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It should be noted that for the left- to right-scanning algorithm
an adder and registers of double precision are required.
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The Automatic Counting of Asbestos Fibers in Air
Samples

T. PAVLIDIS AND K. STEIGLITZ

Abstract—A method is described for automating the counting
of asbestos fibers in air samples by computer processing of digitized
pictures. Preliminary results show the method is feasible.

Index Terms—Asbestos, asbestos fibers, counting, fibers, image
encoding, image processing.

I. INTRODUCTION

Presently, the levels of hazardous asbestos fibers in certain
industrial environments are monitored by human counting from
magnified air samples. In this paper we propose a system for
accomplishing the same end automatically, by digitizing the
microscope image and using a computer program to count the
fibers. The results of some preliminary runs are presented to show
the ultimate feasibility of such a scheme.

The advantages of automating a monitoring function such as
that discussed here are obvious: first, there is the consistency and
reliability inherent in an automatic process; second, the speed;
third, the ultimate decrease in cost.

The practical implementation of an automatic fiber counting
system can be accomplished by either local or remote computing.
If local computing is done, there is no communication problem,
but the capital cost of a dedicated minicomputer must be con-
sidered. If remote computing is done, a large time-shared system
can be used, but the communication costs must be considered.
The choice between these approaches will be governed mostly
by economic considerations. In either case the microscope picture
can be digitized by one of the many available techniques. In the
present work we digitized photographic prints (Fig. 1) using a TV
camera, a scan rate converter and an A-D converter into 256 X
256 pixels with 6 bits/pixel.
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II. DATA STRUCTURE AND BASIC ALGORITHM

Before any further processing each digitized picture is con-
verted into a graph. This offers an immediate data compaction
and simplifies the subsequent processing steps [1], [2]. The
conversion is done in the following way: Each raster is scanned
for dark areas, i.e., where the brightness is less than some
predefined threshold 7. When a “dark” interval is found it is
assigned a number and it is considered as a node of the graph. If
two “dark” intervals in adjacent lines overlap then the corre-
sponding node3 of the graph are connected by a branch. Overlap
of two intervals is defined if they have at least a pair of cells one
directly above the other [Fig. 2(a)]. An alternative criterion is to
define overlap if they have a pair of cells with a common corner.
[Fig. 2(b)]. We used the first method in the present implemen-
tation. The graph is directed through the above-below relation
of the intervals corresponding to nodes.

Obviously fiber ends will be mapped into nodes of total degree
one [Fig. 2(c)]. However, nodes of total degree one can also occur
from bent or split fibers as shown in Fig. 3(a). This configuration
will yield a connected component of exactly two nodes. However,
the arrangement of Fig. 3(b) yields three nodes of degree one as
shown in Fig. 3(d). A multiply bent fiber [Fig. 3(c)] will give a
graph of the form shown in Fig. 3(e). On the other hand, two
crossing fibers will give the configurations of Fig. 3(f) or (g). It
can be seen that any node of total degree one from a bent fiber
must be the start of a “downward” path to a node of degree (1,
2) (denotes up-degree = 1, down-degree = 2) or an upward path
to a node of degree (2,1) or to a node of degree one. On the other
hand, crossing fibers can generate only paths from nodes of de-
gree (0,1) to (2,1) and (2,2) or from nodes of degree (1,0) to (1,2)
and (2,2). If the graph is searched and all nodes of degree (0,1)
or (1,0) connected by a chain of nodes of degree (1,1) to nodes of
degree (1,2) (or (2,1) respectively) are marked then the unmarked
nodes of total degree 1 will correspond exactly to fiber ends.
Therefore, the number of fibers will equal half the number of such
nodes.

The arguments above are based on the assumption that the
quantization width is small compared with the thickness of the
fibers.

The last assumption seems to hold in most practical situations
and the actual number of fibers is uncertain enough so that the
above algorithm can be considered as a heuristic. In fact, in-
spection of Fig. 1 shows that the main problem is the breaking
of fibers by nonuniform illumination, resulting in small segments
comparable in size to the quantization width.

Obviously further work on more sophisticated algorithms will
result in more accurate counts, and the present algorithm is
primarily aimed at demonstrating the feasibility of the ap-
proach.

III. IMPLEMENTATION

The procedures described in the previous section were im-
plemented in Fortran and tested on a number of pictures digi-
tized by the method described in Section I. Figure 4 is the digi-
tization of that part of Fig. 1 which is within dotted lines. It is seen
that the 256 X 256 matrix does not give high enough resolution
for all the available detail. However, it was decided to proceed
with these data for two reasons. One was economical and the
other had to do with the application. Fibers missed by the 256
X 256 quantization will be of diameter less than 0.2u and this is
below the generally accepted limit of those constituting a health
hazard [3].

