
Chapter 1
Computing with Classical Soliton Collisions

Mariusz H. Jakubowski and Ken Steiglitz
Computer Science Department
Princeton University
Princeton NJ 08544

Richard Squier
Computer Science Department
Georgetown University
Washington DC 20057

Abstract We review work on computing with solitons, from the discovery of soli-
tons in cellular automata, to an abstract model for particlecomputation, information
transfer in collisions of optical solitons, state transformations in collisions of vector
solitons, a proof of the universality of blinking spatial solitons, and the demonstra-
tion of multistable collision cycles and their applicationto state-restoring logic. We
conclude by discussing open problems and the prospects for practical computing
applications using optical soliton collisions in photo-refractive crystals and fibers.

In most present-day conceptions of a “computer,” information travels between logi-
cal elements fixed in space. This is true for abstract models like Turing machines, as
well as real silicon-chip-based electronic computers. This paper will review work
over the past several years that views computation in an entirely different way:
information is carried through space by particles, computation occurs when these
particles collide.

Much of this review will focus on our own work, but of course will necessarily
touch on related work by many others. Our intent is to describe the progression
of ideas which has brought the authors to a study of the computational power of
the Manakov system and its possible practical implementation, and in no way do
we intend to minimize important contributions by others to the growing field of
embedded computation, and nonstandard computation in general. We will cite such
related work as we are aware of, and will appreciate readers bringing omissions to
our attention.

This paper is written more or less historically, and we will trace the development
in the following stages:

• solitons in automata,

1

2 Jakubowski et al.

• the particle machine model and embedded arithmetic,
• information transfer in collisions of continuum solitons,
• the Manakov system and state transformations in collisions,
• universality of time-gated spatial Manakov solitons,
• multistable collision cycles and state-restoration.

We conclude with a discussion of open problems.

1.1 Computation in cellular automata

Our own story begins in a sense with influential work of S. Wolfram in the mid-
1980s [1], and in particular with the seminal study [2], where he observed that the
behavior of a simple but representative type of cellular automata (CA) can be par-
titioned into four classes, the most interesting of which heconjectured to be Tur-
ing universal. At this time S. Wolfram was in Princeton, at the Institute for Ad-
vanced Study, and his work led one of us (KS) to begin experimentation with CA. It
was subsequently discovered that CA in a new class, theparity rule filter automata
(PRFA) [3], support particles which behave remarkably likesolitons in continuum
systems. (We review the essential features of continuum solitons in physical systems
in Section 1.3.)

The PRFA differ from conventional CA in that the update rule uses new values
as soon as they become available, scanning to update from left to right. They are
thus analogous to so-called infinite impulse response (IIR)digital filters, while or-
dinary CA correspond to finite impulse response (FIR) digital filters [4]. We note
that although the operations of FA and CA are different, the two classes of automata
are equivalent, as shown in [3]. However, to our knowledge itis an open question
whether the subclass of PRFA are computationally universal. The term “parity rule”
refers to the algorithm for refreshing site values: to update at a particular site, the
total number of ones in a window centered at that site is found(using new values
to the left), and the new site value is set to one if that sum is even but not zero, and
to zero otherwise. Figure 1.1 shows a typical soliton-like collision in a PRFA. No-
tice that the bit pattern of both particles is preserved in the collision, and that both
particles are displaced from their pre-collision paths.

The subsequent paper [5] showed that a carry-ripple adder can be realized in
a PRFA. This construction was not simple, and we were not ableto “program”
more complex computation in these one-dimensional structures. However, several
researchers contributed to the study of embedded computation in automata using
soliton-like particles in PRFA and related CA in the 1990s, including Goldberg [6],
Fokas, Papadopoulou, and Saridakis [7, 8], Ablowitz, Keiser, and Takhtajian [9],
Bruschi, Santini and O. Ragnisco [10], and Siwak [11, 12, 13]. Since then there has
been much more work on particles in CA in general, and the reader is referred to the
Journal of Cellular Automata, which was founded in 2006, for a key to the rapidly
growing literature in the field.

1 Computing with Classical Soliton Collisions 3

space

time

Fig. 1.1 Typical soliton-like collision in a PRFA. The dots are ones against a field of ze-
ros and the time evolution progresses downward. Notice the displacements caused by
the collision, quite similar to what happens in continuum systems. This example uses a
window radius of five and is from [3].

1.2 Particle Machines (PMs)

Theparticle machine(PM) studied in [5, 14] and is intended to capture the notion
of computation by propagating and colliding particles. It was a natural outgrowth
of the study of the computational power of the PRFA. The PM cando general com-
putation [14], because it can simulate a Turing machine (TM), and also operates
in discrete time and space. However, while the TM’s tape, read-write head, and
uniprocessing operations hint at mechanical, man-made origins, the PM’s particle
interactions and fine-grain parallelism are reminiscent ofnatural physical systems.

We will review the PM model and mention several efficient algorithms that have
been encoded in the model. We define a PM as a cellular automaton (CA) with
states that represent idealized particles, and with an update rule that encodes the
propagation and collisions of such particles. While PMs canhave any number of
dimensions, we concentrate here on one-dimensional PMs, which are nevertheless
powerful enough to support efficient implementations of arithmetic and convolution.

4 Jakubowski et al.

1.2.1 Characteristics of PMs

Quite apart from their use as an abstract model of computation, PMs can be viewed
as a way to incorporate the parallelism of systolic arrays [15] in hardware that is
not application-specific and is easy to fabricate. A PM can berealized easily in
VLSI and the resultant chips are locally connected, very regular (being CA), and
can be concatenated with a minimum of glue logic. Thus, many identical VLSI
chips can be strung together to provide a very long PM, which can then support
many computations in parallel. What computation takes place is determined en-
tirely by the stream of injected particles: There are no multipliers or other fixed
arithmetic units in the machine, and the logic supports onlyparticle propagation
and collisions. While many algorithms for a PM mimic systolic arrays and achieve
their parallelism, these algorithms are not hard-wired, but are “soft,” or “floating,”
in the sense that they do not determine any fixed hardware structures.

An interesting consequence of this flexibility is that the precision of fixed-point
arithmetic is completely arbitrary and determined at run time by the user. In [14]
the authors show that FIR filtering (convolution) of a continuous input stream, and
arbitrarily nested combinations of fixed-point addition, subtraction, and multiplica-
tion, can all be performed in one fixed CA-based PM in time linear in the number
of input bits, all with arbitrary precision. Later in this section we complete this suite
of parallel arithmetic operations with a linear-time implementation of division that
exploits the PM’s flexibility by changing precision during computation.

1.2.2 The PM model

We define the PM formally as follows:

Definition 1. A Particle Machine (PM)is a CA with an update rule designed to
support the propagation and collision of logicalparticlesin a one-dimensional ho-
mogeneous medium. Each particle has a distinct identity, which includes the parti-
cle’s velocity. We think of each cell’s state in a PM as abinary occupancy vector,
in which each bit represents the presence or absence of one ofn particle types (the
same idea is used in lattice gasses; see, for example, [16]).The state of celli at
time t+1 is determined by the states of cells in theneighborhoodof cell i, where the
neighborhood includes the2r+1 cells within a distance, orradius, r of cell i, includ-
ing cell i. In a PM, the radius is equal to the maximum velocity of any particle, plus
the maximum displacement that any particle can undergo during collision.

Although this definition is explicitly in one-dimension, itcan be generalized easily
to higher dimensions.

In summary, a PM is a CA with an update rule modeling propagation and col-
lision of logical particles that are encoded by the state values in one cell, or in a
number of adjacent cells. Particles propagate with constant velocities. Two or more
particles may collide; a set ofcollision rules, which are encoded by the CA update

1 Computing with Classical Soliton Collisions 5

rule, specifies which particles are created, which are destroyed, and which are unaf-
fected in collisions. A PM begins with a finiteinitial configurationof particles and
evolves in discrete time steps.

1.2.3 Simple computation with PMs

Figure 1.2 shows the general arrangement of a 1-d PM. Particles are injected at one
end of the one-dimensional CA, and these particles move through the medium pro-
vided by the cells. When two or more particles collide, new particles may be created,
existing particles may be annihilated, or no interaction may occur, depending on the
types of particles involved in the collision.

to infinity

particles injected

Fig. 1.2 The basic conception of a particle machine.

Figure 1.3 illustrates some typical collisions when binaryaddition is imple-
mented by particle collisions. This particular method of addition is only one of many
possibilities. The basic idea here is that each addend is represented by a stream of
particles containing one particle for each bit in the addend, one stream moving left
and the other moving right. The two addend streams collide with a carry-ripple adder
particle where the addition operation takes place. The carry-ripple particle keeps
track of the current value of the carry between collisions ofsubsequent addend-bit
particles as the streams collide least-significant-bit first. As each collision occurs,
a new right-moving result-bit particle is created and the two addend particles are
annihilated. Finally, a trailing “reset” particle moving right resets the carry-ripple to
zero and creates an additional result-bit particle moving right.

