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Abstract We review work on computing with solitons, from the discovef soli-
tons in cellular automata, to an abstract model for partiokaputation, information
transfer in collisions of optical solitons, state trangfiations in collisions of vector
solitons, a proof of the universality of blinking spatialismns, and the demonstra-
tion of multistable collision cycles and their applicatitmnstate-restoring logic. We
conclude by discussing open problems and the prospectsdotigal computing
applications using optical soliton collisions in photdraetive crystals and fibers.

In most present-day conceptions of a “computer,” infororatravels between logi-
cal elements fixed in space. This is true for abstract moidk&lSuring machines, as
well as real silicon-chip-based electronic computerssTaper will review work
over the past several years that views computation in amegniilifferent way:
information is carried through space by particles, comjrtaoccurs when these
particles collide.

Much of this review will focus on our own work, but of coursellwiecessarily
touch on related work by many others. Our intent is to desctite progression
of ideas which has brought the authors to a study of the coatipugal power of
the Manakov system and its possible practical implementatind in no way do
we intend to minimize important contributions by others the growing field of
embedded computation, and nonstandard computation ingjeée will cite such
related work as we are aware of, and will appreciate read@rgibg omissions to
our attention.

This paper is written more or less historically, and we wilde the development
in the following stages:

e solitons in automata,
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the particle machine model and embedded arithmetic,
information transfer in collisions of continuum solitons,

the Manakov system and state transformations in collisions
universality of time-gated spatial Manakov solitons,
multistable collision cycles and state-restoration.

We conclude with a discussion of open problems.

1.1 Computation in cellular automata

Our own story begins in a sense with influential work of S. \Aif in the mid-
1980s [1], and in particular with the seminal study [2], wdh&e observed that the
behavior of a simple but representative type of cellulaoa#ta (CA) can be par-
titioned into four classes, the most interesting of whichcbajectured to be Tur-
ing universal. At this time S. Wolfram was in Princeton, a tinstitute for Ad-
vanced Study, and his work led one of us (KS) to begin experiai®n with CA. It
was subsequently discovered that CA in a new clasghigy rule filter automata
(PRFA) [3], support particles which behave remarkably Blkditons in continuum
systems. (We review the essential features of continuuitesslin physical systems
in Section 1.3.)

The PRFA differ from conventional CA in that the update ruéesi new values
as soon as they become available, scanning to update fromo leght. They are
thus analogous to so-called infinite impulse response @igjal filters, while or-
dinary CA correspond to finite impulse response (FIR) diditers [4]. We note
that although the operations of FA and CA are different, tf@dtlasses of automata
are equivalent, as shown in [3]. However, to our knowledds &n open question
whether the subclass of PRFA are computationally univet$ed term “parity rule”
refers to the algorithm for refreshing site values: to updsta particular site, the
total number of ones in a window centered at that site is fduisthg new values
to the left), and the new site value is set to one if that sumés dout not zero, and
to zero otherwise. Figure 1.1 shows a typical soliton-liglision in a PRFA. No-
tice that the bit pattern of both particles is preserved endallision, and that both
particles are displaced from their pre-collision paths.

The subsequent paper [5] showed that a carry-ripple addebeaealized in
a PRFA. This construction was not simple, and we were not tblprogram”
more complex computation in these one-dimensional strestiHowever, several
researchers contributed to the study of embedded computatiautomata using
soliton-like particles in PRFA and related CA in the 199@s]uding Goldberg [6],
Fokas, Papadopoulou, and Saridakis [7, 8], Ablowitz, Keiaad Takhtajian [9],
Bruschi, Santini and O. Ragnisco [10], and Siwak [11, 12, $8]ce then there has
been much more work on particles in CA in general, and theaeiadeferred to the
Journal of Cellular Automatawhich was founded in 2006, for a key to the rapidly
growing literature in the field.
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Fig. 1.1 Typical soliton-like collision in a PRFA. The dots are ones against a field of ze-
ros and the time evolution progresses downward. Notice the displacements caused by
the collision, quite similar to what happens in continuum systems. This example uses a
window radius of five and is from [3].

1.2 Particle Machines (PMs)

The particle machingPM) studied in [5, 14] and is intended to capture the notion
of computation by propagating and colliding particles. #saa natural outgrowth
of the study of the computational power of the PRFA. The PMdageneral com-
putation [14], because it can simulate a Turing machine (T also operates
in discrete time and space. However, while the TM’s taped-weete head, and
uniprocessing operations hint at mechanical, man-madgnsrithe PM’s particle
interactions and fine-grain parallelism are reminiscemtaitiral physical systems.
We will review the PM model and mention several efficient aiipons that have
been encoded in the model. We define a PM as a cellular autani@t) with
states that represent idealized particles, and with antapdée that encodes the
propagation and collisions of such particles. While PMs lsave any number of
dimensions, we concentrate here on one-dimensional PMshwane nevertheless
powerful enough to support efficientimplementations ahamietic and convolution.
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1.2.1 Characteristics of PMs

Quite apart from their use as an abstract model of computafibls can be viewed
as a way to incorporate the parallelism of systolic arrayg [d hardware that is
not application-specific and is easy to fabricate. A PM camdadized easily in
VLSI and the resultant chips are locally connected, verylag(being CA), and
can be concatenated with a minimum of glue logic. Thus, mdeytical VLSI
chips can be strung together to provide a very long PM, whah then support
many computations in parallel. What computation takesepiacdetermined en-
tirely by the stream of injected particles: There are no iplidtrs or other fixed
arithmetic units in the machine, and the logic supports qasticle propagation
and collisions. While many algorithms for a PM mimic systa@irays and achieve
their parallelism, these algorithms are not hard-wired dve “soft,” or “floating,”
in the sense that they do not determine any fixed hardwaretstas.

An interesting consequence of this flexibility is that thegision of fixed-point
arithmetic is completely arbitrary and determined at runetiby the user. In [14]
the authors show that FIR filtering (convolution) of a contins input stream, and
arbitrarily nested combinations of fixed-point additionb&action, and multiplica-
tion, can all be performed in one fixed CA-based PM in timedmia the number
of input bits, all with arbitrary precision. Later in thisct®n we complete this suite
of parallel arithmetic operations with a linear-time immplentation of division that
exploits the PM’s flexibility by changing precision duringraputation.

1.2.2 The PM mode

We define the PM formally as follows:

Definition 1. A Particle Machine (PM)is a CA with an update rule designed to
support the propagation and collision of logiparticlesin a one-dimensional ho-
mogeneous medium. Each particle has a distinct identiticiwincludes the parti-
cle’s velocity. We think of each cell’s state in a PM abinary occupancy vector
in which each bit represents the presence or absence of angadficle types (the
same idea is used in lattice gasses; see, for example, [Ii&})state of cell at
timet+1 is determined by the states of cells in theghborhooaf cell i, where the
neighborhood includes thi+1 cells within a distance, oadius r of celli, includ-
ing celli. In a PM, the radius is equal to the maximum velocity of anyiplay; plus
the maximum displacement that any particle can undergamgwollision.

