
MINIMIZING WIDE-AREA PERFORMANCE DISRUPTIONS

IN INTER-DOMAIN ROUTING

YAPING ZHU

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: PROFESSOR JENNIFER REXFORD

SEPTEMBER 2011

c© Copyright by Yaping Zhu, 2011. All rights reserved.

Abstract

The Internet is the platform for most of our communications needs today. The networks underlying the

Internet undergo continual change – both planned changes (e.g., adding a new router) or unplanned fail-

ures. Unfortunately, these changes can lead to performance disruptions, which affect the user experience.

Because of this, network operators have to quickly diagnose and fix any problems that arise. Diagnosing

wide-area performance disruptions is challenging: first, each network has limited visibility into other net-

works, so network operators must collect and analyze measurements of routing and traffic data in order

to infer the root cause of the disruption; second, there are so many potential factors which might lead to

performance disruptions, and these factors are usually interdependent of each other; third, there are no

formalized ways to define metrics and classify the performance disruption according to the causes, thus

network diagnosis is usually done in an ad-hoc manner.

The thesis conducts two case studies to diagnose wide-area performance disruptions from the perspec-

tives of a large tier-1 Internet Service Provider (ISP) and a large content distribution network (CDN): i)

From the ISP’s perspective, we designed and implemented a system that tracks inter-domain route changes

at scale and in real time. Our system can be used as the building block for many diagnosis tools for the

ISPs. ii) From the CDN’s perspective, we focus on diagnosing wide-area network changes which resulted

in latency increases to access the services in the CDN. We designed a method for automatically classifying

large increases of latency, and evaluated our techniques on one month of measurement data to identify

major sources of high latency for the CDN.

Stepping back, the difficulties in network diagnosis can be traced back to the inter-domain routing pro-

tocol itself. Based on the lessons learned from the case studies, we refactor the border gateway protocol

(BGP), the main inter-domain routing protocol in two ways: first, since the network operator has visibil-

ity into its own network and some limited visibility in the neighboring networks, we propose to select a

route only based on the next-hop AS (instead of the networks further away); second, the BGP protocol

was designed as a way to exchange path availability information between independent networks, not with

the operational challenges of performance, security, and traffic engineering. This has led many to propose

additional BGP attributes that satisfy the operational needs. These proposals make the protocol and config-

uration more complicated, and thus more error-prone and more difficult for network operators to diagnose

problems. Instead, we propose simplifying the protocol, and in effect enable addressing the operational

challenges outside the protocol. Our proposal of next-hop BGP not only simplifies the protocol, but also

iii

has the benefits of fast convergence, incentive compatibility, and easier support for multi-path routing.

iv

Acknowledgments

I am extremely fortunate to have Jennifer Rexford as my advisor. Jen is absolutely a great researcher in

the field of network systems. Thanks to her solid expertise, and I have enjoyed inspirational discussions

with her on various research ideas. She also guided me to think about the practical implications of my

research projects, and helped me to improve my paper writing and presentation skills. In additional to

a great research advisor, Jen is also a great mentor for any kind of advice. I am very grateful for her

encouragement and support for me to do several internships during my graduate studies, which broadened

my understandings of the industry. Jen is even supportive of my extracurricular activities (e.g., running the

Graduate Engineering Council): she encourages me to improve my communications skills, and gives me

the freedom to pursue my passion. Jen is undoubtedly a role model for her students, and she has amazed

me with her genuine kindness, her patience, and also her optimism. With all these, I believe she is the best

advisor that a graduate student could ask for.

I am also really lucky to have worked with Aman Shaikh. As my internship mentor at AT&T Research,

Aman gave me invaluable advice and feedback on my research, which helped to shape the first chapter of

this dissertation. He is an expert in the area of Internet routing, and he shared lots of his knowledge with me

by helping me understand the technical details of the problems. As my paper co-author and thesis reader,

he is rigorous on both the research and the writing, and he always takes one extra step to make sure that

everything is presented correctly and clearly. His solid expertise and patience set an example for a great

mentor. In addition, Aman has a very pleasant personality, which makes him a fun person to work with.

I would like to thank Vivek Pai, Michael Freedman, and Andrea LaPaugh for serving on my thesis

committee and giving me valuable feedback.