1.2.4 Algorithms

Arithmetic Addition and subtraction on a PM are relatively straightforward to
implement, and both can operate in linear time and with arbitrary precision. A mul-
tiplication algorithm with similar properties is not much more difficult to obtain, but
a linear-time, arbitrary-precision division algorithm issomewhat more involved. We
briefly describe some arithmetic algorithms, and we refer the reader to [14, 17, 18]
for details.

6 Jakubowski et al.

= 0 1 1 1

= 0 1 1 10+

= 0 1

= 0 +1 0
1

= 0

+1

0

=

+1

0

0 0+1

0 0

1 0 0

0+

+1

=

0+

Fig. 1.3 An example illustrating some typical particle collisions, and one way to perform
addition in a particle machine. What is shown is actually the calculation 012 +112 = 1002,
implemented by having the two operands, one moving left and the other moving right,
collide at a stationary “carry-ripple” particle. When the leading, least-significant bits collide
(in the third row from the top of the figure), the carry-ripple particle changes its identity so
that it encodes a carry bit of 1, and a right-moving sum particle representing a bit value
of 0 is created. The final answer emerges as the right-moving stream 1002, and the carry-
ripple particle is reset by the “equals” particle to encode a carry of 0. The bits of the two
addends are annihilated when the sum and carry bits are formed. Notice that the particles
are originally separated by empty cells, and that all operations can be effected by a CA
with a neighborhood size of 3 (a radius of 1).

Figure 1.4 shows the particle arrangement for fixed-point multiplication. This
mirrors a well known systolic array for the same purpose [15], but of course the
structure is “soft” in the sense that it represents only the input stream of the PM
that accomplishes the operation. Figure 1.5 shows a simulation of this multiplica-
tion scheme for the product 112∗112. In that figure, the particles depicted byRand
L represent right- and left-moving operand bits, respectively; p represents station-
ary “processor” particles in the computation region where the product is formed;c
represents “carry” particles propagated during computation; and 0 and 1 represent

1 Computing with Classical Soliton Collisions 7

stationary bits of the product. The top of the figure shows twooperands (112 and
112) on their way toward collisions in the central computation region containing
stationary “processor” particles; the bottom of the figure shows the same operands
emerging unchanged from the computation, with the answer (10012) remaining in
the central computation region.

particles
processor

right multiplicandleft multiplicand

Fig. 1.4 Multiplication scheme, based on a systolic array. The processor particles are
stationary and the data particles collide. Product bits are stored in the identity of the
processor particles, and carry bits are stored in the identity of the data particles, and
thereby transported to neighbor bits.

.R . .R . .p .p .p .p . . .L . .L .

. .R . .R .p .p .p .p . .L . .L . .

. .R . .R .p .p .p .p . .L . .L . .

. . .R . .Rp .p .p .p .L . .L . . .

. . .R . .Rp .p .p .p .L . .L . . .

. . . .R .p .Rp .p .Lp . .L

. . . .R .p .Rp .p .Lp . .L

.Rp .p .RLp .p .L

.Rp .p .RL1 .p .L

.p .RLp .1 .RLp

.p .RL1 .1 .RL1

.Lp .1 .RL1 .1 .R

.Lp .1 .RL0c.1 .R

. . . .L .p .L1c .0 .R1 . .R

. . . .L .p .L0c .0 .R1 . .R

. . .L . .Lpc .0 .0 .1 .R . .R . . .

. . .L . .L1 .0 .0 .1 .R . .R . . .

. .L . .L .1 .0 .0 .1 . .R . .R . .

. .L . .L .1 .0 .0 .1 . .R . .R . .

.L . .L . .1 .0 .0 .1 . . .R . .R .

.L . .L . .1 .0 .0 .1 . . .R . .R .

Fig. 1.5 Simulator output for PM multiplication. The top line in the figure gives the initial
state of the PM’s medium, representing the multiplication problem 112 ∗112, as described
in the text. Each successive pair of lines depicts the state of the medium after the prop-
agation and collision phases of each time step. The bottom line in the picture shows the
stationary answer, 10012, in the central computation region, along with the unchanged
operands moving away from the region.

For division, a PM can implement a linear-time, arbitrary-precision algorithm
based on Newtonian iteration and described by Leighton [19]. Figure 1.6 shows a

8 Jakubowski et al.

simulation of such an algorithm running on a PM. Details of this algorithm can be
found in [17, 18].

i values of yi

m
irr

or

values of x

space

tim
e

m
irr

or

computation region

fir
st

 it
er

at
io

n

m
irr

or

se
co

nd
 it

er
at

io
n

th
ird

 it
er

at
io

n

m
irr

or

Fig. 1.6 Output generated by a simulation of the division implementation. Each cell is
represented by a small circle whose shading depends on which particles are present
in that cell. For clarity, only every seventh generation is shown. The example shown is
actually the division 1/7.

Convolution, Filtering, and Other Systolic-Array Algorit hms As mentioned
above, arithmetic operations can be nested to achieve the pipelined parallelism in-
herent in systolic arrays [14]. This leads to highly parallel, pipelined particle ma-
chine implementations of convolution, filtering, and othercommon digital signal
processing algorithms, such as the FFT. Similar non-numerical algorithms with
systolic implementations also fit in this category (see, forexample, [20]) and are
amenable to the same soft realizations.

1 Computing with Classical Soliton Collisions 9

1.2.5 Comment on VLSI Implementation

Whether it is actually advantageous to implement applications like these in VLSI
is an interesting question. The tradeoff is clearly betweenthe efficiencies of using
fixed, modular, concatenated chips in a very long pipeline onthe one hand, and the
inefficiencies in transferring all the problem coding to a very low-level “program” in
terms of particles. Where that tradeoff ends up depends a great deal on technology
and economies of production scale.

We will not pursue this question of VLSI implementation further in this chapter,
but rather follow the road that leads to particles as solitons in nonlinear optical
materials.

1.2.6 Particles in other automata

Before we leave CA, we mention some related early work on CA with particles.
Crutchfield, Das, D’haeseleer, Hanson, Hordijk, Mitchell,Nimwegen, and others
report intriguing work in which CA are evolved to perform some simple compu-
tational tasks (see [21], for example). Particles appear inthese evolved CAs quite
spontaneously, suggesting that they may be a very natural way to embed computa-
tion in regular structures and materials. Boccara, Nasser,and Roger [22] describe a
wide variety of particles observed in a conventional CA. Takahashi [23] presents an
appealingly simple box-and-ball model for a CA that supports solitons. Santini [24]
extends the concept of integrability to algebraic and functional equations, as well as
CA, including the joint work with Bruschi and Ragnisco [10].Adamatzky [25, 26]
described particle-like waves in an excitable medium.

Finally, we also mention some additional, historically significant work: the
very simple universal model using ideal elastically colliding billiard balls in the
plane [27, 28]; the collection edited by Wolfram [1]; the exhaustive study of univer-
sal dynamic computations by Adamatzky [29]; the very early example of pipelined
computation in a one-dimensional CA by Atrubin [30]; Conway’s universal Game
of Life in 2+1 dimensions [31]; perhaps the simplest known universal CA in 2+1
dimensions [32]; and the well known book by Wolfram [33], in which the universal
Rule 110 1-d CA plays a central role. As mentioned before, work in this field has
exploded in the last decade, and a good key to current developments can be found
in theJournal of Cellular Automata.

10 Jakubowski et al.

carrier

envelope

Fig. 1.7 An envelope soliton.

1.3 Solitons and computation

1.3.1 Scalar envelope solitons

It is a natural step from trying to use solitons in CA to tryingto use “real” solitons in
physical systems, and the most promising candidates appearto be optical solitons in
nonlinear media such as optical fibers and photorefractive crystals. We can envision
such computation as taking place via collisions inside a completely uniform medium
and aside from its inherent theoretical interest might ultimately offer the advantages
of high speed, high parallelism, and low power dissipation.We cannot review here
in any detail the fascinating development of soliton theoryand its application to
optical solitons, but the reader is referred to [34], still aclassic beginning reference,
and the general book [35] for further reading. We will, however, review the essential
features ofenvelopesolitons, which are most relevant to our work.

For our purposes a soliton can be defined as in [36]:

Definition 2. A soliton is a solitary wave which asymptotically preserves its shape
and velocity upon nonlinear interaction with other solitary waves, or, more gener-
ally, with another (arbitrary) localized disturbance.