Fig. 5 shows the graph produced by the algorithm. The num-
bers indicate the correspondence of nodes of degrees (0,1), (1,0),
0,2), (2,0), and (0,0) with Fig. 4. Nodes #82 and #139 are
marked. The count produced by the algorithm is then 8 which
is close to a human count on the original picture. (Note that it is
difficult if not impossible for human observers to agree on how
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many fibers are in that section.) For the whole picture the total
count was 30 fibers.

The algorithm is very fast because after the initial scan (which
must be done by any counting method) it deals only with a graph
whose number of nodes is a small fraction of the number of pix-
els.

IV. CONCLUSIONS

We have attempted here to describe the data gathering, re-
duction, and processing necessary for automating the counting
of asbestos fibers; and to demonstrate the feasibility of the pro-
posed scheme with preliminary experiments. Future work along
these lines is needed, of course, to develop more refined and ef-
ficient data structures, algorithms, and possibly hardware, if the
system is to become economically attractive.
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A Declustering Criterion for Feature Extraction in
Pattern Recognition

JOHN FEHLAUER AND BRUCE A. EISENSTEIN

Abstract—A feature extraction technique based on a new cri-
terion for “declustering” is presented. Declustering occurs when
sample vectors from one pattern class form a densely packed point
constellation, or cluster, in feature space while vectors from an-
other class do not form a cluster but instead array themselves as
outliers. Features chosen to optimize the declustering criterion
enhance class separation and are robust over a wide range of
measurement statistics.

The new method is compared to the Fisher linear discriminant
function and modified Fukunaga-Koontz transformation using
both simulated and actual data taken from a set of breast thermo-
grams.

Index Terms—Clustering, feature extraction, linear transfor-
mation, nonparametric classification, pattern recognition, prin-
cipal component analysis, Rayleigh quotients.
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I. INTRODUCTION

The goal of a pattern recognition system is to process a set of
measurements which are taken from the physical world and de-
cide into which of several prespecified classes the measurements
should be assigned. Since the measurement transducers normally
are chosen with regard to economic rather than pattern recog-
nition considerations, the measurement set, represented by a
vector in a N-dimensional space,! contains information which
may not be required'for the pattern classification. The feature
extraction (FE) problem is to map the measurement space X =
{x} into a K-dimensional feature space Y = {v}, where K is much
less than N, while retaining the class discriminatory informa-
tion.

Early FE methods represented the measurement signals by
a weighted sum of orthogonal functions and used the set of
weighting coefficients as the feature set, as in Fourier series
analysis [1]. However, FE techniques which are designed to
provide a good representation of the measurement set may dis-
card the discriminatory information necessary for satisfactory
performance by the pattern classifier. Therefore in this corre-
spondence, attention was focused on ways of extracting those
features which emphasize class discrimination.

The FE problem can be formulated as an optimization problem
by defining a criterion functional over a class of admissable
transformations. The criterion functional is chosen to measure
the effectiveness of a feature set in discrimination between pat-
tern classes. One possible functional is a metric on the set of
probability density functions (pdf’s). Some examples are the
Bayes’ probability of error and the Bhattacharyya distance [3].
However, in many practical pattern recognition problems the
class conditional pdf’s are not known and must be estimated from
a set of labeled data samples. The resulting storage and compu-
tational effort required to optimize the criterion can exceed the
capabilities of the available computing hardware, and such cri-
terion functionals have had limited application in practice [4].

Functionals based on the lower order moments of the class
conditional pdf’s have had a much wider acceptance. Usually
these functionals are not monotonic functions of the Bayes’ error,
but often they perform satisfactory. In addition they are simple
to compute and, in many cases, the optimum FE transformation
can be found analytically. Examples of such functionals, defined
for linear FE transformations, are the Fisher criterion [5] and the
Declustering Criterion [6], [7]. Furthermore, although not de-
veloped in terms of a criterion functional, we will show, in a later
section, that an FE algorithm by Fukunaga and Koontz [8],
modified by Sanyal and Foley [9] is the realization of the opti-
mization of an implied criterion functional.

This correspondence presents a new FE technique based on
the declustering criterion [6], [7]. Bounds on the performance of
this technique, assuming Gaussian pdf’s, are derived. Finally a
comparison is made of the new technique with existing tech-
niques on both simulated data sets, and actual data taken from
breast thermogram scans.

II. DECLUSTERING CRITERION

When screening measurement data to produce a binary class
assignment, it is not reasonable to expect sample feature vectors
from each class to form densely packed clusters. For example,
sample vectors from one class may form a cluster while vectors
from another class may fall anywhere outside the first cluster.
Those vectors which do not cluster are said to decluster [6], [7].
An example of declustering in a two-dimensional feature space
is illustrated in Fig. 1.

1 Vectors are boldface italic.
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