I am really thankful to Subhabrata Sen. Subhabrata is a fantastic mentor I met at AT&T Research. He

shared his passion for solving practical problems in industrial research with me. I am also fortunate to

have met and worked with Aspi Siganporia, Benjamin Helsley, Sridhar Srinivasan, and Bo Fu at Google. I

owe a special thank you to them for introducing me to the operational challenges of running a large CDN

network, and sharing their data set for my research. I enjoyed working together with them on network

troubleshooting. Benjamin and Bo also patiently helped me improve my programming style. I am also

lucky to have worked with Michael Schapira. As my paper co-author, Michael is inspirational, and the

collaboration with him was truly pleasant. Also, I would like to thank Dan Wendlandt, Murtaza Motiwala,

Vytautas Valancius, and Mukarram Bin Tariq for their invaluable feedback on my research.

v

At Princeton, especially in the Cabernet research group, I am lucky to be surrounded by truly bright

people. I benefit tremendously from the fruitful discussions with them. Wen Xu guided me in the first year

of my graduate studies. Sharon Goldberg and Haakon Ringberg gave me great feedback on my project

ideas, and helped me prepare for presentations. Special thanks to Haakon who gave me great guidance

for the job search. Alex Fabrikant and Matthew Caesar helped answer many detailed technical questions.

Jiayue He and Yi Wang taught me people skills. I also owe thanks to Robert Harrison and Eric Keller for

proofreading parts of this dissertation. I would also like to thank Ioannis Avramopoulos, Wenjie Jiang,

Changhoon Kim, Steven Ko, Srinivas Narayana, Martin Suchara, and Minlan Yu for their invaluable feed-

back on my research.

I thank my friends from the Computer Science Department (Rebecca Fiebrink, Jialu Huang, Sid Sen,

Umar Syed, Qian Xi, Siyu Yang, and Yun Zhang) for their support over the years. I am grateful for

my friends from the Princeton Graduate Engineering Council (Theresa Cho, Stephen Friedfeld, Josephine

Kelly, Yi Ma, and Raghuveer Vinukollu) for their tremendous help make all the student events possible.

I would like to thank Jieying Chen, Nancy Zheng, and Shuyi Chen for making my internship fun and

enjoyable. Last but not the least, I am indebted to Karl Zaininger, Karen Schwartz and Elaine Kung for

their mentorship and their invaluable support. Also, special thanks to Melissa Lawson for her help over the

years of my graduate studies.

My research work was supported by Princeton University, the National Science Foundation (NSF),

the Air Force Office of Scientific Research (AFOSR), and Google Inc. Thanks to all for making this

dissertation possible.