We focus on solitons that arise in systems described by the nonlinear Schrödinger
(NLS) equation

iut +Duxx+N(|u|)u = 0, (1.1)

whereD is a real number,N an arbitrary operator on|u|, and the subscripts denote
partial differentiation. This describes nonlinear wave propagation in a variety of
physical systems, most notably certain optical fibers, where to first orderN(|u|) =
|u|2, and in certain (so-called saturable) photorefractive crystals, whereN(|u|) =
m+ k|u|2/(1+ |u|2), wherek andm are real constants. In the former instance we
will call the equation thecubic NLS(3-NLS), and in the latter, thesaturable NLS
(sat-NLS). The solitons that result in these systems are called envelope solitons,
and as illustrated in Figure 1.7, they are wave packets, consisting of acarrier wave
moving at a characteristicphase velocity, modulated by anenvelope, moving at a
characteristicgroup velocity.

1 Computing with Classical Soliton Collisions 11

1.3.2 Integrable and nonintegrable systems

There is a crucial difference in behavior betweenintegrableandnonintegrablesys-
tems. Omitting technical details, the integrable systems we consider are analyti-
cally solvable, and collisions between solitons are perfectly elastic. That is, solitons
emerge from collisions with all their original energy. Collisions in nonintegrable
systems are characterized byradiation—energy that is lost from the solitons in the
form of waves radiating away from the collision site. Such unavoidable energy loss
means that collisions cannot be cascaded in many stages, andthat any useful com-
putational system must entail restoration of full-energy solitons.

Clearly, some particle-like behavior is sacrificed in nonintegrable systems, and
in fact purists (generally the mathematical physicists), reserve the termsoliton for
integrable systems only. Particle physicists on the other hand are more forgiving,
and we will follow their lead in using the termsolitonmore loosely [37, 38].

1.3.3 The cubic NLS

The most obvious candidate for a useful soliton system is theintegrable equation,
3-NLS. This is one of the two or three best-studied soliton equations, and the resul-
tant sech-shaped solitons have been observed experimentally in real optical fibers
for many years. To proceed, we need to identify some soliton parameters asstate
variablesthat can be used to carry information. Of the possible parameters, the am-
plitude and velocity can be ruled out because they are unaffected by collisions. The
remaining parameters are the carrier phase and positional phase (location). Now
what happens in 3-NLS collisions is very disappointing fromthe point of view of
computation: the values of the state variables that can change do not have any effect
on the results of subsequent collisions. This rules out communication of information
from soliton to soliton and effectively rules out useful computation in 3-NLS.

1.3.4 Oblivious and transactive collisions

We next introduce two definitions that allow us to state the preceding argument
somewhat more precisely.

Definition 3. For a given system define thestateof a soliton to be a set of selected
parameters that can change during collisions.

Definition 4. Collisions of solitons in a given system are termedtransactiveif some
changes in the state of one colliding soliton depend on the state of the other. If
collisions are not transactive, they are termedoblivious.

We also call systems themselves transactive or oblivious. We see therefore that
3-NLS is oblivious. The key problem then becomes finding a transactive system.

12 Jakubowski et al.

1.3.5 The saturable NLS

At the time this obstacle was encountered it seemed to us thatall integrable systems
are oblivious, and we began looking at some nonintegrable systems, which strictly
speaking do not support solitons, but which in fact support near-solitons [39]. At
this point M. Segev brought sat-NLS to our attention, an equation that describes the
recently discovered 1+1-dimension (one space and one time dimension) photore-
fractive optical spatial solitons in steady state [40, 41, 42], and optical spatial soli-
tons in atomic media in the proximity of an electronic resonance [43]. A numerical
study revealed definite transactivity [44]. But the observed effect is not dramatic,
and it comes at the cost of unavoidable radiation.

At this point it appeared that transactivity and elastic collisions were somehow
antagonistic properties, and that integrable systems weredoomed to be oblivious. A
pleasant surprise awaited us.

1.4 Computation in the Manakov system

nonlinear Schrödinger equation!Manakov
The surprise came in the form of the paper by R. Radhakrishnan, M. Lakshmanan

and J. Hietarinta [45], which gave a new bright two-soliton solution for theManakov
system [46], and derived explicit asymptotic results for collisions. The solutions
were more general than any given previously, and were remarkable in demonstrat-
ing what amounts to pronounced transactivity in perfectly integrable equations. The
Manakov system consists of two coupled 3-NLS equations, andmodels propagation
of light in certain materials under certain circumstances.The two coupled compo-
nents can be thought of as orthogonally polarized. Manakov solitons were observed
experimentally in [47].

The Manakov system is less well known than 3-NLS or sat-NLS, so we will
describe it in some detail, following [48].

1.4.1 The Manakov system and its solutions

As mentioned, the Manakov system consists of two coupled 3-NLS equations,

iq1t +q1xx+2µ(|q1|2 + |q2|2)q1 = 0, (1.2)

iq2t +q2xx+2µ(|q1|2 + |q2|2)q2 = 0,

whereq1 = q1(x, t) andq2 = q2(x,t) are two interacting optical components,µ is
a positive parameter, andx andt are normalized space and time. Note that in order
for t to represent the propagation variable, as in Manakov’s original paper [46], our
variablesx and t are interchanged with those of [45]. The system admits single-

1 Computing with Classical Soliton Collisions 13

soliton solutions consisting of two components,

q1 =
α
2

e−
R
2 +iηI sech(ηR+

R
2

),

q2 =
β
2

e−
R
2 +iηI sech(ηR+

R
2

), (1.3)

where

η = k(x+ ikt), (1.4)

eR =
µ(|α|2 + |β 2|)

k+k∗
, (1.5)

andα, β , andk are arbitrary complex parameters. SubscriptsR andI on η andk
indicate real and imaginary parts. Note thatkR 6= 0. Solitons with more than one
component, like these, are calledvectorsolitons.

1.4.2 State in the Manakov system

The three complex numbersα, β , andk (with six degrees of freedom) in Eq. 1.3
characterize bright solitons in the Manakov system. The complex parameterk is
unchanged by collisions, so two degrees of freedom can be removed immediately
from an informational state characterization. We note thatManakov [46] removed
an additional degree of freedom by normalizing the polarization vector determined
by α andβ by the total magnitude(α2 + β 2)1/2. However, it is a remarkable fact
that the single complex-valued polarization stateρ = α/β , with only two degrees
of freedom [49], suffices to characterize two-soliton collisions when the constantsk
of both solitons are given [48].

We use the tuple(ρ ,k) to refer to a soliton with variable stateρ and constant
parameterk:

• ρ = q1(x, t)/q2(x, t) = α/β : a complex number, constant between collisions;
• k = kR+ ikI : a complex number, withkR 6= 0.

We use the complex plane extended to include the point at infinity.
Consider a two-soliton collision, and letk1 andk2 represent the constant soli-

ton parameters. Letρ1 andρL denote the respective soliton states before impact.
Suppose the collision transformsρ1 into ρR, andρL into ρ2 (see Fig. 1.8). We will
always associatek1 andρ1 with the right-moving particle, andk2 andρL with the
left-moving particle. To specify these state transformations, we write

Tρ1,k1(ρL,k2) = ρ2, (1.6)

TρL,k2(ρ1,k1) = ρR. (1.7)

The soliton velocities are determined byk1I andk2I , and are therefore constant.

14 Jakubowski et al.

time

ρ , k

space

ρL , k

ρ , k ρ , k

1 1 2

1R2 2

Fig. 1.8 A general two-soliton collision in the Manakov system. The complex numbers ρ1,
ρL, ρ2, and ρR indicate the variable soliton states; k1 and k2 indicate the constant soliton
parameters.

It turns out that the state change undergone by each colliding soliton takes on the
very simple form of a linear fractional transformation (LFT) (also calledbilinear or
Möbiustransformation). The coefficients are simple functions of the other soliton in
the collision. Explicitly, the LFTs are

ρ2 =
[(1−g)/ρ∗

1 + ρ1]ρL +gρ1/ρ∗
1

gρL +(1−g)ρ1+1/ρ∗
1

, (1.8)

where

g(k1,k2) =
k1 +k∗1
k2 +k∗1

. (1.9)

and

ρR =
[(1−h∗)/ρ∗

L + ρL]ρ1 +h∗ρL/ρ∗
L

h∗ρ1 +(1−h∗)ρL +1/ρ∗
L

, (1.10)

where

h(k1,k2) =
k2 +k∗2
k1 +k∗2

. (1.11)

We assume here, without loss of generality, thatk1R,k2R > 0.
Several properties of these transformations are derived in[48], including charac-

terization of inverse operators, fixed points, and implicitforms. In particular, when
viewed as an operator every particle has aninverse, and the two traveling together
constitute aninverse pair. Collision with an inverse pair leaves the state of every
particle intact.

1 Computing with Classical Soliton Collisions 15

1.4.3 Particle design for computation

In any particle collision we can view one of the particles as an “operator” and the
other as “data.” In this way we can hope to find particles and states that effect some
useful computation. We give some examples that illustrate simple logical operations.

