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I. BASIC  DEFINITIONS 

The  nodes of a  packet  radio  network  are transmitter- 
receiver  radios, also  called repeaters. A  node U is raaio-con- 
nected t o  a  node u if radio signals transmitted  by u can  be 
received  by  radio v, we  also  say  that U is within  receiving range 
from u .  Messages called packets are  passed  between  network 
nodes.  Associated  with  each  packet  is  an acyclic  route which  is 
a  sequence u, , u2 ,  ..., vq of  nodes  such  that Ui-1 is radio- 
c3nnected  to vi for i = 1 ,  2, -.., q - 1.  Node V1 is the source 
radio, and vq is the  destination  radio for  the  packet.  A  packet 
wends  its  way  from  node  to  node  along  its  route  until it 
reaches  its  destination  and  is  delivered  there.  This  point-to- 
point  packet  transmission  takes  place  as  follows  (a  more  de- 
tailed  description  can  be  found  in 121). Each  radio  has  a  node 
identifier,  or address (called selector in [21), which  is,  for 
the  moment,  assumed  unique.  A  source  node  generates a 
packet,  with  associated  addressing  information  in  the  packet 
header,  and  transmits  it  to  the  nearby  radio  which is identified 
in  the  header  as  the  first  node  along  the  packet's  route. All the  
radios  that  are  within  receiving  range  from  the  source will 
"hear" the  packet  and  process  its  header  to  determine if they 
should  relay  the  packet  (to  the  next  node  along  the  packet's 
route),  deliver  it,  or  discard it: only  one  of  these  radios,  the 
one  identified  in  the  packet  header, will actually  relay  it  (or 
deliver  it, if i t  is the  packet  destination); all the  other  radios 
discard the  packet.  A  packet  header  contains  the  identifier  of 
the  next  node  along  its  route  with  some  additional  routing 
information  which  depends on the  implementation.  In  one 
implementation,  every  packet  carries  in  its  header  the  entire 
packet's  route given as  the  sequence  of  identifiers  of all the  
radios  along  the  route. In another  implementation,  some 
routing  information is stored  in renewal  tables in  intermediate 
nodes,  denoted renewal  points in [ 21, along  a  packet's  route. 
The  renewal  table of a  node  maintains  an  entry  with  the  iden- 
tifiers  of  the  next  few  successive  nodes  for  each  route  passing 
through  the  node.  The  initialization  and  updating  of  the  re- 
newal  tables  by route  setup  packets is described  in [ 2 ]  and is 
of no  concern  to  us  here.  With  this  scheme,  a  packet  sent  along 
a  previously  set  up  route  contains  the  identifiers  of  only  the 
next  few  nodes  along  this  route  (up  to  the  next  renewal  point). 
When  a  packet  arrives  at  a  renewal  point,  the  routing  identi- 
fiers  in  the  packet  header  are  rewritten  according  to  the  node 
renewal  table  entry  for  the  packet's  route, 

It is clear  that,  with  both  implementations,  a  reduction  in 
the  length  of  identifier  codes  results in a  reduction  of  packet 
header  lengths.  This  reduction is more  significant  with  the  first 
implementation  described,  but  in  the  second  implementation 
the  space  taken  by  the  renewal  tables is reduced  as well. The 
minimization  of  identifier  code  lengths is now  investigated. 