Although this definition is explicitly in one-dimension,agan be generalized easily
to higher dimensions.

In summary, a PM is a CA with an update rule modeling propagadind col-
lision of logical particles that are encoded by the stateeslin one cell, or in a
number of adjacent cells. Particles propagate with cobhstlacities. Two or more
particles may collide; a set @bllision rules which are encoded by the CA update
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rule, specifies which particles are created, which are oygstl, and which are unaf-
fected in collisions. A PM begins with a finitaitial configurationof particles and
evolves in discrete time steps.

1.2.3 Simple computation with PMs

Figure 1.2 shows the general arrangement of a 1-d PM. Regtick injected at one
end of the one-dimensional CA, and these particles moveigirthe medium pro-
vided by the cells. When two or more particles collide, nevtipkes may be created,
existing particles may be annihilated, or no interactioty mecur, depending on the
types of particles involved in the collision.

particles injected

o— =@ <O [ =0

to infinity ——=

Fig. 1.2 The basic conception of a particle machine.

Figure 1.3 illustrates some typical collisions when binaddition is imple-
mented by particle collisions. This particular method aliéidn is only one of many
possibilities. The basic idea here is that each addend issepted by a stream of
particles containing one particle for each bit in the addeme stream moving left
and the other moving right. The two addend streams collide acarry-ripple adder
particle where the addition operation takes place. Theya@pple particle keeps
track of the current value of the carry between collisionsufsequent addend-bit
particles as the streams collide least-significant-bit.fiks each collision occurs,
a new right-moving result-bit particle is created and the addend particles are
annihilated. Finally, a trailing “reset” particle movinight resets the carry-ripple to
zero and creates an additional result-bit particle movigigtr

1.2.4 Algorithms

Arithmetic  Addition and subtraction on a PM are relatively straightfard to
implement, and both can operate in linear time and with @atyitprecision. A mul-
tiplication algorithm with similar properties is not muctone difficult to obtain, but
a linear-time, arbitrary-precision division algorithnsismewhat more involved. We
briefly describe some arithmetic algorithms, and we refertader to [14, 17, 18]
for details.
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Fig. 1.3 An example illustrating some typical particle collisions, and one way to perform
addition in a particle machine. What is shown is actually the calculation 01, + 11, = 100,,
implemented by having the two operands, one moving left and the other moving right,
collide at a stationary “carry-ripple” particle. When the leading, least-significant bits collide
(in the third row from the top of the figure), the carry-ripple particle changes its identity so
that it encodes a carry bit of 1, and a right-moving sum particle representing a bit value
of Ois created. The final answer emerges as the right-moving stream 100, and the carry-
ripple particle is reset by the “equals” particle to encode a carry of 0. The bits of the two
addends are annihilated when the sum and carry bits are formed. Notice that the particles
are originally separated by empty cells, and that all operations can be effected by a CA
with a neighborhood size of 3 (a radius of 1).

Figure 1.4 shows the particle arrangement for fixed-pointtiplication. This
mirrors a well known systolic array for the same purpose,[bb} of course the
structure is “soft” in the sense that it represents only timut stream of the PM
that accomplishes the operation. Figure 1.5 shows a simonlaf this multiplica-
tion scheme for the product 112 11. In that figure, the particles depicted Byand
L represent right- and left-moving operand bits, respelstiye represents station-
ary “processor” particles in the computation region whéeegroduct is formed;
represents “carry” particles propagated during compotatand O and 1 represent
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stationary bits of the product. The top of the figure shows dwerands (11and
11,) on their way toward collisions in the central computatiegion containing
stationary “processor” particles; the bottom of the figurevss the same operands
emerging unchanged from the computation, with the answ@Jd1) remaining in
the central computation region.

processor
particles

[ left multiplicand J O] OO0 000 [ right multiplicand ]

Fig. 1.4 Multiplication scheme, based on a systolic array. The processor particles are
stationary and the data particles collide. Product bits are stored in the identity of the
processor particles, and carry bits are stored in the identity of the data particles, and
thereby transported to neighbor bits.

R . R .p .p .p .p L. L
R . R .p .p .p .p L. L
R . R .p .p .p .p L. L
.R .Rp .p .p .p L .L
.R .Rp .p .p .p L .L
R .p .Ro .p .Lp L
R .p R0 .p .Lp L
-Rp.p .Rp.p L
.Rp .p .RL1 .p L
.p .RLp .1 RLp
.p .RL1 .1 RL1
.Lp .1 .RL1 .1 .R
.Lp .1 .RLOc.1 .R
.L .p .L1c .0 .R1 .R
.L .p .LOc .0 .R1 .R
.L .Lpc .O .0 .1 R . R
.L .L.1 .0 .0 .1 R . R
L . L .1 .0 .0 .1 R . R
L . L .1 .0 .0 .1 R . R
L . L .1 .0 .0 .1 R . R
L . L .1 .0 .0 .1 R . R

Fig. 1.5 Simulator output for PM multiplication. The top line in the figure gives the initial
state of the PM’s medium, representing the multiplication problem 11, %115, as described
in the text. Each successive pair of lines depicts the state of the medium after the prop-
agation and collision phases of each time step. The bottom line in the picture shows the
stationary answer, 1001, in the central computation region, along with the unchanged
operands moving away from the region.

For division, a PM can implement a linear-time, arbitrarggision algorithm
based on Newtonian iteration and described by Leighton [Rigure 1.6 shows a
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simulation of such an algorithm running on a PM. Details @ #igorithm can be
foundin[17, 18].
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values of x; computation region  values of y,

Fig. 1.6 Output generated by a simulation of the division implementation. Each cell is
represented by a small circle whose shading depends on which particles are present
in that cell. For clarity, only every seventh generation is shown. The example shown is
actually the division 1/7.

Convolution, Filtering, and Other Systolic-Array Algorit hms As mentioned

above, arithmetic operations can be nested to achieve piedingd parallelism in-
herent in systolic arrays [14]. This leads to highly patalpelined particle ma-
chine implementations of convolution, filtering, and otlikemmon digital signal
processing algorithms, such as the FFT. Similar non-nwaksalgorithms with

systolic implementations also fit in this category (see,éxample, [20]) and are
amenable to the same soft realizations.
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1.2.5 Comment on VLS| I mplementation

Whether it is actually advantageous to implement appbicatilike these in VLSI
is an interesting question. The tradeoff is clearly betwtenefficiencies of using
fixed, modular, concatenated chips in a very long pipelingherone hand, and the
inefficiencies in transferring all the problem coding to amMew-level “program”in
terms of particles. Where that tradeoff ends up dependsa deal on technology
and economies of production scale.