An i Operator A simple nontrivial operator is pure rotation byπ/2, or multipli-
cation byi. This changes linearly polarized solitons to circularly polarized solitons,
and vice versa. A numerical search yielded the useful transformations

TρL(ρ) = T0,1−i(ρ ,1+ i) = (1−h∗(1+ i,1− i))ρ =
1√
2

e−
π
4 iρ , (1.12)

TρL(ρ) = T∞,5−i(ρ ,1+ i) =
ρ

1−h∗(1+ i,5− i)
=
√

2e
3π
4 iρ , (1.13)

which, when composed, result in the transformation

U(ρ ,1+ i) = iρ . (1.14)

Here we think of the data as right-moving and the operator as left-moving. We refer
to U as ani operator. Its effect is achieved by first colliding a soliton(ρ ,1+ i) with
(0,1− i), and then colliding the result with(∞,5− i), which yields(iρ ,1+ i).

A −1 Operator (NOT Processor) Composing twoi operators results in the−1
operator, which with appropriate encoding of information can be used as a logical
NOT processor. Figure 1.9 shows a NOT processor with reusable data and opera-
tor solitons. The two right-moving particles represent data and are an inverse pair,
and thus leave the operator unchanged; the left-moving group comprise the four
components of the−1 operator. This figure was obtained by direct numerical sim-
ulation of the Manakov system, with initial state that contains the appropriate data
and processor solitons.

This NOT processor switches the phase of the (right-moving±1) data particles,
using the energy partition of the (left-moving 0 and∞) operator particles. A kind
of dual NOT gate exists, which switches the energy of data particles using only the
phase of the operator particles. In particular, if we use thesamek’s as in the phase-
switching NOT gate, code data as 0 and∞, and use a sequence of four±1 operator
particles, the effect is to switch 0 to∞ and∞ to 0—that is, to switch all the energy
from one component of the data particles to the other (see Fig. 1.10).

A “Move” Operator Figure 1.11 depicts a simple example of information transfer
from one particle to another, reminiscent of an assembly-language MOVE instruc-
tion. In the initial conditions of each graph, a “carrier” particle C collides with the
middle particle; this collision transfers information from the middle particle toC.
The carrier particle then transfers its information to another particle via a collision.

16 Jakubowski et al.

1 -1

-11

t

1-1

-1 1
x x

t

Fig. 1.9 Numerical simulation of a NOT processor implemented in the Manakov system.
These graphs display the color-coded phase of ρ for solitons that encode data and pro-
cessors for two cases. In the initial conditions (top of graphs), the two leftmost (data)
solitons are an inverse pair that can represent a 0 in the left graph, and a 1 in the right
graph. In each graph, these solitons collide with the four rightmost (processor) solitons,
resulting in a soliton pair representing a 1 and a 0, respectively. The processor solitons are
unchanged. These graphs were obtained by numerical simulation of Eq. 1.2 with µ = 1.

The appropriate particlesA, B, andC for this operation were found through a nu-
merical search, as with the particles for our NOT gate.

Note that “garbage” particles arise as a result of this “move” operation. In gen-
eral, because the Manakov system is reversible, such “garbage” often appears in
computations, and needs to be managed explicitly or used as part of computation,
as with conservative logic [27]. Of course reversibility does not necessarily limit
the computational power of the Manakov system, since reversible systems can be
universal [50].

1.5 Time-gated spatial Manakov solitons are universal

To carry forward our program of embedding general computation in a homogeneous
medium, we next sketch the construction of a system of collisions of ideal Manakov
solitons that is Turing-equivalent. The approach is straightforward: we will show
that we can, in effect, interconnect a universal set of logicgates in an arbitrary
manner. Keep in mind that we use the termgate to mean a prearranged sequence
of soliton collisions that effect a given logical operation, and not, as is in the usual
usage, an isolated physical device. We will also use other computer terms, such as

1 Computing with Classical Soliton Collisions 17

tt

xx

Fig. 1.10 Numerical simulation of an energy-switching NOT processor implemented in the
Manakov system. These graphs display the magnitude of one component, for the same
two cases as in the previous figure. In this gate the right-moving (data) particles are the
inverse pair with states ∞,0 (left), or 0,∞ (right) and the first component is shown. As
before, the left-moving (operator) particles emerge unchanged, but here have initial and
final states ±1.

x x

t

A B

A A C A B C

t

Fig. 1.11 Numerical simulation of a “move” operation implemented in the Manakov sys-
tem. These graphs display the color-coded phase of ρ . In each graph, the information
contained in the middle particle in the initial conditions (top of graphs) is moved to the
middle particle in the final conditions (bottom of graphs). The information transfer is ef-
fected by the “carrier” particle C. These graphs were obtained by numerical simulation of
Eq. 1.2 with µ = 1.

18 Jakubowski et al.

wiring andmemoryto refer to the corresponding embedded processing. Bywiring
we will mean moving information from one place to another, and by memorywe
will mean storing it for future use. We will proceed by first describing basic gates
that can be used for COPY and FANOUT. The same basic configuration can be
adapted for NOT and NAND gates. To complete the computer we will then show
how time gating can be used to lay out an arbitrary interconnection of these gates,
thus showing universality. The details are reported in [51].

In this section we will usespatial solitons, which can be visualized as beams
in two spatial dimensions, as opposed to the space-time picture of a pulse, or tem-
poral soliton, traveling down a fiber. The existence and stability of spatial solitons
have been well established both theoretically and experimentally in a variety of ma-
terials [52]. As pointed out in [52], bright spatial Kerr solitons are stable only in
(1+1)-dimensional systems—that is, systems where the beamcan diffract in only
one dimension as it propagates. Such solitons are realized in slab waveguides, and
are robust with respect to perturbations in both width and intensity.

1.5.1 The general plan

The main obstacle to implementing what amounts to an arbitrary wiring diagram
is the problem of crossing wires without having their signals interfere with one an-
other. We solve this problem by time-gating spatial solitons, so the beams “blink” to
avoid unwanted collisions. It is an interesting question, open to the authors’ knowl-
edge, whether a trick like time-gating is necessary for Manakov collision systems
to be universal, or whether, as in certain one-dimensional CA like Wolfram’s Rule
110 CA [33], arbitrary computation can be embedded in the original, natural space
of the underlying medium. But the result with time-gating isphysically realizable,
and also provides some evidence that the unadorned Manakov collision system may
also be rich enough to be Turing-universal.

The general arrangement is shown in Fig. 1.12. The usual picture of colliding
solitons for computation is shown in Fig. 1.13, but to make iteasier to visualize, we
will rotate the axes and change the scale so that the data beams travel down and the
operator beams travel horizontally as show in Fig. 1.14.

For the binary states we will use two complex vector soliton states, and it turns
out to be possible to use complex state 0 and 1 to represent logical 0 and 1, respec-
tively, which is convenient but not necessary. The complex soliton states 0 and 1 and
logical 0 and 1 will be used interchangeably without risk of confusion.

1.5.2 The COPY and FANOUT gates

We construct the FANOUT gate by starting with a COPY gate, implemented with
collisions between three down-moving, vertical solitons and one left-moving hori-

1 Computing with Classical Soliton Collisions 19

actuatorsactuators input data

time-gated beams

results
Fig. 1.12 The general physical arrangement considered in the construction of a universal
collision-based computer. Time-gated beams of spatial Manakov solitons enter at the top
of the medium, and their collisions result in state changes that reflect computation. Each
solid arrow represents a beam segment in a particular state.

data operators

Fig. 1.13 Colliding spatial solitons.

20 Jakubowski et al.

o
p

er
at

o
rs

data

Fig. 1.14 Convenient representation of colliding spatial solitons.

zontal soliton. This was anticipated by the two-collision “MOVE” gate described in
Section 1.4.3 and originally in [18]. The use of three collisions and a fixed actuator
now makes more flexible gates possible. Figure 1.15 shows thearrangement. The

z y in

out
garbage

actuator
state = 0garbage

Fig. 1.15 COPY gate.

soliton state labeledin will carry a logical value, and so be in one of the two states
0 or 1. The left-moving soliton labeledactuatorwill be in the fixed state 0, as will
be the case throughout this construction. The plan is to adjust the (so far) arbitrary
statesz andy so thatout = in, justifying the name COPY. It is reasonable to expect
that this might be possible, because there are four degrees of freedom in the two
complex numbersz andy, and two complex equations to satisfy: thatout be 1 and
0 whenin is 1 and 0, respectively. Values that satisfy these four equations in four
unknowns were obtained numerically. We will call themzc andyc. It appears that
it is not always possible to solve these equations, and just when they do and do not
have solutions remains a subject for future study. However,explicit solutions have
been found for all the cases used in this construction.

