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may be written 

(1) 

3) A part of the complex cepstrum 
can be computed without 
necessarily computing any other 
part. 

At first, one might think it im- 
practical to factor the z—transform of a 
signal, which is typically a polynomial of 255—th degree. For sampled voiced 
speech signals, however, it turns out that 
the polynomials are easily factored em- 
pirically we have found the roots to be 
nicely spread out and near the unit 
circle. The Newton-Raphson method [3] 
has been found to be very effective in 

obtaining the roots in all the synthetic 
and natural speech signals we have ex- 
amined. 

In this paper, we will give the de- 
tails of the complex cepstrum computation, 
discuss the polynomial factorization al- 
gorithm, and compare this method with 
Tribolet's algorithm on example analyses 
of synthetic and natural speech signals. 

II. Details of Complex Cepstrum Computa-. 
tion by Factorization 

The following discussion follows 
Oppenheim and Schafer [13. Assume we are 
given a finite sample of a signal, 

where, without loss of gen- 
erality, we assume f0=l. Its z—transforrn 

We compute the complex cepstrum of a 
finite duration signal by completely 
factoring its z—transforin and summing the 
easily obtained complex cepstra of the 
factors. The method requires rio phase 
unwrapping and introduces no aliasing. 
The only approximation is the unavoidable 
finite time window. Thus the factoriza— 
tion method provides a means for evaluat- 
ing other methods for computing the com- 
plex cepstrum. 
I. Introduction 

The main difficulty in the applica- 
tion of complex cepstral analysis is the 
computation of the phase of the transform 
(z—transforxn on the unit circle) of the 
signal. The usual method requires phase 
unwrapping; that is, the phase of the 
transform is computed modulo 2n, using the 
FF for example, and the multiples of 2- 
required to render the phase a continuous 
function of frequency are determined by 
successive refinement of the grid of fre- 
quency pointa [1). Recently a new algo- 
rithm has been proposed by Tribolet [23 
in which the derivative of the transform 
pse is adaptively integrated. For signals 
with transforms having zeros very close to 
the unit circle, these methods tend to be 
unreliable and/or computa.tionally expen- 
sive as we will illustrate. 

If one is willing to fa.ctor the z— 
transform of the signal, direct calcula- 
tion of the complex cepstrum is possible, 
with the following three advantages: 

1) No phase unwrapping is necessary. 
2) No aliasing effects are present in 

the complex cepstrum due to using 
an inverse DF of a sample tra.ns-. 
form. 

*This work was supported by NSF Grants 
GK—42048 and ENG75—10533, and by U.S. 
Army Research Office — Durham Grant 
DAAG29—75--G--O192. 
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The zeros z. are obtained by numerical 
factorizatiri of the (n-1)st degree poly- 
nomial F Further assume that no zero z. 

1 
is precisely on the unit circle, and 
define the index sets I and 12 to corre- 
spond to zeros inside and outside the 
unit circle, respectively: 
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The coefficient of 
—k 

represents the 
value of the complex cepstrum at sample 
number k, apart from the last two terms 
in (4), which are linear phase contribu— 
tions to the transform of the complex 
cepstrum. Define 
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pos k 
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Notice that this determines c and c 
pos neg 

for all k and no aliasing is present. 
The transform of the complex cepstrum can 
be written as 

C(z) =C (z) +C (z) C (z) 
pos neg L 

Where C and C are the z—transforms 
pos neg 

of c and c , respectively; and C 
pos neg L 

corresponds to the last two terms in (4). 

CL can 
be simplified as follows: 

log fl(—z.) =log flR.+log fl(—e') 

id2 id2 id2 

log 1•I z' = log n2 (11) 
(2) id2 

where z. =R.ei, n =number of 
1 1 p 

positive rea.l zeI2, n2number of 

z.€12. 
The transform of the complex 

cepstrum is therefore n —n2 

loF(Z)=Cp0jZ)+C0g(Z)+ P+log(—l) +logz 

(12) 

In practice, the last three terms are 
kept as adjustment terms and are not in- 
cluded when the complex cepstrum is mani- 
pulated. They represent only a constant 
factor and a time—shift of the original 

(4) signal. 