We will not pursue this question of VLSI implementation fugt in this chapter,
but rather follow the road that leads to particles as sdditonnonlinear optical
materials.

1.2.6 Particlesin other automata

Before we leave CA, we mention some related early work on Cth pwarticles.
Crutchfield, Das, D’haeseleer, Hanson, Hordijk, Mitchslimwegen, and others
report intriguing work in which CA are evolved to perform sersimple compu-
tational tasks (see [21], for example). Particles appedéinése evolved CAs quite
spontaneously, suggesting that they may be a very natusatosvambed computa-
tion in regular structures and materials. Boccara, NaaserRoger [22] describe a
wide variety of particles observed in a conventional CA.dlskshi [23] presents an
appealingly simple box-and-ball model for a CA that suppediitons. Santini [24]
extends the concept of integrability to algebraic and fiomal equations, as well as
CA, including the joint work with Bruschi and Ragnisco [18ldamatzky [25, 26]
described particle-like waves in an excitable medium.

Finally, we also mention some additional, historically réfgcant work: the
very simple universal model using ideal elastically catigl billiard balls in the
plane [27, 28]; the collection edited by Wolfram [1]; the existive study of univer-
sal dynamic computations by Adamatzky [29]; the very eaxigneple of pipelined
computation in a one-dimensional CA by Atrubin [30]; Convgayniversal Game
of Life in 2+1 dimensions [31]; perhaps the simplest knowiversal CA in 2+1
dimensions [32]; and the well known book by Wolfram [33], ihieh the universal
Rule 110 1-d CA plays a central role. As mentioned before kviothis field has
exploded in the last decade, and a good key to current dewelots can be found
in the Journal of Cellular Automata
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~—envelope

Fig. 1.7 An envelope soliton.

1.3 Solitons and computation

1.3.1 Scalar envelope solitons

Itis a natural step from trying to use solitons in CA to trytogise “real” solitons in
physical systems, and the most promising candidates afipkaroptical solitons in
nonlinear media such as optical fibers and photorefractixgals. We can envision
such computation as taking place via collisions inside apetaly uniform medium
and aside from its inherent theoretical interest mighiatiely offer the advantages
of high speed, high parallelism, and low power dissipatitya.cannot review here
in any detail the fascinating development of soliton theangl its application to
optical solitons, but the reader is referred to [34], stilassic beginning reference,
and the general book [35] for further reading. We will, hoaeveview the essential
features okenvelopesolitons, which are most relevant to our work.
For our purposes a soliton can be defined as in [36]:

Definition 2. A solitonis a solitary wave which asymptotically preserves its shape
and velocity upon nonlinear interaction with other solitaraves, or, more gener-
ally, with another (arbitrary) localized disturbance.

We focus on solitons that arise in systems described by thimear Schrodinger
(NLS) equation
iut + Duxx+ N(Juj)u= 0, (1.2)

whereD is a real numbef\ an arbitrary operator ofu|, and the subscripts denote
partial differentiation. This describes nonlinear wavegagation in a variety of
physical systems, most notably certain optical fibers, eheifirst ordeMN(|u|) =
|u?, and in certain (so-called saturable) photorefractivestatg, whereN(|u|) =
m+k|u?/(1+ |u|?), wherek andm are real constants. In the former instance we
will call the equation thecubic NLS(3-NLS), and in the latter, theaturable NLS
(sat-NLS). The solitons that result in these systems adedctahvelope solitons
and as illustrated in Figure 1.7, they are wave packets stimg of acarrier wave
moving at a characteristjghase velocitymodulated by arnvelopemoving at a
characteristigroup velocity
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1.3.2 Integrable and nonintegrable systems

There is a crucial difference in behavior betwéestegrableandnonintegrablesys-
tems. Omitting technical details, the integrable systerascansider are analyti-
cally solvable, and collisions between solitons are pélsfedastic That is, solitons
emerge from collisions with all their original energy. Gsibns in nonintegrable
systems are characterized fagiation—energy that is lost from the solitons in the
form of waves radiating away from the collision site. Suclawridable energy loss
means that collisions cannot be cascaded in many stagethatrehy useful com-
putational system must entail restoration of full-energjjtsns.

Clearly, some patrticle-like behavior is sacrificed in ndegrable systems, and
in fact purists (generally the mathematical physicists$erve the terrsoliton for
integrable systems only. Particle physicists on the otlaedhare more forgiving,
and we will follow their lead in using the tersolitonmore loosely [37, 38].

1.3.3 Thecubic NLS

The most obvious candidate for a useful soliton system isrttegrable equation,
3-NLS. This is one of the two or three best-studied solitomadipns, and the resul-
tant sech-shaped solitons have been observed experitgentedal optical fibers
for many years. To proceed, we need to identify some solismarpeters astate
variablesthat can be used to carry information. Of the possible pararsehe am-
plitude and velocity can be ruled out because they are wutaffdy collisions. The
remaining parameters are the carrier phase and positidraaep(location). Now
what happens in 3-NLS collisions is very disappointing frisra point of view of
computation: the values of the state variables that cangghda not have any effect
on the results of subsequent collisions. This rules out comaation of information
from soliton to soliton and effectively rules out useful qmmation in 3-NLS.

1.3.4 Oblivious and transactive collisions

We next introduce two definitions that allow us to state thecpding argument
somewhat more precisely.

Definition 3. For a given system define tiséateof a soliton to be a set of selected
parameters that can change during collisions.

Definition 4. Collisions of solitons in a given system are ternteshsactivaf some
changes in the state of one colliding soliton depend on thie sif the other. If
collisions are not transactive, they are ternobtivious

We also call systems themselves transactive or oblivioess®é therefore that
3-NLS is oblivious. The key problem then becomes finding adaative system.
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1.3.5 ThesaturableNLS

At the time this obstacle was encountered it seemed to ualthategrable systems
are oblivious, and we began looking at some nonintegralsiesys, which strictly
speaking do not support solitons, but which in fact suppedrssolitons [39]. At
this point M. Segev brought sat-NLS to our attention, an eqoahat describes the
recently discovered 1+1-dimension (one space and one timengion) photore-
fractive optical spatial solitons in steady state [40, 4], 4nd optical spatial soli-
tons in atomic media in the proximity of an electronic resarea[43]. A numerical
study revealed definite transactivity [44]. But the obsdre#ect is not dramatic,
and it comes at the cost of unavoidable radiation.

At this point it appeared that transactivity and elastidisioins were somehow
antagonistic properties, and that integrable systems e@mymed to be oblivious. A
pleasant surprise awaited us.