To be more specific about the design problem, write Eq. 1.8 as the left-moving
productρ2 = L(ρ1,ρL), and similarly write Eq. 1.10 asρR = R(ρ1,ρL). The succes-
sive left-moving products in Fig. 1.15 areL(in,0) andL(y,L(in,0)). Theoutstate is
thenR(z,L(y,L(in,0)). The stipulation that 0 maps to 0 and 1 maps to 1 is expressed
by the following two simultaneous complex equations in two complex unknowns

1 Computing with Classical Soliton Collisions 21

Oo

in

actuator
state = 0

state =
inversegarbage

garbage

out in
= in

g
ar

b
ag

e

c cz y

Fig. 1.16 FANOUT gate.

R(z,L(y,L(0,0)) = 0 (1.15)

R(z,L(y,L(1,0)) = 1

Using the symbolic manipulation program Maple it turns out to be possible to solve
for zas a function ofyand then eliminatez from the equations, yielding one complex
equation in the one complex unknowny, which can be easily solved numerically.

To make a FANOUT gate, we need to recover the input, which we can do using
a collision with a soliton in the state which is the inverse of0, namely∞ [48].
Figure 1.16 shows the complete FANOUT gate. Notice that we indicate collisions
with a dot at the intersection of paths, and require that the continuation of the inverse
soliton not intersect the continuation ofz that it meets. We indicate that by a break in
the line, and postpone the explanation of how this “wire crossing” is accomplished.
It is actually immaterial whether the continuation of the inverse operator hits the
continuation ofy, because neither is used later. We call solitons that are never used
again, like the continuation of the inverse operator,garbagesolitons.

1.5.3 NOT and ONE gates

In the same way we designed the complex pair of states(zc,yc) to produce a COPY
and FANOUT gate, we can find a pair(zn,yn) to get a NOT gate, mapping 0 to 1
and 1 to 0; and a pair(z1,y1) to get ONE gate, mapping both 0 and 1 to 1.

We should point that the ONE gate in itself, considered as a one-input, one-
output gate, is not invertible, and could never be achieved by using the continuation
of one particular soliton through one, or even many collisions. This is because such
transformations are always nonsingular linear fractionaltransformations, which are
invertible [48]. The algebraic transformation of state from the input to the continu-
ation ofz is, however, much more complicated and provides the flexibility we need

22 Jakubowski et al.

to get the ONE gate. It turns out that this ONE gate will give usa row in the truth
table of a NAND, and is critical for realizing general logic.

1.5.4 Output/input converters and a NAND gate

To perform logic of any generality we must of course be able touse the output of one
operation as the input to another. To do this we need to convert logic (0/1) values
to some predeterminedz andy values, the choice depending on the type of gate we
want. This enables us to construct two-input, one-output gates.

from output

fanout

other input

out

z y in
actuator

z converter y converter

Fig. 1.17 A NAND gate, using converter gates to couple copies of one of its inputs to its z
and y parameters.

As an important example, here’s how a NAND gate can be constructed. We de-
sign az-converter that converts 0/1 values to appropriate values ofz, using the basic
three-collision arrangement shown in Fig. 1.15. For a NAND gate, we map 0 to
z1, the z value for the ONE gate, and map 1 tozn, the z value for the NOT gate.
Similarly, we construct ay-converter that maps 0 toy1 and 1 toyn. Thesez- and
y-converters are used on the fanout of one of the inputs, and the resulting two-input
gate is shown in Fig. 1.17. Of course thesez- andy-converters requirezandy values
themselves, which are again determined by numerical search.

1 Computing with Classical Soliton Collisions 23

The net effect is that when the left input is 0, the other inputis mapped by a
ONE gate, and when it is 1 the other input is mapped by a NOT gate. The only
way the output can be 0 is if both inputs are 1, thus showing that this is a NAND
gate. Another way of looking at this construction is that the2×2 truth table of (left
input)×(right input) has as its 0 row a ONE gate of the columns(1 1), and as its 1
row a NOT gate of the columns(1 0).

The importance of the NAND gate is that it isuniversal[53]. That is, it can be
used with interconnects and fanouts to construct any other logical function. Thus
we have shown that with the ability to “wire” we can implementany logic using the
Manakov model.

1.5.5 Time gating

We next take up the question of interconnecting the gates described above, and begin
by showing how the continuation of the input in the COPY gate can be restored
without affecting the other signals. In other words, we showhow a simple “wire
crossing” can be accomplished in this case.

The key flexibility in the model is provided by assuming that input beams can be
time-gated; that is, turned on and off. When a beam is thus gated, a finite segment
of light is created that travels through the medium. We can think of these finite
segments as finite light pulses, and we will call them simplypulses.

Figure 1.18(a) shows the basic three-collision gate implemented with pulses. As-
suming that the actuator and data pulses are appropriately timed, the actuator pulse
hits all three data pulses, as indicated in the projection below the space-space dia-
gram. The problem is that if we want a later actuator pulse to hit the rightmost data
pulse (to invert the state, for example, as in the FANOUT gate), it will also hit the
remaining two data pulses because of the way they must be spaced for the earlier
three collisions.

We can overcome this difficulty by sending the actuator pulsefrom the left in-
stead of the right. Timing it appropriately early it can be made to miss the first two
data pulses, and hit the third, as shown in Fig. 1.18(b). It iseasy to check that if the
velocity of the right-moving actuator solitons is algebraically above that of the data
solitons by the same amount that the velocity of the data solitons is algebraically
above that of the left-moving actuator solitons, the same state transformations will
result.

1.5.6 Wiring

Having shown that we can perform FANOUT and NAND, it remains only to show
that we can “wire” gates so that any outputs can be fed to any inputs. The basic
method for doing this is illustrated in Fig. 1.19. We think ofdata as stored in the

24 Jakubowski et al.

actuator

data data

actuator

(a) (b)
Fig. 1.18 (a) When entered from the right and properly timed, the actuator pulse hits all
three data pulses, as indicated in the projection at the bottom; (b) When entered from
the left and properly timed, the actuator pulse misses two data pulses and hits only the
rightmost data pulse, as indicated in the projection at the bottom.

down-moving pulses in a column, which we can think of as “memory”. The observer
moves with this frame, so the data appears stationary.

actuator

Memory

gate

out

in

Fig. 1.19 The frame of this figure is moving down with the data pulses on the left. A data
pulse in memory is operated on with a three-collision gate actuated from the left, and the
result deposited to the upper right.

Pulses that are horizontal in the three-collision gates shown in previous figures
will then appear to the observer to move upward at inclined angles. It is important

1 Computing with Classical Soliton Collisions 25

to notice that these upward diagonally moving pulses are evanescent in our picture
(and hence their paths are shown dashed in the figure). That is, once they are used,
they do not remain in the picture with a moving frame and hencecannot interfere
with later computations. However, all vertically moving pulses remain stationary in
this picture.

Once a diagonal trajectory is used for a three-collision gate, reusing it will in
general corrupt the states of all the stationary pulses along that diagonal. However,
the original data pulse (gate input) can be restored with a pulse in the state inverse
to the actuator, either along the same diagonal as the actuator, provided we allow
enough time for the result (the gate output, a stationaryzpulse) to be used, or along
the other diagonal.

It turns out that there is one problem remaining with this general idea: we run out
of usable diagonals so that, for example, it becomes impossible to fan out the output
of a gate output. A simple solution to this problem is to introduce another speed,
using velocities±0.5, say, in addition to±1. This effectively provides four rather
than two directions in which a pulse can be operated on, and allows true FANOUT
and general interconnections. Figure 1.20 shows such a FANOUT; the data pulse
at the lower left is copied to a position above it using one speed, and to another
position, above that, using another. We refer the reader to [51] for more details,

input

copy 1

copy 2

in
ve

rs
e

Fig. 1.20 The introduction of a second speed makes true FANOUT possible. For simplicity
data and operator pulses are indicated by solid dots, and the y operator pulses are not
shown. The paths of actuator pulses are indicated by dashed lines.

including specific gate designs for the NAND gate.

26 Jakubowski et al.

1.5.7 Universality

It should be clear now that any sequence of three-collision gates can be implemented
in this way, copying data out of the memory column to the upperleft or right, and
performing NAND operations on any two at a time in the way shown in the previous
section. The computation can proceed in a breadth-first manner, with the results of
each successive stage being stored above the earlier results. Each additional gate
can add only a constant amount of height and width to the medium, so the total area
required is no more than proportional to the square of the number of gates.

output

inputs

copy

Fig. 1.21 Implementation of an XOR gate with NAND gates and COPY operations. The
results are deposited above the inputs in the data column. Two speeds are necessary to
achieve the fanout.

The “program” consists of down-movingy andzoperator pulses, entering at the
top with the down-movingdata, and actuator pulses that enter from the left or right at
two different speeds. In the frame moving with the data, the data and operator pulses
are stationary and new results are deposited at the top of thememory column. In
the laboratory frame the data pulses leave the medium downward, and new results
appear in the medium at positions above the old data, at the positions of newly
enteringzpulses.