vi

Contents

Abstract . iii

1 Introduction 4

1.1 Overview of Internet Routing and Network Diagnosis . 5

1.1.1 Network Changes Affect User Experience . 5

1.1.2 Framework for Diagnosing Performance Problems 6

1.2 Challenges in Minimizing Performance Disruptions in the Wide Area 8

1.2.1 ISP’s Challenge in Providing Good Transit for IP Packets 8

1.2.2 CDN’s challenge in Maximizing Performance for Services 10

1.2.3 Rethink BGP Protocol Design . 11

1.3 Contributions . 11

1.3.1 A Scalable Technique for Tracking Route Changes for ISPs 11

1.3.2 A System for Diagnosing Wide-Area Latency Increases for CDNs 12

1.3.3 A Routing Protocol Designed for Better Performance 13

2 Route Oracle: Tracking Route Changes Scalably for ISPs 15

2.1 Introduction . 15

2.2 Motivating Applications . 17

2.2.1 Historical Traceroute . 17

2.2.2 Analyzing External Routing Disruptions . 18

2.2.3 Service-Level Performance Management . 19

2.3 Prefix Nesting and Prefix-Match Changes . 19

2.3.1 Static Analysis of Prefix Nesting . 20

vii

2.3.2 Frequency of Prefix-Match Changes . 22

2.3.3 Characterization of Prefix Match Changes . 23

2.4 Tracking Prefix Match Changes . 25

2.4.1 Tracking Prefix Match Changes by the Forwarding Table 25

2.4.2 Address Ranges and the Associated Data Structure 26

2.4.3 Algorithm for Tracking Changes to Address Ranges 28

2.5 Route Oracle Design and Implementation . 29

2.5.1 System Overview . 29

2.5.2 Precomputing Route Updates for Address Ranges 30

2.5.3 Query Processing . 31

2.6 Performance Evaluation . 32

2.6.1 Pre-processing Time . 33

2.6.2 Query Processing Time . 34

2.6.3 Scalability of Query Processing . 35

2.6.4 Parallelization of Query Processing . 37

2.7 Related Work . 38

2.8 Summary . 40

3 Diagnosing Wide-Area Latency Increases for CDNs 41

3.1 Introduction . 41

3.2 Measuring the CDN Network . 44

3.2.1 CDN Architecture . 44

3.2.2 Passive Measurements of the CDN . 45

3.3 Methodology . 47

3.3.1 Front-End Server and Latency Metrics . 47

3.3.2 Latency Map: Closest Front-End Server . 50

3.3.3 Load Balancing: Avoiding Busy Servers . 51

3.3.4 Identifying Routing Changes . 52

3.4 Distribution of Latency Changes . 53

3.4.1 Aggregating Measurements by Region . 54

viii

3.4.2 Identifying Large Latency Increases . 55

3.5 Characterization . 56

3.5.1 FE Change vs. Latency Increase . 56

3.5.2 Normal Front-End Changes . 58

3.5.3 Front-End Changes during Events . 59

3.5.4 Inter-domain Routing Changes . 61

3.6 Case Studies . 64

3.6.1 Latency-Map Inaccuracies . 64

3.6.2 Flash Crowd Leads to Load Balancing to Distant Front-End Servers 65

3.6.3 Shift to Ingress Router Further Away from the Front-End Server 65

3.6.4 Shorter AS Paths Not Always Better . 66

3.7 Future Research Directions . 67

3.8 Related Work . 68

3.9 Summary . 69

4 Next-Hop Routing: Routing Protocol Designed for Better Performance 70

4.1 Introduction . 70

4.1.1 What’s Wrong with BGP? . 71

4.1.2 Simplicity through Next-Hop Routing . 72

4.1.3 Path-quality Monitoring and Security . 73

4.1.4 Roadmap . 73

4.2 Next-Hop Routing Architecture . 74

4.2.1 The Existing BGP Decision Process . 74

4.2.2 Next-Hop Routing Rules . 75

4.2.3 Implementing the Next-Hop Routing Rules . 76

4.3 Better Routing Convergence . 77

4.3.1 Simulation Setup . 78

4.3.2 Convergence Results . 80

4.4 Multipath Interdomain Routing . 83

4.5 Security . 85

ix

4.5.1 Reduced Attack Surface . 85

4.5.2 Incentive Compatible . 86

4.5.3 End-to-end Security Mechanisms . 86

4.5.4 Discussion . 87

4.6 Traffic Management . 87

4.6.1 Performance-driven Routing . 88

4.6.2 Interdomain Traffic Engineering . 90

4.7 Related Work . 91

4.8 Summary . 91

4.9 Appendix . 92

4.9.1 Modeling BGP Dynamics . 92

4.9.2 Gao-Rexford Framework . 93

5 Conclusion 94

x

List of Figures

1.1 Diagnosis in the Enterprise Network . 7

1.2 Performance Diagnosis Example . 9

2.1 Distribution of number of matching prefixes (from a BGP routing table on Feb 01, 2009

00:00:00 GMT) . 21

2.2 Storing address ranges and prefix sets for prefixes 12/8, 12/16, and 12/24 27

2.3 Route Oracle System Design . 30

2.4 CCDF of the time spent by the pre-processing module to convert BGP updates received

over fixed time-interval into address range records. 33

2.5 Pre-processing time varies according to the number of BGP updates received over the fixed

time-interval. 34

2.6 Query processing time versus end time. 35

2.7 Query processing time versus number of IP addresses queried. 36

2.8 Peak virtual memory utilization versus number of IP addresses queried. 37

2.9 normalized query processing time versus number of concurrent processes 38

3.1 CDN architecture and measurements . 42

3.2 Classification of large latency changes using passive measurements 48

3.3 Distribution of daily RTT increase . 54

3.4 ∆FE and ∆Lat for large events . 58

3.5 Distribution of ∆LatMap and ∆FEDist across all client regions for one day in June 2010 59

3.6 Distribution of ∆LoadBalance for Normal Cases and Events ∆FE ≥ 0.4 60

3.7 Distribution of ∆LatencyMap and ∆FEDistribution for Events ∆FE ≥ 0.4 61

1

3.8 Ingress router shifts (∆Ingress) . 62

3.9 Egress router and AS path shifts (∆EgressASpath) . 63

4.1 ASes A, B and C wish to send traffic to AS d. All three ASes have next-hop rankings, e.g., A prefers

sending traffic directly to d over sending traffic through B. AS B is willing to export route BAd, but