1.4 Computation in the Manakov system

nonlinear Schrodinger equation!Manakov

The surprise came in the form of the paper by R. Radhakristvharakshmanan
and J. Hietarinta [45], which gave a new bright two-solitotusion for theManakov
system [46], and derived explicit asymptotic results follisions. The solutions
were more general than any given previously, and were regthégkn demonstrat-
ing what amounts to pronounced transactivity in perfecttggrable equations. The
Manakov system consists of two coupled 3-NLS equationsnaodkls propagation
of light in certain materials under certain circumstandése two coupled compo-
nents can be thought of as orthogonally polarized. Manaé&litoss were observed
experimentally in [47].

The Manakov system is less well known than 3-NLS or sat-NldSws will
describe it in some detail, following [48].

1.4.1 The Manakov system and its solutions

As mentioned, the Manakov system consists of two coupled S-&juations,

it + Qo+ 20 (|02 + |22 ar = O, (1.2)
it + Goxx+ 21 (|02 + |a2[?) a2 = O,

whereq; = gi(x,t) andge = gp(x,t) are two interacting optical componengsis

a positive parameter, andandt are normalized space and time. Note that in order
for t to represent the propagation variable, as in Manakov'sraigaper [46], our
variablesx andt are interchanged with those of [45]. The system admits sing|
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soliton solutions consisting of two components,

a .
= 597’?“”' sechinr+ 5)7
B —B+in
G = € ? 'sechinr+ 5)7 (1.3)
where
n = k(x+ikt), 1.4)
al2+|p2

anda, B, andk are arbitrary complex parameters. Subscripnd| on n andk
indicate real and imaginary parts. Note that # 0. Solitons with more than one
component, like these, are calleéelctorsolitons.

1.4.2 Statein the Manakov system

The three complex numbees B, andk (with six degrees of freedom) in Eq. 1.3
characterize bright solitons in the Manakov system. Thepemparametek is
unchanged by collisions, so two degrees of freedom can bevegnimmediately
from an informational state characterization. We note Mahakov [46] removed
an additional degree of freedom by normalizing the poldioravector determined
by a andB by the total magnitudéa?+ 32)/2. However, it is a remarkable fact
that the single complex-valued polarization state= a/f3, with only two degrees
of freedom [49], suffices to characterize two-soliton gidins when the constarks
of both solitons are given [48].

We use the tuplép, k) to refer to a soliton with variable staje and constant
parametek:

e p=om(xt)/ae(xt) =a/B: a complex number, constant between collisions;
o k=Kkr+ikj: a complex number, witkg £ 0.

We use the complex plane extended to include the point aitinfin

Consider a two-soliton collision, and |kt andk, represent the constant soli-
ton parameters. Lgb; and p. denote the respective soliton states before impact.
Suppose the collision transforms into pr, andp, into p, (see Fig. 1.8). We will
always associatk; andp; with the right-moving particle, anl, and p_ with the
left-moving particle. To specify these state transforovati we write

Toyka (AL k2) = P2, (1.6)
ToL ke (P1, K1) = PR (1.7)

The soliton velocities are determined ky andky,, and are therefore constant.
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Fig. 1.8 A general two-soliton collision in the Manakov system. The complex numbers py,
pL, P2, and pr indicate the variable soliton states; k; and k; indicate the constant soliton
parameters.

It turns out that the state change undergone by each cajlabiiton takes on the
very simple form of a linear fractional transformation (DFalso callecbilinear or
Mobiustransformation). The coefficients are simple function$efdther soliton in
the collision. Explicitly, the LFTs are

[(1—9)/pi +pilpL+9p1/pf

P2 e+ (-9 1Py (18)
where Kk
g(ki, k2) = k2+k% (1.9)
and
PR — [(1%;)4/:?1 * i;t])i;ti fl/%i/pH (1.10)
where Kot K
h(ky, k2) = k1+k§' (1.11)

We assume here, without loss of generality, thatkor > 0.

Several properties of these transformations are derivptBinincluding charac-
terization of inverse operators, fixed points, and impfioims. In particular, when
viewed as an operator every particle hadrarerse and the two traveling together
constitute arinverse pair Collision with an inverse pair leaves the state of every
particle intact.
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1.4.3 Particle design for computation

In any particle collision we can view one of the particles as@perator” and the
other as “data.” In this way we can hope to find particles aatéstthat effect some
useful computation. We give some examples that illustiaiple logical operations.

An i Operator A simple nontrivial operator is pure rotation g2, or multipli-
cation byi. This changes linearly polarized solitons to circulariygrized solitons,
and vice versa. A numerical search yielded the useful toanmsdtions

T (p) = Tosi(p. 1) = (L= (L+1.1-i))p = —e Fip, (112

. 3m;
TPL(p) :Too,sfi(Pal-i-l) = 1—h*(1ﬁ-i 5—i) = \/EeT'p’ (1-13)

which, when composed, result in the transformation
U(p,1+i) =ip. (1.14)

Here we think of the data as right-moving and the operatoefasrioving. We refer
toU as ani operator. Its effect is achieved by first colliding a solitgn1+ i) with
(0,12—1), and then colliding the result witfeo, 5— i), which yields(ip,1+1).

A —1 Operator (NOT Processor) Composing twad operators results in thel
operator, which with appropriate encoding of informati@m e used as a logical
NOT processor. Figure 1.9 shows a NOT processor with reesidih and opera-
tor solitons. The two right-moving particles representdatd are an inverse pair,
and thus leave the operator unchanged; the left-movingpgoomprise the four
components of the-1 operator. This figure was obtained by direct numerical sim-
ulation of the Manakov system, with initial state that caméathe appropriate data
and processor solitons.

This NOT processor switches the phase of the (right-moxifiydata particles,
using the energy partition of the (left-moving O a®)l operator particles. A kind
of dual NOT gate exists, which switches the energy of datigbes using only the
phase of the operator particles. In particular, if we usestiraek’s as in the phase-
switching NOT gate, code data as 0 andand use a sequence of fotfl operator
particles, the effect is to switch 0 to andw to 0—that is, to switch all the energy
from one component of the data particles to the other (se€elFig).

A “Move” Operator Figure 1.11 depicts a simple example of information transfe
from one particle to another, reminiscent of an assembigdage MOVE instruc-
tion. In the initial conditions of each graph, a “carrier’rpele C collides with the
middle particle; this collision transfers information fnothe middle particle te.
The carrier particle then transfers its information to &eotparticle via a collision.
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o

101
Fig. 1.9 Numerical simulation of a NOT processor implemented in the Manakov system.
These graphs display the color-coded phase of p for solitons that encode data and pro-
cessors for two cases. In the initial conditions (top of graphs), the two leftmost (data)
solitons are an inverse pair that can represent a 0 in the left graph, and a 1 in the right
graph. In each graph, these solitons collide with the four rightmost (processor) solitons,
resulting in a soliton pair representing a 1 and a 0, respectively. The processor solitons are
unchanged. These graphs were obtained by numerical simulation of Eq. 1.2 with u = 1.