1 Computing with Classical Soliton Collisions 27

Figure 1.21 shows a concrete example of a composite logical operation, an XOR
gate—the SUM bit of a half adder—implemented in the conventional way with
NAND gates [54] and COPY operations.

1.5.8 Some comments on the universality result

We note that the result described here differs from the universality results for the
ideal billiard ball model [27], the Game of Life [31], and Lattice Gasses [55], for
example, in that no internal mirrors or structures of any kind are used inside the
medium. To the author’s knowledge, to what extent internal structure is necessary
in these other models is open.

Finally, we remark that the model used is reversible and dissipationless. The fact
that some of the gate operations realized are not in themselves reversible is not a
contradiction, since extra, “garbage” solitons [27] are produced that save enough
state to run the computation backwards.

1.6 Multistable collision cycles

The computation scheme described up to this point, coding information in the po-
larization state of vector solitons, is still very far from practical realization. Many
practical problems lie mainly in the realization of systemsthat are close to the ideal
Manakov. But even if such systems could be engineered—and they do use well
established physics—there would still remain a critical difficulty, which we now
address. This is the problem of preventing the accumulationof small errors due to
noise over what may well be millions or billions of steps. Theway this problem is
solved in today’s digital computers, and what makes modern computers possible,
in fact, is to use bistable systems that restore voltage levels after every step. We
will next describe equivalent bistable configurations for Manakov state: bistable cy-
cles of collisions that act like embedded flip-flops. We will then discuss the ways in
which such bistable cycles might be used to implement collision-based logic. The
results described in this section are reported in more detail in [56] and [57].

It is important to realize that the multistability described next occurs in the polar-
ization states of the beams; the solitons themselves do not change shape and remain
the sech-shaped solutions of the 3-NLS and Manakov equations. This is in contrast
to multistability in the modes of scalar solitons (see, for example, the review [58]).
The phenomenon also differs from other examples of polarization multistability in
specially engineered devices, such as the vertical-cavitysurface-emitting laser (VC-
SEL) [59], in being dependent only on simple soliton collisions in a completely
homogeneous medium.

28 Jakubowski et al.

1.6.1 The basic three-cycle and computational experiments

A

B

C

b

a

c

Fig. 1.22 The basic cycle of three collisions.

Figure 1.22 shows the simplest example of the basic scheme, acycle of three
beams, entering in statesA, B, andC, with intermediate beamsa, b, andc (see
Fig. 1.22). For convenience, we will refer to the beams themselves, as well as their
states, asA, B, C, etc. Suppose we start with beam C initially turned off, so that
A = a. Beama then hitsB, thereby transforming it to stateb. If beamC is then
turned on, it will hitA, closing the cycle. Beama is then changed, changingb, etc.,
and the cycle of state changes propagates clockwise. The question we ask is whether
this cycle converges, and if so, whether it will converge with any particular choice of
complex parameters to exactly zero, one, two, or more foci. We answer the question
with numerical simulations of this cycle.

A typical computational experiment was designed by fixing the input beamsA,
B, C, and the parametersk1 andk2, and then choosing pointsa randomly and inde-
pendently with real and imaginary coordinates uniformly distributed in squares of a
given size in the complex plane. The cycle described above was then carried out un-
til convergence in the complex numbersa, b, andc was obtained to within 10−12 in
norm. Distinct foci of convergence were stored and the initial starting pointsa were
categorized by which focus they converged to, thus generating the usual picture of
basins of attraction for the parametera. Typically this was done for 50,000 random
initial values ofa, effectively filling in the square, for a variety of parameter choices
A, B, andC. The following results were observed:

• In cases with one or two clear foci, convergence was obtainedin every experi-
ment, almost always within one or two hundred iterations.

• Each experiment yielded exactly one or two foci.
• The bistable cases (two foci) are somewhat less common than the cases with a

unique focus, and are characterized by values ofkR between about 3 and 5 when
the velocity difference∆ was fixed at 2.

Figure 1.23 shows a bistable example, with the two foci and their corresponding
basins of attraction. Numerical results suggest that the three-collision cycle can have

1 Computing with Classical Soliton Collisions 29

no more than two stable foci, but thatn-collision cycles can have up ton−1 foci.
The reader is referred to [56] for further examples.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

im
ag

in
ar

y

real

Fig. 1.23 The two foci and their corresponding basins of attraction in the first example,
which uses a cycle of three collisions. The states of the input beams are A=−0.8− i ·0.13,
B = 0.4− i ·0.13, C = 0.5+ i ·1.6; and k = 4± i.

1.6.2 Proposed physical arrangement

Our computations assume that the angles of collisions, which for spatial solitons are
determined by the unnormalized velocities in laboratory units, are equal. In situa-
tions with strong interactions the angles are small, on the order of a few degrees, at
the most. We can arrange that all three collisions take placeat the same angle by
feeding back one of the beams using mirrors, using an arrangement like that shown
in Fig. 1.24. Whether such an arrangement is experimentallypractical is left open
for future study, but it does not appear to raise insurmountable problems. Note that
it is also necessary to divert the continuation of some beamsto avoid unwanted
collisions.

30 Jakubowski et al.

a

b

c

mirror mirror

θ

θθ B

C

A

Fig. 1.24 One way to control the collision angles.

1.6.3 State restoration

As mentioned, we aim at combating the effects of noise by using bistable collision
cycles to restore state, thus making it feasible to think of cascading a large number
of operations. The basic idea of state-restoration for digital computing has been well
understood for more than half a century; see [60], for example, for an excellent and
early discussion.

1.6.4 Controlling a bistable cycle

In order to use these bistable collision cycles for data storage and logic, we need
to develop a method by which we can individually address these devices. In other
words, given a bistable configuration of Manakov solitons with certain constant in-
puts, we must be able to switch between binary states of the cycle reliably.

We accomplish this by temporarily disrupting the bistability of the cycle. For ex-
ample, colliding a control beam, or beams, withA (as shown by the dashed lines
in Fig. 1.25) changes the input stateA to D. Through careful design of the con-
trol beams, we can ensure thatA changes in such a way that the cycle (cycle (3)
in Fig. 1.25), which demonstrated bistability without the control beams, becomes
monostable, yielding only one possible steady-state valuefor the intermediate and
output solitons of cycle (3). Subsequently, when the control beams are turned off,
A equalsD1 and cycle (3) recovers its bistable configuration, but now the initial
state of the cycle is known. This initial condition will lie in one of the two basins
of attraction, causing the cycle to settle to the focus corresponding to that basin. In
this fashion, we control the output state of a bistable soliton collision cycle, where
the value of the monostable focus is controlled by changing the state of the control
beam.

1 We assume here that there is sufficient separation between collisions to ensure that this equality
is true.

1 Computing with Classical Soliton Collisions 31

1.6.5 NAND and FANOUT gates

A

B

C

Bout(1)
(1)

A

B

C

Bout(2)
(2)

A

B

C

a

Bout

(3)
D

Fig. 1.25 Schematic of NAND gate using bistable collision cycles.

The schematic of a NAND gate is shown in Fig. 1.25. It consistsof three cycles:
cycles (1) and (2) are the inputs to cycle (3), which represents the actual gate. All
three cycles have identical bistable configurations, with input solitonsA = −0.2+
0.2i, B = 0.9+ 1.5i, C = −0.5− 1.5i and k = 4± i. The output of any cycle is
Bout, and an input is described by a collision withA. Using the method described
in Section 1.6.4, cycles (1) and (2) can be set in either binary state 0 or 1. When
the inputs from cycles (1) and (2) are active, cycle (3) will become monostable and
depending on the values of the inputs, there are four possible monostable foci for
cycle (3). Turning off the inputs will place cycle (3) in the state corresponding to
the NAND operation. By using identical bistable collision cycles, we ensure that the
output is standardized and can serve as input for the next level of logic.

The bistable configuration of all three cycles, along with the values of the monos-
table foci which correspond to the four inputs, are shown in Fig. 1.26. Only when
the inputs are both in state 1 will the cycle be put into state 0. A variability on the
inputs will change the position of the monostable foci slightly. We can see from
Fig. 1.26 that this change will not affect the position of theoutput state, unless the
change is greater than a specified amount. Quantifying the noise margins of this
system remains a topic for future work.

Figure 1.27 shows the schematic of a FANOUT gate, where solitonsy andz are
chosen in such a way that a copy of solitonin is created at the output, as indicated by
out′. Explicitly, we define the transformations in eqs. 1.8 and 1.10 asρ2 ≡ L(ρ1,ρL)

32 Jakubowski et al.

Fig. 1.26 Map of beama in the complex plane showing NAND gate operation. The two foci, a0
anda1, are shown with their corresponding basins of attraction. The+ signs are monostable foci
which indicate inputs where the cycle reaches state 1, the• is the monostable focus acquired with
a (1, 1) input.

z

-1/z*

out' = in

(copy)

out = in

iny

Fig. 1.27 Schematic of FANOUT gate, where each• indicates a collision.