not the more preferred route Bd, to C. Hence, if B changes its route from BAd to the Bd, it will

stop announcing its route to C and thus disconnect C from the destination d. 76

4.2 Fraction of non-stub ASes experiencing more than x update messages after a link failure. 78

4.3 Fraction of non-stub ASes experiencing more than x routing changes/forwarding changes after a link

failure . 79

4.4 Fraction of stub ASes experiencing more than x update messages/routing changes after a link failure 82

4.5 Number of update messages and routing changes for stub ASes 83

4.6 Number of update messages and routing changes for non-stub ASes 84

4.7 ASes A and B both announce two routes to AS C, and C then announces four routes to AS D, and

so on. Clearly, this can result in state explosion. 85

4.8 ASes’s path lengths after a prefix injection. 88

4.9 ASes’s path lengths after a link failure. 89

4.10 ASes’s path lengths after a link recovery. 89

2

List of Tables

2.1 Prefix coverage for different mask lengths (from a BGP routing table on Feb 01, 2009

00:00:00 GMT) . 22

2.2 Classification of BGP update messages . 23

2.3 Four classes of prefix-match events and their possible causes 24

2.4 Query processing time (without parallelization) versus number of IP addresses queried. . . 37

3.1 Measurements of wide-area performance, traffic, and routing 45

3.2 Summary of key notation . 49

3.3 Events with a large daily RTT increase . 56

3.4 Classification of large latency increases (where latency more than doubles, or increases by

more than 100 msec), relative to previous day. Note that nearly 9% of events involve both

FE latency increases and FE server changes. 57

3.5 Events classified by ∆Lat and ∆FE . 57

3.6 Classification of Events with ∆FE ≥ 0.4 . 61

3.7 Classification of Events with ∆Lat ≥ 0.4 . 63

4.1 Steps in the BGP decision process . 75

3

Chapter 1

Introduction

Today, the Internet is the de facto platform for most of our communications needs, including electronic

mail, instant messaging, and telephony. In additional to these one-to-one communication services, there

are also many services on the Internet, like web search, collaborative editing, video streaming, etc. Ensuring

the performance of these services is crucial to their usability, and network operators go to great lengths to

improve the network performance to support the demand of these services.

The Internet is composed of thousands of independent networks. These networks are mainly classified

into three categories: the ISPs (Internet Service Providers) which provide connectivity to networks, by

transiting IP packets between them; the CDNs (Content Distribution Networks) which use geographically

distributed resources to provide ubiquitous services to users; and stub networks, which are connected to

ISPs in order to access the rest of the Internet.

The servers and computers on the Internet are connected by routers. Routers implement the function-

ality of routing, which is the process of computing paths and delivering traffic to its destination. Between

networks, adjacent routers in neighbor networks utilize an inter-domain routing protocol to exchange routes

– with the Border Gateway Protcol (BGP) [1] being the main inter-domain routing protocol used in the In-

ternet today.

Improving network performance is essential in ISPs’ and CDNs’ network operations. ISPs are moti-

vated to provide good delivery of IP packets for their customers. Maximizing network performance is also

crucial for CDNs hosting services like web search and video streaming. Better performance can help ISPs

and CDNs to attract more customers and increase their revenue.

4

However, managing and operating networks comprising the Internet is a daunting task, especially since

the original Internet and protocols underpinning it were not designed with management and performance

challenges in mind. As a result, even answering basic questions like what path a given packet traversed, or

why the end-to-end latency from a particular client to the server increased at a given time is a challenging

task. However, determining the answers to these seemingly simple questions is crucial for performing a

wide range of tasks in network operations.

In this dissertation, we looked at two case studies to examine the performance challenges that ISPs

and CDNs face today. We propose techniques for a tier-1 ISP and a large CDN to diagnose performance

disruptions for each. Based on these techniques, we design and implement systems for the ISP and CDN

to use in network operations. Stepping back, observing that many of the performance problems are caused

by today’s BGP protocol, we propose a variant of the routing protocol, which is incrementally deployable

and designed for better performance.

In this chapter, we first give a high-level overview of Internet routing and network management. We

then discuss the challenges of minimizing performance disruptions in the wide area for ISPs and CDNs,

and present the summary of our techniques to address these challenges. Lastly, we raise the performance

problems caused by routing, and outline the design of a protocol variant for better performance.