The appropriate particles, B, andC for this operation were found through a nu-
merical search, as with the particles for our NOT gate.

Note that “garbage” particles arise as a result of this “nmi@ypeeration. In gen-
eral, because the Manakov system is reversible, such “gatlzten appears in
computations, and needs to be managed explicitly or usedra®fcomputation,
as with conservative logic [27]. Of course reversibilityedonot necessarily limit
the computational power of the Manakov system, since réaersystems can be
universal [50].

1.5 Time-gated spatial Manakov solitons are universal

To carry forward our program of embedding general compuortdti a homogeneous
medium, we next sketch the construction of a system of amfissof ideal Manakov
solitons that is Turing-equivalent. The approach is shtdiggward: we will show
that we can, in effect, interconnect a universal set of Iggites in an arbitrary
manner. Keep in mind that we use the tegateto mean a prearranged sequence
of soliton collisions that effect a given logical operati@md not, as is in the usual
usage, an isolated physical device. We will also use othewpcer terms, such as
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Fig. 1.10 Numerical simulation of an energy-switching NOT processor implemented in the
Manakov system. These graphs display the magnitude of one component, for the same
two cases as in the previous figure. In this gate the right-moving (data) particles are the
inverse pair with states o, 0 (left), or 0, (right) and the first component is shown. As
before, the left-moving (operator) particles emerge unchanged, but here have initial and
final states +1.

X

X
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o8}
(@)

J:D

B

Fig. 1.11 Numerical simulation of a “move” operation implemented in the Manakov sys-
tem. These graphs display the color-coded phase of p. In each graph, the information
contained in the middle particle in the initial conditions (top of graphs) is moved to the
middle particle in the final conditions (bottom of graphs). The information transfer is ef-
fected by the “carrier” particle C. These graphs were obtained by numerical simulation of
Eq. 1.2 withpu = 1.

>



18 Jakubowski et al.

wiring andmemoryto refer to the corresponding embedded processingviBpg
we will mean moving information from one place to anotheid &y memorywe
will mean storing it for future use. We will proceed by firststeibing basic gates
that can be used for COPY and FANOUT. The same basic confignreén be
adapted for NOT and NAND gates. To complete the computer vielven show
how time gating can be used to lay out an arbitrary intercotioie of these gates,
thus showing universality. The details are reported in.[51]

In this section we will usespatial solitons, which can be visualized as beams
in two spatial dimensions, as opposed to the space-timerpicf a pulse, or tem-
poral soliton, traveling down a fiber. The existence andiktalof spatial solitons
have been well established both theoretically and expertatlg in a variety of ma-
terials [52]. As pointed out in [52], bright spatial Kerr gohs are stable only in
(1+1)-dimensional systems—that is, systems where the loaandiffract in only
one dimension as it propagates. Such solitons are realizgldt waveguides, and
are robust with respect to perturbations in both width atehisity.

1.5.1 The general plan

The main obstacle to implementing what amounts to an arpitséring diagram
is the problem of crossing wires without having their sigriaterfere with one an-
other. We solve this problem by time-gating spatial sokt@o the beams “blink” to
avoid unwanted collisions. It is an interesting questigermto the authors’ knowl-
edge, whether a trick like time-gating is necessary for Marmacollision systems
to be universal, or whether, as in certain one-dimensiosalik& Wolfram’s Rule
110 CA [33], arbitrary computation can be embedded in thgial, natural space
of the underlying medium. But the result with time-gatinglsysically realizable,
and also provides some evidence that the unadorned Manakizian system may
also be rich enough to be Turing-universal.

The general arrangement is shown in Fig. 1.12. The usualrgictf colliding
solitons for computation is shown in Fig. 1.13, but to maleaisier to visualize, we
will rotate the axes and change the scale so that the datastiesral down and the
operator beams travel horizontally as show in Fig. 1.14.

For the binary states we will use two complex vector solitates, and it turns
out to be possible to use complex state 0 and 1 to represeaal@yand 1, respec-
tively, which is convenient but not necessary. The compiditom states 0 and 1 and
logical 0 and 1 will be used interchangeably without risk ofifusion.

1.5.2 The COPY and FANOUT gates

We construct the FANOUT gate by starting with a COPY gate |émgnted with
collisions between three down-moving, vertical solitond ane left-moving hori-
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Fig. 1.12 The general physical arrangement considered in the construction of a universal
collision-based computer. Time-gated beams of spatial Manakov solitons enter at the top
of the medium, and their collisions result in state changes that reflect computation. Each
solid arrow represents a beam segment in a particular state.

data operators

Fig. 1.13 Colliding spatial solitons.
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Fig. 1.14 Convenient representation of colliding spatial solitons.

zontal soliton. This was anticipated by the two-collisiddOVE” gate described in
Section 1.4.3 and originally in [18]. The use of three ca@iis and a fixed actuator
now makes more flexible gates possible. Figure 1.15 showarta@gement. The

z y in
garbage actuator
state =0

out M

garbage

Fig. 1.15 COPY gate.

soliton state labeleh will carry a logical value, and so be in one of the two states
0 or 1. The left-moving soliton labelezttuatorwill be in the fixed state 0, as will
be the case throughout this construction. The plan is tosathe (so far) arbitrary
statesz andy so thatout = in, justifying the name COPY. It is reasonable to expect
that this might be possible, because there are four degfefesedlom in the two
complex numberg andy, and two complex equations to satisfy: tlait be 1 and

0 whenin is 1 and 0, respectively. Values that satisfy these four gopmin four
unknowns were obtained numerically. We will call thepnandy.. It appears that

it is not always possible to solve these equations, and jhstwvthey do and do not
have solutions remains a subject for future study. Howegglicit solutions have
been found for all the cases used in this construction.

To be more specific about the design problem, write Eq. 1.8eadeft-moving
productp, = L(p1,p0L), and similarly write Eq. 1.10 g3r = R(p1, o). The succes-
sive left-moving products in Fig. 1.15 ak¢in,0) andL(y,L(in,0)). Theoutstate is
thenR(z L(y,L(in,0)). The stipulation that 0 maps to 0 and 1 maps to 1 is expressed
by the following two simultaneous complex equations in teaplex unknowns
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Fig. 1.16 FANOUT gate.
R(zL(y,L(0,0)) =0 (1.15)

R(z L(y,L(1,0)) =1

Using the symbolic manipulation program Maple it turns @ubé possible to solve
for zas a function of and then eliminatefrom the equations, yielding one complex
equation in the one complex unknownwhich can be easily solved numerically.
To make a FANOUT gate, we need to recover the input, which wedcausing
a collision with a soliton in the state which is the inverseOpfnamelyco [48].
Figure 1.16 shows the complete FANOUT gate. Notice that wieate collisions
with a dot at the intersection of paths, and require thattiméicuation of the inverse
soliton not intersect the continuationzthat it meets. We indicate that by a break in
the line, and postpone the explanation of how this “wire simg’ is accomplished.
It is actually immaterial whether the continuation of thedrse operator hits the
continuation ofy, because neither is used later. We call solitons that arernsed
again, like the continuation of the inverse operagarbagesolitons.