1 Computing with Classical Soliton Collisions 33

andρR ≡ R(ρ1,ρL), respectively. The value ofout′ is thenR(y,L(in,z)). The orig-
inal input soliton is recovered using the inverse property of Manakov collisions, as
described above and in [48]. When viewed as an operator, eachpolarization state
ρ has an inverse defined as−1/ρ∗. As such, an arbitrary solitonρ1 which collides
with another solitonρ2, followed by a collision with its inverse−1/ρ∗

2, restores the
original stateρ1. Thus the original input solitonin is restored by a collision with the
inverse ofz, −1/z∗.

As a useful example, we design a FANOUT gate for the case of input solitonin =
Bout, whereBout is taken from the output of a NAND gate. The bistable configuration
of the NAND gate provides for two possible outputs,Bout0 andBout1, corresponding
to binary states 0 and 1, respectively. The FANOUT design stipulates thatBout0

maps toBout0 andBout1 maps toBout1, which can be expressed by the following two
simultaneous complex equations in two complex unknowns:

R(y,L(Bout0,z)) = Bout0,

R(y,L(Bout1,z)) = Bout1. (1.16)

Solving Eqs. (1.16) numerically yieldsy = 0.6240− 0.4043i andz = −1.1286+
0.7313i. This example thus demonstrates that the output from a NAND gate can be
used to drive two similar NAND gates.

1.7 Conclusion

The line (or perhaps tree) of work traced in this chapter suggests many open ques-
tions, some theoretical, some experimental, and some a mixture of the two—and
even some of interest in their own right without regard to embedded computation.
We conclude by mentioning some of these.

In the theoretical area:

• What is a complete mathematical characterization of the state LFTs obtainable
by composing either a finite number—or an infinite number—of the Manakov
collisions?

• How can we “program” Manakov solitons? Is the Manakov collision system uni-
versal without the device of time-gating? Is the temporal system universal?

• Is the complex-valued polarization state used here for the Manakov system
also useful in other multi-component systems, especially those that are near-
integrable and support spatial solitons?

• What is the theoretical computational power of systems other than Manakov? In
particular, which systems in 1+1 or 2+1 dimensions, integrable or nonintegrable,
are Turing-equivalent?

• Can 2+1 and higher-dimensional soliton systems be used for efficient computa-
tion in uniform media? For example, can a 2+1 integrable system simulate the
billiard-ball model of computation, and can such a system beuseful without fixed
barriers off which balls bounce?

34 Jakubowski et al.

• What is the dynamic behavior of a collision cycle in reachingits steady state? In
particular, how fast does the state settle down?

• Do multistable collision cycles occur in other vector soliton systems, such as the
nonintegrable saturable systems in photorefractives [42,61, 62, 63, 64] ? Can
such multistable systems be coupled to implement logical operations like shift
registers and arithmetic?

• Is it true that the number of stable foci in a collision cycle of n Manakov solitons
is bounded byn− 1? Is then− 1 always achievable? What is the dynamic be-
havior of more complicated collision topologies, can we characterize their stable
foci, and can they be used to do useful computation?

• Can scalar or other systems of solitons be used for computation? In this regard
we mention the recent interesting work of Bakaoukas and Edwards [65], where
they describe a scheme that uses scalar 3-NLS solitons and additional hardware
to detect the nature of the collisions to launch additional solitons; and [66], where
they use second-order, as well as first-order, scalar 3-NLS solitons, and examine
outputs in various time slots.

• What is the connection between discrete (CA) solitons and continuous (PDE)
solitons? Why does the same phenomenon manifest itself in two such widely
different mathematical frameworks?

On the experimental side of things:

• Can the Manakov system be implemented in a simple, accurate,and practical
way?

• Can saturable materials like photorefractive crystals be made that are highly
transactive with acceptable radiation?

• What new physical systems might be found that support solitons which can be
easily used to compute?

As we’ve seen there are many fascinating questions of interest—to both computer
scientists and physicists—about soliton information processing. The very notion
that nonlinear waves/particles can encode and process information remains largely
unexplored.

The work we’ve discussed here reflects only one aspect of whatis called “uncon-
ventional” or “nonstandard” computation, and which comprises alternatives to the
lithographed silicon-chip based paradigm as a physical basis for computation. See
the International Journal of Unconventional Computingfor reports of progress in
this growing and fascinating field.

1.8 Acknowledgments

We owe a debt of gratitude to colleagues and students, too many to enumerate, for
useful comments and discussions over the years. Most notably, Stephen Wolfram
provided an important spark three decades ago, and Mordechai Segev two decades

1 Computing with Classical Soliton Collisions 35

ago. The description of state-restoring logic is based on work with Darren Rand and
Paul Prucnal.

References

1. S. Wolfram, editor.Theory and Application of Cellular Automata. World Scientific, Singapore,
1986.

2. S. Wolfram. Universality and complexity in cellular automata.Physica D, 10D:1–35, 1984.
3. J. K. Park, K. Steiglitz, and W. P. Thurston. Soliton-likebehavior in automata.Physica D,

19D(3):423–432, 1986.
4. T. W. Parks and C. S. Burrus.Digital Filter Design. John Wiley, New York, 1987.
5. K. Steiglitz, I. Kamal, and A. Watson. Embedding computation in one-dimensional automata

by phase coding solitons.IEEE Transactions on Computers, 37(2):138–145, 1988.
6. C. H. Goldberg. Parity filter automata.Complex Systems, 2:91–141, 1988.
7. A. S. Fokas, E. Papadopoulou, and Y. Saridakis. Particlesin soliton cellular automata.Com-

plex Systems, 3:615–633, 1989.
8. A. S. Fokas, E. Papadopoulou, and Y. Saridakis. Coherent structures in cellular automata.

Physics Letters, 147A(7):369–379, 1990.
9. M. J. Ablowitz, J. M. Keiser, and L. A. Takhtajan. Class of stable multistate time-reversible

cellular automata with rich particle content.Phys. Rev. A, 44A(10):6909–6912, Nov. 15, 1991.
10. M. Bruschi, P. M. Santini, and O. Ragnisco. Integrable cellular automata. Phys. Lett. A,

169:151–160, 1992.
11. P. Siwak. On automata of some discrete recursive filters that support filtrons. In S. Domek,

R. Kaszynski, and L. Tarasiejski, editors,Proc. Fifth Int. Symp. on Methods and Models in
Automation and Robotics, volume 3 (Discrete Processes), pages 1069–1074, Miȩdzyzdroje,
Poland, Aug. 25–29 1998. Wydawnictwo Politechniki Szczeciinskiej.

12. P. Siwak. Filtrons and their associated ring computations. Int. J. General Systems, 27(1–
3):181–229, 1998.

13. P. Siwak. Iterons, fractals and computations of automata. In D. M. Dubois, editor,Second Int.
Conf. on Computing Anticipatory Systems, CASYS ’98, conference proceedings 465, pages
45–63, Woodbury, New York, August 1999. Amer. Inst. Phys.

14. R. K. Squier and K. Steiglitz. Programmable parallel arithmetic in cellular automata using a
particle model.Complex Systems, 8:311–323, 1994.

15. H. T. Kung. Why systolic architectures?IEEE Computer, 15(1):37–46, January 1982.
16. U. Frisch, D. d’Humie’res, B. Hasslacher, P. Lallemand Y. Pomeau, and J. P. Rivet. Lattice

gas hydrodynamics in two and three dimensions.Complex Systems, 1:649–707, 1987.
17. M. H. Jakubowski, K. Steiglitz, and R. K. Squier. Implementation of parallel arithmetic in a

cellular automaton. In1995 Int. Conf. on Application Specific Array Processors, Strasbourg,
France (P. Cappello et al., ed.), Los Alamitos, CA, July 24–26, 1995. IEEE Computer Society
Press.

18. M. H. Jakubowski.Computing with Solitons in Bulk Media (Ph.D. Thesis). Princeton Univer-
sity, Princeton, NJ, 1998.

19. F. T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kaufman
Publishers, San Mateo, CA, 1992.

20. H.-H. Liu and K.-S. Fu. VLSI arrays for minimum-distanceclassifications. In K. S. Fu, editor,
VLSI for Pattern Recognition and Image Processing. Springer-Verlag, Berlin, 1984.

21. W. Hordijk, J. P. Crutchfield, and M. Mitchell. Embedded-particle computation in evolved
cellular automata. In T. Toffoli, M. Biafore, and J. Leão, editors,Proc. Fourth Workshop on
Physics and Computation (PhysComp96), pages 153–158, Boston, Mass., Nov. 22–24, 1996.
New England Complex Systems Institute.

36 Jakubowski et al.

22. N. Boccara, J. Nasser, and M. Roger. Particlelike structures and their interactions in spatiotem-
poral patterns generated by one-dimensional deterministic cellular-automaton rules.Phys.
Rev. A, 44(2):866–875, 15 July 1991.