11. FIXED-LENGTH  OPTIMAL  ADDRESSING CODES 

Formally,  a  packet  radio  network  is  a  directed  graph G = 
( V ,  E ) ;  the vertices V represent  transmitter-receiver  radios, 
and  the  edges E represent  radio  links, i.e., E = { ( u ,  u) 1 u is 
radio-connected  to u } .  If we give a  unique  identifier (absolute 
address) to  each  node  in  a  network G = ( V ,  E ) ,  and  to  this 
absolute  address  we  correspond  a  fixed-length  binary  code, 
then  the  length of each  such  code is [logz I VI1 bits.  But  this 
simple  address  coding  scheme is not  optimal.  In  fact,  we  can 
reduce  the  number  of  bits  required  for  addressing  by assign- 
ing to each  node  a local  address (in  addition  to  its  absolute 
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address)  in  the  following  way.  Let u be  a  node of a  network 
G = ( V ,  E ) ,  and S, = {U 1 (u ,  U) E E}  be  the  set  of successors 
of  u in G ,  i.e., S, is the  set  of  radios  which  are  within  receiving 
range  from u.  When u transmits  a  packet,  it is received  by  all 
the  radios  in S,. Then,  for  a  packet  to  be  unambiguously  sent 
from u t o  a  particular  radio u in S, it is necessary  and  suffi- 
cient  to assign a  different  local  address to  each  node  in S, (and 
to  include  the  local  address of U in  the  packet  header, of 
course).  Therefore,  unambiguous  address  coding  requires  any 
two  nodes u and w t o  have  a  different  local  address if there  is 
a  node u such  that  both (u ,  U) and (u ,  w )  are  edges  in G. In  the 
following  discussion,  we  consider  only  unambiguous  addres- 
sing  codes. To simplify  the  notation,  we  shall  assume  that 
communication  links  between  radios  are  symmetric,  i.e., if 
(u ,  U) is an  edge  of G then (V, u )  is also  an  edge  of G (or, 
equivalently, G is an  undirected  graph).  Then  two  nodes u 
and w must  have  different  local  addresses if they  are  both 
adjacent  to  a  common  node u .  So if the  node-adjacency  matrix 
of  a  network G is A ,  then  the  nodes u and w of G must  have 
different  local  addresses if (u, w )  is an  edge  in  the  graph  G2 
whose  adjacency  matrix is A’ = A x A ,  where  Boolean  addi- 
tion  and  multiplication  are  used  in  computing  the  matrix 
product  (note  that  G2 will generally  include (u, U) loops,  and 
in  our  remark u and w are  assumed t o  be  distinct  nodes  of 
G2).  Thus, if we  use  the  term  “color”  instead of “local  ad- 
dress,” the  minimum  number of colors  required to  color  the 
nodes  of  G2  such  that  no  adjacent  (distinct)  nodes  have  the 
same  color  corresponds  to  the  optimal  fixed-length  unam- 
biguous  addressing  code  (optimal  in  the  sense  that  the  number 
of  bits  required  for  this  code is minimum  with  respect t o  all 
the  other  fixed-length  unambiguous  addressing  codes). If the 
minimum  number of colors  required to  color  the  network is 
k ,  then  local  address  binary  codes  are  [log2 kl  bits  long.  It 
is a  well-known  result  that  the  minimal  coloring  of  a  graph G 
is an NP-complete  problem [ 11,  and  it  turns  out  that  the 
minimal  coloring of G 2  i s  also  NP-complete. 

Theorem: The  following  problem, “given a  graph G and  a 
constant k ,  is G2  colorable  with k colors?”, is NP-complete. 

Proof: A  k-coloring  of G 2  can  be  guessed  and  checked 
in  polynomial  time, so the  problem  is  in  NP. We show  that  the 
3-satisfiability  problem [ 11 is polynomially  transformable  to 
t he   G2  colorability  problem.  Given  an  expression F i n  3-CNF 
with n variables  and t factors,  we  construct,  in  polynomial 
time,  an  undirected  graph G = ( V ,  E )  with 4n f t (n  f 1)  
nodes,  such  that G 2  can  be  colored  with n -I- 1  colors if and 
only if F is satisfiable.  Let x l ,   x 2 ,  . e . ,  x, and F1 , F 2 ,  --, Ft 
be  variables  and  factors  of F, respectively.  Without  loss  of 
generality  we  assume  that n 2 max (4, t ) ;  we  can  always  add 
dummy  variables  (Le.,  variables  that do  not  appear  in F) t o  
satisfy  the  inequality.  The  nodes  of G are 

1) xi, Xi, ui, and r i ,  for  1 < i < n ,  
2) Fi, for 1 < j < t ,  and 
3 )  sij, for 1 < i < n and  1 < j < t .  

The  edges  of G are 

1 )  all (vi, r,)  such  that i # j ,  
2) ( r i ,  x i )  and ( r i ,  Til ,  for  1 < i < n ,  
3) (xi, si,) if x i  is not  a  term  of  factor Fi, and (Xi, sij), if 

4) (sii, F,), for  1 < i < n and 1 < j < t .  