1.5.3 NOT and ONE gates

In the same way we designed the complex pair of st@eg.) to produce a COPY
and FANOUT gate, we can find a pdi,,yn) to get a NOT gate, mapping O to 1
and 1to 0; and a paiz, Y1) to get ONE gate, mapping both 0 and 1 to 1.

We should point that the ONE gate in itself, considered as exioput, one-
output gate, is not invertible, and could never be achieyeasing the continuation
of one particular soliton through one, or even many coltisior his is because such
transformations are always nonsingular linear fractidraadsformations, which are
invertible [48]. The algebraic transformation of statenfrthe input to the continu-
ation ofzis, however, much more complicated and provides the flatihile need



22 Jakubowski et al.

to get the ONE gate. It turns out that this ONE gate will giveausw in the truth
table of a NAND, and is critical for realizing general logic.

1.5.4 Output/input converters and a NAND gate

To perform logic of any generality we must of course be ablestthe output of one
operation as the input to another. To do this we need to cologic (0/1) values

to some predeterminerhindy values, the choice depending on the type of gate we
want. This enables us to construct two-input, one-outpiggga

from output other input
fanout
z converter y converter
z y in
| | | actuator
D S A S il M

1 1 1
1 1
1 1

out

Fig. 1.17 A NAND gate, using converter gates to couple copies of one of its inputs to its z
and y parameters.

As an important example, here’s how a NAND gate can be coctsttlu\We de-
sign az-converter that converts/Q values to appropriate values@ising the basic
three-collision arrangement shown in Fig. 1.15. For a NANddegwe map 0 to
7, thez value for the ONE gate, and map 112 thez value for the NOT gate.
Similarly, we construct g-converter that maps 0 tgy and 1 toy,. Thesez and
y-converters are used on the fanout of one of the inputs, ancegulting two-input
gate is shown in Fig. 1.17. Of course thesandy-converters requireandy values
themselves, which are again determined by numerical search
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The net effect is that when the left input is 0, the other inguthapped by a
ONE gate, and when it is 1 the other input is mapped by a NOT. J4te only
way the output can be 0 is if both inputs are 1, thus showingttiisis a NAND
gate. Another way of looking at this construction is that2he? truth table of (left
input)x (right input) has as its 0 row a ONE gate of the colunihsl), and as its 1
row a NOT gate of the column(d 0).

The importance of the NAND gate is that itusiversal[53]. That is, it can be
used with interconnects and fanouts to construct any otiggedl function. Thus
we have shown that with the ability to “wire” we can implemany logic using the
Manakov model.

1.5.5 Time gating

We next take up the question of interconnecting the gatasithesl above, and begin
by showing how the continuation of the input in the COPY gatr be restored
without affecting the other signals. In other words, we shaw a simple “wire
crossing” can be accomplished in this case.

The key flexibility in the model is provided by assuming thgiut beams can be
time-gated; that is, turned on and off. When a beam is thuedgatfinite segment
of light is created that travels through the medium. We canktlof these finite
segments as finite light pulses, and we will call them sinpulises

Figure 1.18(a) shows the basic three-collision gate impleed with pulses. As-
suming that the actuator and data pulses are appropriatedytthe actuator pulse
hits all three data pulses, as indicated in the projectidovbéhe space-space dia-
gram. The problem is that if we want a later actuator pulsetttha rightmost data
pulse (to invert the state, for example, as in the FANOUT gattevill also hit the
remaining two data pulses because of the way they must bedpacthe earlier
three collisions.

We can overcome this difficulty by sending the actuator ptris the left in-
stead of the right. Timing it appropriately early it can bed®a#o miss the first two
data pulses, and hit the third, as shown in Fig. 1.18(b).dtisy to check that if the
velocity of the right-moving actuator solitons is algelsedly above that of the data
solitons by the same amount that the velocity of the dataosdiis algebraically
above that of the left-moving actuator solitons, the sammtegtansformations will
result.

1.5.6 Wiring

Having shown that we can perform FANOUT and NAND, it remain$/do show
that we can “wire” gates so that any outputs can be fed to apytén The basic
method for doing this is illustrated in Fig. 1.19. We thinkd#ta as stored in the
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|

(a) (b)
Fig. 1.18 (a) When entered from the right and properly timed, the actuator pulse hits all
three data pulses, as indicated in the projection at the bottom; (b) When entered from
the left and properly timed, the actuator pulse misses two data pulses and hits only the
rightmost data pulse, as indicated in the projection at the bottom.

down-moving pulses in a column, which we can think of as “mgdhe observer
moves with this frame, so the data appears stationary.

Memory

actuator
|

Fig. 1.19 The frame of this figure is moving down with the data pulses on the left. A data
pulse in memory is operated on with a three-collision gate actuated from the left, and the
result deposited to the upper right.

Pulses that are horizontal in the three-collision gatesvghia previous figures
will then appear to the observer to move upward at inclineglesn It is important
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to notice that these upward diagonally moving pulses areeseent in our picture
(and hence their paths are shown dashed in the figure). Thatde they are used,
they do not remain in the picture with a moving frame and herareot interfere

with later computations. However, all vertically movinglges remain stationary in
this picture.

Once a diagonal trajectory is used for a three-collisiore gegusing it will in
general corrupt the states of all the stationary pulseggatoat diagonal. However,
the original data pulse (gate input) can be restored withlsepn the state inverse
to the actuator, either along the same diagonal as the actpabvided we allow
enough time for the result (the gate output, a statiozgmylse) to be used, or along
the other diagonal.

It turns out that there is one problem remaining with thiseyahidea: we run out
of usable diagonals so that, for example, it becomes implestsi fan out the output
of a gate output. A simple solution to this problem is to idisioe another speed,
using velocitiest0.5, say, in addition tat1. This effectively provides four rather
than two directions in which a pulse can be operated on, dogstrue FANOUT
and general interconnections. Figure 1.20 shows such a EA@e data pulse
at the lower left is copied to a position above it using oneespand to another
position, above that, using another. We refer the readeb1p for more details,
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Fig. 1.20 The introduction of a second speed makes true FANOUT possible. For simplicity
data and operator pulses are indicated by solid dots, and the y operator pulses are not
shown. The paths of actuator pulses are indicated by dashed lines.

including specific gate designs for the NAND gate.
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1.5.7 Universality

It should be clear now that any sequence of three-collissdagican be implemented
in this way, copying data out of the memory column to the upetror right, and
performing NAND operations on any two at a time in the way shawthe previous
section. The computation can proceed in a breadth-first eramith the results of
each successive stage being stored above the earlierstedsatth additional gate
can add only a constant amount of height and width to the medio the total area
required is no more than proportional to the square of thebmurof gates.

output

inputs  |.--"

Fig. 1.21 Implementation of an XOR gate with NAND gates and COPY operations. The
results are deposited above the inputs in the data column. Two speeds are necessary to
achieve the fanout.