23. D. Takahashi. On a fully discrete soliton system. In M. Boiti, L. Martina, and P. Pempinelli, ed-
itors,Proc. 7th Workshop on Nonlinear Evolution Equations and Dynamical Systems (NEEDS
’91), pages 245–249, Singapore, 1991. World Scientific.

24. P. M. Santini. Integrability for algebraic equations, functional equations and cellular automata.
In V. Makhankov, I. Puzynin, and O. Pashev, editors,Proc. 8th Workshop on Nonlinear Evolu-
tion Equations and Dynamical Systems (NEEDS ’92), pages 214–221, Singapore, 1992. World
Scientific.

25. A. I. Adamatzky. On the particle-like waves in the discrete model of excitable medium.Neural
Network World, pages 3–10, 1996.

26. A. I. Adamatzky.Computing in Nonlinear Media & Automata Collectives. Taylor & Francis,
2001.

27. E. Fredkin and T. Toffoli. Conservative logic.International Journal of Theoretical Physics,
21(3/4):219–253, 1982.

28. N. Margolus. Physics-like models of computation.Physica D, 10D:81–95, 1984.
29. A. I. Adamatzky. Universal dynamical computation in multidimensional excitable lattices.

Int. J. Theor. Phys., 37(12):3069–3108, 1988.
30. A. J. Atrubin. An iterative one-dimensional real-time multiplier. IEEE Trans. Electron. Com-

puters, EC-14:394–399, 1965.
31. E. R. Berlekamp, J. H. Conway, and R. K. Guy.Winning ways for your mathematical plays.

Vol. 2. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1982.
32. T. Serizawa. Three-state Neumann neighbor cellular automata capable of constructing self-

reproducing machines.Systems and Computers in Japan, 18(4):33–40, 1987.
33. S. Wolfram.A New Kind of Science. Wolfram Media, 2002.
34. A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin. The soliton: A new concept in applied

science.Proceedings of the IEEE, 61(10):1443–1483, 1973.
35. P. G. Drazin and R. S. Johnson.Solitons: An Introduction. Cambridge University Press,

Cambridge, UK, 1989.
36. M. J. Ablowitz and P. A. Clarkson.Solitons, Nonlinear Evolution Equations, and Inverse

Scattering. Cambridge University Press, Cambridge, UK, 1991.
37. C. Rebbi and G. Soliani.Solitons and Particles. World Scientific, Singapore, 1984.
38. V. G. Makhankov. Soliton Phenomenology. Kluwer Academic Publishers, Norwell, MA,

1990.
39. M. H. Jakubowski, K. Steiglitz, and R. K. Squier. When cansolitons compute?Complex

Systems, 10(1):1–21, 1996.
40. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv. Steady-state spatial screening

solitons in photorefractive materials with external applied field.Phys. Rev. Lett., 73(24):3211–
3214, 1994.

41. M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani,and P. DiPorto. Observa-
tion of two-dimensional steady-state photorefractive screening solitons.Electronics Letters,
31(10):826–827, 1995.

42. M. F. Shih and M. Segev. Incoherent collisions between two-dimensional bright steady-state
photorefractive spatial screening solitons.Opt. Lett., 21(19):1538–1540, 1996.

43. V. Tikhonenko, J. Christou, and B. Luther-Davies. Three-dimensional bright spatial soliton
collision and fusion in a saturable nonlinear medium.Phys. Rev. Lett., 76:2698–2702, 1996.

44. M. H. Jakubowski, K. Steiglitz, and R. K. Squier. Information transfer between solitary waves
in the saturable Schrödinger equation.Phys. Rev. E, 56:7267–7273, 1997.

45. R. Radhakrishnan, M. Lakshmanan, and J. Hietarinta. Inelastic collision and switching of
coupled bright solitons in optical fibers.Phys. Rev. E, 56(2):2213–2216, 1997.

46. S. V. Manakov. On the theory of two-dimensional stationary self-focusing of electromagnetic
waves.Soviet Physics: JETP, 38(2):248–253, Feb. 1974.

47. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev. Observation of Manakov
spatial solitons in AlGaAs planar waveguides.Phys. Rev. Lett., 76(20):3699–3702, 1996.

1 Computing with Classical Soliton Collisions 37

48. M. H. Jakubowski, K. Steiglitz, and R. Squier. State transformations of colliding optical
solitons and possible application to computation in bulk media. Phys. Rev. E, 58(5):6752–
6758, 1998.

49. A. Yariv and P. Yeh.Optical Waves in Crystals. Wiley, New York, 1984.
50. C. H. Bennett. Logical reversibility of computation.IBM J. Res. Dev., 17(6):525–532, 1973.
51. K. Steiglitz. Time-gated Manakov spatial solitons are computationally universal.Phys. Rev.

E, 63(1):016608, 2000.
52. G. I. Stegeman and M. Segev. Optical spatial solitons andtheir interactions: Universality and

diversity. Science, 286(5444):1518–1523, November 1999.
53. M. M. Mano.Computer Logic Design. Prentice-Hall, Englewood Cliffs, NJ, 1972.
54. F. J. Mowle.A Systematic Approach to Digital Logic Design. Addison-Wesley, Reading, MA,

1976.
55. R. K. Squier and K. Steiglitz. 2-d FHP lattice gasses are computation universal.Complex

Systems, 7:297–307, 1993.
56. K. Steiglitz. Multistable collision cycles of Manakov spatial solitons. Phys. Rev. E,

63(4):046607, 2001.
57. D. Rand, K. Steiglitz, and P. R. Prucnal. Noise-immune universal computation using Manakov

soliton collision cycles. InProceedings of Nonlinear Guided Waves and Their Applications.
Optical Society of America, 2004.

58. R. H. Enns, D. E. Edmundson, S. S. Rangnekar, and A. E. Kaplan. Optical switching between
bistable soliton states: a theoretical review.Optical and Quantum Electronics, 24:S1295–
1314, 1992.

59. H. Kawaguchi. Polarization bistability in vertical-cavity surface-emitting lasers. In M. Os-
inski and W. W. Chow, editors,SPIE Proceedings, Physics and Simulation of Optoelectronic
Devices V, volume 2994, pages 230–241, National Labs., Sandia Park, NM, USA, 1997.

60. A. W. Lo. Some thoughts on digital components and circuittechniques.IRE Trans. Elect.
Comp., EC-10:416–425, 1961.

61. D. N. Christodoulides, S. R. Singh, M. I. Carvalho, and M.Segev. Incoherently coupled soliton
pairs in biased photorefractive crystals.Appl. Phys. Lett., 68(13):1763–1765, 1996.

62. Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides. Observation of incoherently cou-
pled photorefractive spatial soliton pairs.Opt. Lett., 21:1436–1439, 1996.

63. C. Anastassiou, M. Segev, K. Steiglitz, J. A. Giordmaine, M. Mitchell, M. Shih, S. Lan, and
J. Martin. Energy switching interactions between colliding vector solitons.Phys. Rev. Lett.,
83:2332–2335, 1999.

64. C. Anastassiou, K. Steiglitz, D. Lewis, M. Segev, and J.A. Giordmaine. Bouncing of vector
solitons. InConference on Lasers and Electro-Optics, San Francisco, CA, May 8–12 2000.

65. A. G. Bakaoukas and J. Edwards. Computing in the 3NLS domain using first order solitons.
Int. J. Unconventional Computing, 5:489–522, 2009.

66. A. G. Bakaoukas and J. Edwards. Computation in the 3NLS domain using first and second
order solitons.Int. J. Unconventional Computing, 5:523–545, 2009.

Index

bilinear transformation,seelinear fractional
transformation

cellular automata, 2–9
collision

in parity rule filter automata, 2
oblivious, 11
transactive, 11

collision cycles, 27–33
control of, 30
FANOUT gate using, 31
multistable, 27
NAND gate using, 31
physical arrangement of, 29
state restoration of, 30

LFT, seelinear fractional transformation
linear fractional transformation, 14

Möbius transformation,seelinear fractional
transformation

Manakov system
i operator in, 15
COPY gate in, 18
FANOUT gate in, 18
Move operator in, 15
NAND gate in, 22
NOT gate in, 18
NOT operator in, 15

ONE gate in, 18
state in, 13
time-gated, 18
universality of, 16–27

NLS, seenonlinear Schrödinger equation
nonlinear Schrödinger equation, 10

cubic, 10
saturable, 12

parity rule filter automata, 2
particle machine, 3–9

VLSI implementation of, 3
PM, seeparticle machine
PRFA,seeparity rule filter automata
Prucnal, P., 35

Rand, D., 35

Segev, M., 12, 34
solitons, 1–2, 10–33

envelope, 10
in automata, 2
Manakov, 12

3-NLS, seenonlinear Schrödinger equation,
cubic

Wolfram, S., 2, 34

39