It is easy to  check  that G 2  consists  of  two  disconnected 
subgraphs  G1  and  G2. G ,  is the  graph  described  in [ 1,  pp. 

xi is not  a  term  of Fi, 

392-3931.  It is shown  there  that  Gl  can  be  colored  with 
n + 1 colors if and  only if F is satisfiable.  The  nodes of G2  are 

1)  ri, for  1 < i < n. and 
2) si,, for  1 < i < n and  1 < j < t .  

The  edges of G2  are 
1)  all ( r i ,  r,) such  that i # j ,  
2)  (ri, sii) if xi or  T j  is not  a  term  of  factor Fj,  
3)  all (xii, ski)  such  that i # k ,  and 
4) (s i i ,  sik) if xi or X i  is not  a  term of both Fi and F k ( j # k ) .  

We now  show  that  G2  can  always  be  colored  with n 1 
colors. We denote  the  colors  by 0, 1, 2, - 0 ,  n. We color  the 
nodes ri with  the  color i mod ( n  + l), for  1 < i < n ,  and  the 
nodes si, with  the  color i + j mod (n f l ) ,  for 1 < i < n and 
1 Q j < t .  It is easy t o  verify  that  any  two  adjacent  nodes  of 
G2  have  a  different  color.  It is now  clear  that  G2  can  be 
colored  with n 4- 1 colors if and  only if F is satisfiable. 0 

It is therefore  unlikely  that  a  polynomial-time  algorithm 
resulting  in  optimal  fixed-length  unambiguous  addressing 
codes  can  be  found.  Nevertheless,  finding  good  or  near-optimal 
addressing  codes is not  a  hopeless  task  for  the  following 
reasons. Let G be  a  network  and d be the  maximal  node  degree 
of  G. From  our  previous  discussion  about  unambiguous  ad- 
dress  codings  it is clear  that  we  need  at  least  d  distinct  local 
addresses  (i.e.,  colors)  for  the  network G. But  in G2  the  
maximal  node  degree is d2  - d ;  therefore d 2  - d i- 1  colors 
are  always  sufficient  to  color  G2  (the  algorithm  to  color  a 
degree k graph  with k f 1  colors is trivial).  Then  d is a  lower 
bound  and  d2 - d f 1 is an  upper  bound  on  the  number  of 
distinct  local  addresses  needed  for  unambiguous  addressing 
in G. The  corresponding  bounds  for  the  number of bits  of  the 
address  binary  code  are  [log, dl and  [log2  (d2 - d i- 1)1. 
Therefore,  the  trivial  algorithm  for  coloring  G2  cannot  result 
in  an  address  code  which  is  longer  than  twice  the  length of the 
op t ima l  code. We may  note  that  the  bounds  given  are  tight 
bounds;  there  are  degree  d  graphs  which  can  be  colored  with 
only d colors,  and  degree d graphs  which  cannot  be  colored 
with  fewer  than d2  - d 4- 1  colors.’  But  there is reason  to 
believe  that  heuristic  algorithms  for  coloring  achieve  better 
results  on  the  average.  In  fact,  a  very  simple  linear  sequential 
algorithm  for  graph  coloring  has  a  high  performance  ratio 
(i.e.,  number  of  colors  required by the  algorithm  over  the 
optimal  number of colors)  of 2 + E a.e.  when  applied  to  con- 
stant-density  random  graphs 131. So, for  random  graphs, 
this  heuristic  algorithm  results  a.e.  in  codes  which  are  only 
1 4- E bits  longer  than  the  optimal  ones.  Then  a-  practical 
heuristic  algorithm  for  unambiguous  address  code  minimiza- 
tion  could  consist  of  the  following  two  steps. 

1 )  Given  a  network G ,  with  a  node-adjacency  matrix A ,  
compute  the  adjacency  matrix  A2 = A  X A (Boolean  product) 
of  the  graph  G2.  Unambiguous  address  coding  requires  distinct 
codes  to  be  assigned  to  adjacent  nodes  of G 2 .  

2) Apply  the  graph  coloring  sequential  algorithm  on  G2. 
Each  color  corresponds  to  a  local  address. If the  algorithm 
results  in k different  colors  then  [log2 kl bits  are  required 
for  the  fixed-length  binary  code  of  each  local  address. 