The “program” consists of down-movingandz operator pulses, entering at the
top with the down-moving data, and actuator pulses that & the left or right at
two different speeds. In the frame moving with the data, #ite@ dnd operator pulses
are stationary and new results are deposited at the top ahémory column. In
the laboratory frame the data pulses leave the medium dowhaad new results
appear in the medium at positions above the old data, at thigyes of newly
enteringz pulses.
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Figure 1.21 shows a concrete example of a composite logieahbtion, an XOR
gate—the SUM bit of a half adder—implemented in the conwerai way with
NAND gates [54] and COPY operations.

1.5.8 Some comments on the universality result

We note that the result described here differs from the usality results for the
ideal billiard ball model [27], the Game of Life [31], and ltiae Gasses [55], for
example, in that no internal mirrors or structures of anydkime used inside the
medium. To the author’s knowledge, to what extent intertraicture is necessary
in these other models is open.

Finally, we remark that the model used is reversible andmhsisnless. The fact
that some of the gate operations realized are not in theesebwersible is not a
contradiction, since extra, “garbage” solitons [27] areduced that save enough
state to run the computation backwards.

1.6 Multistable collision cycles

The computation scheme described up to this point, codifogrimation in the po-
larization state of vector solitons, is still very far fromaptical realization. Many
practical problems lie mainly in the realization of systetiret are close to the ideal
Manakov. But even if such systems could be engineered—anddb use well
established physics—there would still remain a criticdfialilty, which we now
address. This is the problem of preventing the accumulatiamall errors due to
noise over what may well be millions or billions of steps. Wy this problem is
solved in today’s digital computers, and what makes modemputers possible,
in fact, is to use bistable systems that restore voltagddeafter every step. We
will next describe equivalent bistable configurations farMkov state: bistable cy-
cles of collisions that act like embedded flip-flops. We wikh discuss the ways in
which such bistable cycles might be used to implement doflibased logic. The
results described in this section are reported in moreldeti&6] and [57].

Itis important to realize that the multistability descriligext occurs in the polar-
ization states of the beams; the solitons themselves ddwaoige shape and remain
the sech-shaped solutions of the 3-NLS and Manakov equafidnis is in contrast
to multistability in the modes of scalar solitons (see, faaraple, the review [58]).
The phenomenon also differs from other examples of polaoizanultistability in
specially engineered devices, such as the vertical-caumifiace-emitting laser (VC-
SEL) [59], in being dependent only on simple soliton caliis in a completely
homogeneous medium.
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1.6.1 The basic three-cycle and computational experiments

Fig. 1.22 The basic cycle of three collisions.

Figure 1.22 shows the simplest example of the basic schemygla of three
beams, entering in statés B, andC, with intermediate beams, b, andc (see
Fig. 1.22). For convenience, we will refer to the beams thedves, as well as their
states, a#\, B, C, etc. Suppose we start with beam C initially turned off, satth
A = a. Beama then hitsB, thereby transforming it to state If beamC is then
turned on, it will hitA, closing the cycle. Beamis then changed, changifgetc.,
and the cycle of state changes propagates clockwise. Tistigueve ask is whether
this cycle converges, and if so, whether it will convergdweity particular choice of
complex parameters to exactly zero, one, two, or more foeiawswer the question
with numerical simulations of this cycle.

A typical computational experiment was designed by fixing itiput beamé\,
B, C, and the parameteks andky, and then choosing poingsrandomly and inde-
pendently with real and imaginary coordinates uniformbtidputed in squares of a
given size in the complex plane. The cycle described abogdlen carried out un-
til convergence in the complex numbexsh, andc was obtained to within 102 in
norm. Distinct foci of convergence were stored and theah#tiarting pointa were
categorized by which focus they converged to, thus gemeyétie usual picture of
basins of attraction for the parametefMypically this was done for 50,000 random
initial values ofa, effectively filling in the square, for a variety of paramathoices
A, B, andC. The following results were observed:

e In cases with one or two clear foci, convergence was obtamesery experi-
ment, almost always within one or two hundred iterations.

e Each experiment yielded exactly one or two foci.

e The bistable cases (two foci) are somewhat less common ligacases with a
unique focus, and are characterized by valuds:dfetween about 3 and 5 when
the velocity difference\ was fixed at 2.

Figure 1.23 shows a bistable example, with the two foci aed trorresponding
basins of attraction. Numerical results suggest that tleetieollision cycle can have
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no more than two stable foci, but thaifcollision cycles can have up to— 1 foci.
The reader is referred to [56] for further examples.

imaginary

0
real

Fig. 1.23 The two foci and their corresponding basins of attraction in the first example,
which uses a cycle of three collisions. The states of the input beams are A= —-0.8—i-0.13,
B=04-i-013 C=05+i-1.6;and k=4+i.

1.6.2 Proposed physical arrangement

Our computations assume that the angles of collisions,wfbicspatial solitons are
determined by the unnormalized velocities in laboratorigsjrare equal. In situa-
tions with strong interactions the angles are small, on thercof a few degrees, at
the most. We can arrange that all three collisions take pa¢ke same angle by
feeding back one of the beams using mirrors, using an arnaagglike that shown

in Fig. 1.24. Whether such an arrangement is experimerpadigtical is left open

for future study, but it does not appear to raise insurmdalataroblems. Note that
it is also necessary to divert the continuation of some be@anavoid unwanted

collisions.
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Fig. 1.24 One way to control the collision angles.

1.6.3 Staterestoration

As mentioned, we aim at combating the effects of noise byguisistable collision
cycles to restore state, thus making it feasible to thinkasicading a large number
of operations. The basic idea of state-restoration fotaligpmputing has been well
understood for more than half a century; see [60], for exanfpt an excellent and
early discussion.

1.6.4 Controlling a bistable cycle

In order to use these bistable collision cycles for dataagferand logic, we need
to develop a method by which we can individually addressetievices. In other
words, given a bistable configuration of Manakov solitonthwertain constant in-
puts, we must be able to switch between binary states of ttle ogliably.

