ (A61 

is the eigenprojection onto  the eigenspace of S corresponding 
to eigenvalue p. The  coefficients  of (A4) and (A5) are  related 
by P O ,  (2.1>1 

jii = trace  (S1Pi-])/2i, i > 0. (‘47) 

From  the  odd  symmetry of u ,  we have 

SlU = 0 (A81 

so that  from (A2) u is an  eigenvector of 2~ (E) corresponding 
to eigenvalue p. Thus we take pl (E) = p, a constant  function. 
From (A4) 

i= 1 

Using (A7) to evaluate 2 ,, we find 

2; = trace (s, (uu’ + u^u^‘)) 

= trace (S, u^u^), by (A9) 

where u^ = (Go, u 1,  . . . , U N - . ~ )  . In  Section I1 we showed that 
G o  # 0, so f i  # 0 and the eigenvalue y2 (E) is not a  constant 
function. So for sufficiently small e, the eigenvalues p, ( E )  and 
p2 (E) are distinct.  This  completes  the  argument. 

A A I  
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Realizable Wiener  Filtering in Two Dimensions 

MICHAEL P. EKSTROM, SENIOR  MEMBER,  IEEE 

Abstruct-The extension of Wiener’s classical mean-square estimation 
theory to a  two-dimensional setting is presented. In analogy with the 
one-dimensional problem,  the  optimal realizable filter is derived by 
solution of a  two-dimensional,  discrete Wiener-Hopf equation using a 
spectral factorization procedure.  Filters are developed for  the cases of 
prediction, filtering, and smoothing, and  appropriate  error expressions 
are  derived to characterize their performance. 

W 
I. INTRODUCTION 

HILE  developed  in antiquity, Wiener’s m i n k u m  mean- 
square  error (MMSE) estimation  theory [ l]  continues 

Manuscript received May 28,  1981. This work was supported  in  part 
by a  Senior  Scientist Award of the Alexander  von Humboldt  Founda- 
tion, while the  author was Visiting Scientist at  the  Lehrstuhl  fur Nach- 
richtentechnik, Universitat Erlangen-Niirnberg, Erlangen, West Germany. 

06877. 
The  author is with Schlumberger-Doll Research, Ridgefield,  CT 

to  play  a  prominent  role  in  modern  time  series  analysis.  In- 
deed,  its  extension to new  applications is a topic  of active  re- 
search  interest. 

The  representative  problem  addressed by Wiener  was that  of 
optimally  estimating  an  unobserved  time signal s ( t )  given a 
noise corrupted observation, s ( t )  t w(t) ,  where w(t )  is a  noise 
process. Both signal and  noise  are  modeled as wide-sense  sta- 
tionary  processes; the  estimator is constrained to be  linear, and 
derived  optimal in the sense of achieving the MMSE associated 
with  the  estimate.  Two classes of  estimators  were  described 
by Wiener: the so-called  noncausal  (unrealizable,  bilateral) 
filter  which  uses all past,  present,  and  future  observations  in 
forming  the  estimate, and  the so-called  causal  (realizable,  uni- 
lateral)  filter  which  uses  only  past and present  observations. 

With appropriate  generalization, the  fundamental  estimation 
problem addressed by Wiener, that of estimating  signals from 
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