III. The Polynomial Factorization 
Algorithm 

A polynomial factorization program 
written by W.H. Surber, Jr. [31 was 
found very effective in this work. It 
uses the Newton—Raphson method [4] and 
first search0or 

a root inside the 
circle IzH2 , where n is the degree 
of the polynomial. When no further roots 
can be found in this region, the roots of 
the deflated polynomial are inverted and 
the process repeated. Three normal 

starting points inside the unit circle 
are used. If the boundary of the region 
should be hit,- special, pseudorandom 

(7) starting points are used. The program 
uses double—precision arithmetic (64 bits) 
on the IBM 360/91 using F0RTRN H, and 
factors 255th degree polynomials in about 
4.3 seconds with a, convergence tolerance 

(8) of l0—. Such a polynomial evaluatedat 
the roots generally has a value less than 
l00, except at the one or two roots tha.t 
appear relatively far outside the unit 
circle (say zkl.3). At these points the 
derivative of the polynomial is so large 
that a value of 1015 can be considered a 
zero: 
IV. Computational Examples 

Figures 1-3 pertain to the first ex— 
ample, in which a synthetic speech—like 
signal was generated by linear filtering 
of a pulse train by a 10—pole, 2—zero hR 
filter. The poles correspond to the 
vowel /IY/, and there is an additional 
complex zero pair on the unit circle at 
1875 Hz. (at a sampling rate of 15000 Hz). 
The pulse train consists of ideal pulses 
80 samples apart. Fig. 1 shows the on— 

(10) ginal signal sample of 256 points and Fig. 

then 

F(z) = fi (l-z,z1) fi (l-zzT1) fi 
jd11 

1 
ie12 

1 i€] 
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and 

logF(z)= E log(l—z.z l)÷ Elog(1—zz, 
id i€12 

- 

+log 11 (—z.) 

1€12 

+log fl i €12 
The first two terms can be expanded in 
power series in z, as described in [1]: -l k = (z.z 

log(l—z.a 
k=l k !zI>lz.l,ieI1 

(5) 

Izklz. I,iei. (6) 
I ii Z 

cneg(k) 
= 

=P + log(—l) 
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2 shows the locations of the zeros in the 
complex z—plane. The zero closest to the 
unit circle is at a radius 1.000279 and 
an angle of 2943.3Hz. Fig. 3 shows the 

phase of the transform infractions of ii, 
without the linear phase component due to 

CL(z). 

Figures 4—6 a.re analogous to Figs. 
1—3, but refer to a second example, which 
uses a sample of natural speech. The 
sample consists of 256 points of a male 
utterance of the nasal consonant /m/ and, 
in contrast to the first example, it is 
windowed with a Hamming.window. The zero 
closest to the unit circle is at a radius 
0.999709 and an angle of 1756.5 Hz. 

For the purposes of comparison, the 
phaseunwrapping program of Tribolet [2] 
was applied to the same examples. In no 
case tried was the method able to correct- 
ly obtain the phase of the signal OFT, 
even when 2048—point transforms were used. 
A closer analysis of the results showed 
tha.t every phase discontinuity obtained 
was located close to a zero of the signal, 
both in radius and angle. For the synthe- 
tic speech example, eight phase discon— 
tinuities were present; their locations 
were within 1 Hz. of a zero of the signal 
transform and all but one of these zeros 
was within 0.001 of the unit circle. 
Similar results were obtained for the 
natural speech example. This suggests an 
inherent difficulty with this method of 
phase unwrapping because increasing the 
number of OFT points in order to minimize 
aliasing of the complex cepstrum makes it 
more likely to require the evaluation of 
the phase derivative near a transform 
zero,where its value is very large. 

A more sophisticated approach might 
be based on a combination of Tribolet's 
algorithm with a test for the number of 
zeros of the signal transform lying in a 
given sector [5]. This test might be 
applied whenever a change of more than ii 
radians occurs between successive DFT 
points in order to decide upon grid re- 
finement and phase interpolation. Prac- 

tically, this amounts to locating the 
zeros of a polynomial by grid search, 
an approach much less efficient in 
general than second order convergent 
iterative methods. Manual interpolation 
of the phase generated by Tribolet's pro- 
gram for our examples was successfully 
performed. 
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Figure Captions 

Fig. 1 A synthetic signal of length 
256; amplitude vs. sample number: 
Example 1. 

Fig. 2 The transform zero locations in 
the complex plane: Example 1. 

Fig. 3 The phase component of the 
transform without the linear 
phase compoment phase in frac- 
tions of ir vs. DFI' sample number: 
Example 1. 

Figs. 4—6 Same as Figs. 1-3 for Example 
2. 
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