We accomplish this by temporarily disrupting the bistapitif the cycle. For ex-
ample, colliding a control beam, or beams, wikhas shown by the dashed lines
in Fig. 1.25) changes the input staketo D. Through careful design of the con-
trol beams, we can ensure thatchanges in such a way that the cycle (cycle (3)
in Fig. 1.25), which demonstrated bistability without thentrol beams, becomes
monostable, yielding only one possible steady-state Valuthe intermediate and
output solitons of cycle (3). Subsequently, when the cotteams are turned off,
A equalsD? and cycle (3) recovers its bistable configuration, but novitfitial
state of the cycle is known. This initial condition will li@ ione of the two basins
of attraction, causing the cycle to settle to the focus @poading to that basin. In
this fashion, we control the output state of a bistable @oliollision cycle, where
the value of the monostable focus is controlled by chandiegstate of the control
beam.

1 We assume here that there is sufficient separation betwéiiicrts to ensure that this equality
is true.
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1.6.5 NAND and FANOUT gates

BN %

>

C
B\ N

Fig. 1.25 Schematic of NAND gate using bistable collision cycles.

The schematic of a NAND gate is shown in Fig. 1.25. It consi$tbree cycles:
cycles (1) and (2) are the inputs to cycle (3), which repressthe actual gate. All
three cycles have identical bistable configurations, witiut solitonsA = —0.2+
0.2i, B=0.9+ 1.5, C= -0.5—1.5i andk = 4+ i. The output of any cycle is
Bout, @and an input is described by a collision with Using the method described
in Section 1.6.4, cycles (1) and (2) can be set in either gistate 0 or 1. When
the inputs from cycles (1) and (2) are active, cycle (3) wétbme monostable and
depending on the values of the inputs, there are four peseibinostable foci for
cycle (3). Turning off the inputs will place cycle (3) in theage corresponding to
the NAND operation. By using identical bistable collisigretes, we ensure that the
output is standardized and can serve as input for the nesttdélogic.

The bistable configuration of all three cycles, along wittalues of the monos-
table foci which correspond to the four inputs, are shownign E.26. Only when
the inputs are both in state 1 will the cycle be put into stat& Qariability on the
inputs will change the position of the monostable foci diighWe can see from
Fig. 1.26 that this change will not affect the position of théput state, unless the
change is greater than a specified amount. Quantifying tiee moargins of this
system remains a topic for future work.

Figure 1.27 shows the schematic of a FANOUT gate, whereosaijitandz are
chosenin such a way that a copy of solitofis created at the output, as indicated by
out'. Explicitly, we define the transformationsin egs. 1.8 aridasp, = L(p1,pL)
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Fig. 1.26 Map of beama in the complex plane showing NAND gate operation. The twa, fag
anday, are shown with their corresponding basins of attractidre F signs are monostable foci
which indicate inputs where the cycle reaches state le théhe monostable focus acquired with
a (1, 1) input.
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Fig. 1.27 Schematic of FANOUT gate, where eaecindicates a collision.
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andpr = R(p1,pL), respectively. The value afut’ is thenR(y,L(in,z)). The orig-
inal input soliton is recovered using the inverse propeftylanakov collisions, as
described above and in [48]. When viewed as an operator, galehization state
p has an inverse defined asl/p*. As such, an arbitrary solitopy which collides
with another solitorp,, followed by a collision with its inverse-1/p3, restores the
original statep;. Thus the original input solitoim is restored by a collision with the
inverse ofz, —1/7".

As a useful example, we design a FANOUT gate for the case ot sgditonin =
Bout, WhereBo, is taken from the output of a NAND gate. The bistable confitiara
of the NAND gate provides for two possible outpuBg,n andBgyt1, corresponding
to binary states 0 and 1, respectively. The FANOUT desigoukttes thaByn
maps toByyip andBgyr Maps taBeyn, Which can be expressed by the following two
simultaneous complex equations in two complex unknowns:

R(Y, L(Bouto,2)) = Bouto,
R(y7 L(BOUt17 Z)) = BOUtl' (116)

Solving Egs. (1.16) numerically yields= 0.6240— 0.4043 andz = —1.1286+
0.7313. This example thus demonstrates that the output from a NA& gan be
used to drive two similar NAND gates.

1.7 Conclusion

The line (or perhaps tree) of work traced in this chapter sstggmany open ques-
tions, some theoretical, some experimental, and some airaixtf the two—and
even some of interest in their own right without regard to edded computation.
We conclude by mentioning some of these.

In the theoretical area:

e What is a complete mathematical characterization of thie $tBTs obtainable
by composing either a finite number—or an infinite number—hef Manakov
collisions?

e How can we “program” Manakov solitons? Is the Manakov cullissystem uni-
versal without the device of time-gating? Is the temporatey universal?

e Is the complex-valued polarization state used here for tlemalov system
also useful in other multi-component systems, especialbse that are near-
integrable and support spatial solitons?

e What is the theoretical computational power of systemsrdtten Manakov? In
particular, which systems in 1+1 or 2+1 dimensions, intelgrar nonintegrable,
are Turing-equivalent?

e Can 2+1 and higher-dimensional soliton systems be usedffoieat computa-
tion in uniform media? For example, can a 2+1 integrableesgstimulate the
billiard-ball model of computation, and can such a systemdaful without fixed
barriers off which balls bounce?
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e What is the dynamic behavior of a collision cycle in reachitagteady state? In
particular, how fast does the state settle down?

e Do multistable collision cycles occur in other vector smitsystems, such as the
nonintegrable saturable systems in photorefractives§4262, 63, 64] ? Can
such multistable systems be coupled to implement logicatatons like shift
registers and arithmetic?

e Isittrue that the number of stable foci in a collision cyctendlanakov solitons
is bounded byn — 17? Is then — 1 always achievable? What is the dynamic be-
havior of more complicated collision topologies, can werekterize their stable
foci, and can they be used to do useful computation?

e Can scalar or other systems of solitons be used for compuofath this regard
we mention the recent interesting work of Bakaoukas and Eds\®5], where
they describe a scheme that uses scalar 3-NLS solitons alitibad| hardware
to detect the nature of the collisions to launch additionbiens; and [66], where
they use second-order, as well as first-order, scalar 3-Mli®8s, and examine
outputs in various time slots.

e What is the connection between discrete (CA) solitons amdirmaous (PDE)
solitons? Why does the same phenomenon manifest itselfanstweh widely
different mathematical frameworks?

On the experimental side of things:

e Can the Manakov system be implemented in a simple, accuaatepractical
way?

e Can saturable materials like photorefractive crystals laglenthat are highly
transactive with acceptable radiation?

e What new physical systems might be found that support sditehich can be
easily used to compute?

As we've seen there are many fascinating questions of istter® both computer
scientists and physicists—about soliton information pssing. The very notion
that nonlinear waves/particles can encode and processgriafmn remains largely
unexplored.

The work we've discussed here reflects only one aspect ofiwlatled “uncon-
ventional” or “nonstandard” computation, and which corapsi alternatives to the
lithographed silicon-chip based paradigm as a physicasfascomputation. See
the International Journal of Unconventional Computifay reports of progress in
this growing and fascinating field.
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