11. VARIABLE-LENGTH  OPTIMAL  ADDRESSING CODES 
If we do   no t  insist o n  fixed  length  codes  for  local  addresses 

we  may  consider  variable  length  codes  having  the prefix 

1 A family  of such  graphs, for d = p + 1 and p any  prime  number, 
was found  by M. Yannakakis. 
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property (the  prefix  property  guarantees  that  any  contiguous 
sequence of address  codes,  denoting  the  routing  information 
of  a  packet,  can  be  unambiguously  decoded by the  radios 
along  the  packet's  route). If we assume  that all the  nodes 
in  the  graph  have  the  same  probability  of  appearing  as  addres- 
sing  information  for  packets  in  a  network,  then  the  search 
for  the  unambiguous  addressing  codes  that  achieve  the  mini- 
mum average code  length  (over all the  nodes)  leads  to  the 
following  problem. 

Optimal  Graph  Coding Problem: Given  a  graph G = ( V ,  E ) ,  
find  the  optimal  prefix-property  code  for  the  nodes of G (i.e., 
the  prefix-property  code  with  the  minimum  total  number  of 
bits  for  coding  all of G's nodes)  such  that  adjacent  nodes  have 
distinct  codes. 

We first  note  that  to  find  the  optimal  unambiguous  prefix- 
property  addressing  code  of  a  network G ,  we  must  solve  the 
optimal  graph  coding  problem  for  the  graph G 2 .  We may  also 
note  that  the  well-known  Huffman  coding  recursive  algorithm 
solves the  graph  coding  problem  for  a  restricted class of graphs. 
In  fact,  finding  the  optimal  prefix-property  coding  for a source 
text  with k distinct  characters  appearing  with  the  respective 
frequencies  of nl , n 2 ,  e-, nk characters  corresponds  to  solving 
the  optimal  graph  coding  problem  for  a  graph  with k inde- 
pendent  sets  with n l ,   n 2 ,  '-, nk nodes,  respectively,  each  node 
of  each  independent  set  being  connected  to all the  nodes  of 
the  other  independent  sets. 

The  complexity  of  the  optimal  graph  coding  problem is no t  
yet  known. We might  only  hope  that  a  polynomial-time  algo- 
rithm  (some  generalization  of  the  recursive  Huffman  coding 
algorithm?)  or else a  proof of intractability will soon be  found. 
It is interesting  to  note  that  the  minimum  number  of  unam- 
biguous local  addresses in a network  (which  results  in  the opt- 
imal  fixed-length  coding)  does  not  necessarily  yield  an  optimal 
variable-length  prefix-property  coding  for  the  network.  For 
example,  consider  the  graph G illustrated  in  Fig.  l(a).  It is 
clear  that  three  colors  are  necessary  and  sufficient  to  color  this 
graph.  One  such  minimal  coloring of G is shown  in  Fig.  l(b) 
(the  colors  are  denoted  by  the  numbers  1,  2,  and 3). We have 
nine "one's,'' five "two's,'' and  one  "three."  The  optimal  pre- 
fix-property  codes  for  these  colors  are  obtained  by  applying 
the  Huffman  coding  recursive  algorithm,  and  the  results  are 
illustrated  in Fig. l(c).  Then  to  code  the  entire  graph  we  need 
9 X 1 4- 5 X 2 + 1 X 2 = 21  bits.  It  turns  out  that  the  optimal 
prefix-coding  of  this  graph is obtained  when  four  colors  are 
used  instead of the  minimal  three.  This  coloring  and  the  cor- 
responding  Huffman  codes  are given in Fig. 2(a)  and  (b). In 
this  case  we  need  only  12 X 1 + 1 X 2 + 1 X 3 + 1 X 3 = 20 
bits to  code  the  entire  graph,  and  we  can  prove  that  this is 
optimal  for  this  graph. 

Finally,  a  practical  heuristic  algorithm  for  the  minimiza- 
tion of variable-length  addressing  codes  of  a  network G can  be 
obtained  by  appending  the  following  Step 3 to   the  end of the  
heuristic  algorithm  described  in  Section I. 

3) Let n l ,  n 2 ,  .-, nk be  the  respective  frequencies  in G 
of  the k colors  in  the  coloring of G 2 .  Apply  the  Huffman 
coding  recursive  algorithm  to  these k colors;  the  resulting 
codes  are  local  address  codes. 
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