1.1 Overview of Internet Routing and Network Diagnosis

1.1.1 Network Changes Affect User Experience

The Internet is divided into tens of thousands of networks called Autonomous Systems (ASes), each of

which has network elements, such as routers and servers, usually operated by a single organization. Inside

each AS, the routers run an Interior Gateway Protocol (IGP) to determine paths between routers, servers,

and hosts in the same AS. Between networks, the Border Gateway Protocol (BGP) allows ASes to exchange

information about how to reach external destinations.

If a router or link fails in the network, the routers will disseminate the changes of network reachability

as routing updates, and recompute the route. The failure might cause parts of the network to become

unreachable. If the destination is still reachable, routers will compute and update the new routes. During

the routing convergence process, when routers are exchanging information and calculating a new path,

different routers might get inconsistent routes for the same destination, and this process is called the routing

5

convergence. Because of these inconsistencies, IP packets might circulate among the routers, or even get

dropped. In this situation, users would experience performance degradation.

Besides equipment failures, network congestion is another cause of performance disruptions. Network

congestion happens when too many IP packets are waiting to be transmitted over the same link. If the

demand is more than the link capacity, some packets are dropped by the router. To cope with this, end

hosts run a protocol with congestion control mechanism which reduces the rate of sending packets when

congestion is detected.

Both equipment failures and network congestion cause network performance disruptions, where IP

packets are dropped or retransmitted. Users might not be able to reach the destination, or experience higher

network latency. Most routing convergence events last for minutes [2]. The network operators have to fix

the failed routers or links, especially if some destinations become unreachable because of the failure. As

for network congestion, if the problem persists (e.g. some links are always overloaded), then the network

operators also have to react: the best approach is to upgrade the links with higher capacity, but a more

short term fix is to explicitly redirect some traffic to alternate routes to avoid the congested links. The latter

approach is called traffic engineering.

But how do the network operators know that the network changes are causing performance disruptions?

And, how could they pinpoint the root cause of the problem? In the next subsection, we will introduce

general steps for diagnosing performance problems, as well as the challenges.

1.1.2 Framework for Diagnosing Performance Problems

In this subsection, we give a high-level overview of the network diagnosis procedure inside a single net-

work. We use an enterprise network (i.e., the network operated by a corporation) as an example to illustrate

how performance disruptions are typically diagnosed. In order to better manage the network, the network

operators usually setup monitoring systems for the routers and links. These monitoring systems trigger

alarms that notify the network operator when, for example, equipment fails. If the customers are experi-

encing bad performance, the customers would complain, and the network operators also have to react in

response.

The general procedure for performance diagnosis consists of three steps, as illustrated in Figure 1.1:

measure, diagnose and fix. First, the operators have to measure the network status and changes. Based on

the measurement results, they then investigate the problem (e.g., the problem is caused by network device

6

Figure 1.1: Diagnosis in the Enterprise Network

failure, network congestion, or problems at the server or clients), and finally fix it correspondingly.

For example, in an enterprise network, if the performance problem is caused by server overload (i.e.,

the capacity of the server could not meet the demand), then the network operators have to redirect some

of the requests to alternative servers; if the performance disruption is caused by a router failure, then the

network operators have to look into why the router failed (e.g., hardware failure, or software bugs). The

advantage of diagnosing in an enterprise network is that the network operators have full visibility and full

control of all the equipment in the network.

However, in practice, the Internet is composed of many networks and the problem is often in a network

not under the control of the network operator. An IP packet has to traverse many networks from the source

to reach the destination. If something goes wrong within one network, the client would complain about

the performance degradation. However, the other networks might not have enough information to detect

the source of the problem, or not enough control to make changes to alleviate the disruption. Thus, limited

visibility and limited control makes the wide-area (not inside a specific network) diagnosis hard. In the next

section, we present the challenges for minimizing performance disruptions in the wide area, and summarize

contributions of our techniques.

7

1.2 Challenges in Minimizing Performance Disruptions in the Wide

Area

Diagnosing performance disruptions in the wide area is challenging: the network operators have to collect

and measure large volume and diverse kinds of data. The diagnosis procedure today is ad-hoc, and it usually

takes a long time to get back to the customers. Therefore, the performance diagnosis does not scale. The

goal of our work is to build systems for wide-area diagnosis. We formalize and automate the diagnosis

process. We also analyze a large volume of measurement data.

In this section, we present the challenges faced by ISPs and CDNs in minimizing performance disrup-

tions in the wide area. Then, we summarize the problems with the inter-domain routing protocol in meeting

the performance goals.

1.2.1 ISP’s Challenge in Providing Good Transit for IP Packets

The example we use to illustrate the challenges of wide-area diagnosis is shown in Figure 1.2. In Fig-

ure 1.2(a), IP packets from the client traverse several networks (including a large ISP) to reach the server in

the CDN network. The upper curved line shows the forwarding route from the client to the server, and the

lower line shows the reverse route from the server back to the client. Then, a router on the reverse path fails,

as illustrated by Figure 1.2(b). In Figure 1.2(c), the routers compute an alternative reverse path to deliver

packets. However, this new reverse path is heavily congested, which result in performance degradation for

the client.

In this situation, the client would call the local ISP to complain about the bad performance, while

trying to reach the CDN server. The local ISP checks for the network conditions inside its network. Since

its network is having good performance, the local ISP calls the large ISP to complain for its client. Note

that the local ISP only has limited visibility, and does not know that the performance problem happens on

the reverse path, which does not go through its network. Under such circumstances, the large ISP is called

for diagnosing this problem, even if the disruption actually happened outside its network.

Given the IP addresses of both the client and the server, the network operators in the large ISP start

diagnosing the problem by measuring the routes. By analyzing the routing updates from the routers, the

network operators determine that a routing change happened on the reverse path. By measuring the latency

on the reverse route to the client (this could be done by sending IP packets from the large ISP to the client

8

(a) Initial Routes: Forward and Reverse Paths

(b) Router Failure on the Reverse Path

(c) Reroute on the Reverse Path with Bad Performance

Figure 1.2: Performance Diagnosis Example

IP address), the network operators could tell that the performance disruption is caused by the downstream

ASes on the reverse path. The network operators might choose to direct traffic along another route if

available; otherwise, they have to call the downstream ASes to fix the problem.

This example shows the challenges of wide-area diagnosis, because of limited visibility and control: (i)

the local ISP which gets the customer complaint does not have the visibility to measure the performance

changes; and (ii) the large ISP measures the problem on the downstream path, but does not have direct

ability to fix the congested link, unless it has alternate routes to alleviate the problem.

In network diagnosis, tracking routing changes is the first and the most fundamental operation in di-

9

agnosing performance problems. In fact, many network-management tasks in large backbone networks

need the answer to the following question: where does a given IP packet, entering the network at a par-

ticular place and time, leave the network to continue its journey to the destination? Knowing the answer

to this question could help the network operators identify which IP addresses were affected by the routing

changes, and how the traffic was rerouted to reach the destinations. However, answering this question is

challenging in practice, because of the scale of the routing data to analyze. Furthermore, network operators

might need the answer to a large number of IP addresses immediately in response some large network

events. In Chapter 2, we focus on answering this question.

1.2.2 CDN’s challenge in Maximizing Performance for Services

From the CDN’s perspective, the goal is to maximize network performance for the clients accessing its

services. Network performance is critical to the CDNs because it affects the user experience. Good network

performance could increase the number of requests, and bring more revenue to the CDN’s business. Many

large CDNs monitor the network latency (i.e. the round-trip time from the client to the server, and from the

server back to the client) for their clients. In the example illustrated in Figure 1.2, the large CDN detects that

all the clients from the same small ISP are experiencing latency increases. Although the network disruption

might be outside the CDN’s network, the CDN is motivated to troubleshoot the latency increases for its

clients.

In the example in Figure 1.2, the CDN operators start by measuring the changes in the network: in the

example, the CDN server used for serving the client requests did not change. The traffic from the client

enters and leaves the CDN network at the same routers; however, the AS path from the CDN back to the

client is changed, which is correlated with latency increase from the CDN to the client. In this way, the

network operators could determine that performance problem happens on the downstream ASes.

Because of the limited visibility, the CDN could not figure out the exact root cause of the problem

(which is caused by congestion in a small ISP). The CDN also has limited control, as this is the only

available route to reach the client. In this case, the CDN could possibly alleviate the problem, by directing

those clients to a server in a different location.

The example shows that minimizing user-perceived latency is challenging for CDNs. Although this is

crucial, especially for CDNs hosting services like web search and video streaming, latency may increase

for many reasons (e.g., CDN’s server changes, or inter-domain routing changes). Moreover, the network

10

operators need to collect multiple kinds of measurements related to performance, traffic, and routing. Join-

ing and analyzing multiple kinds of measurement data is another challenge, especially when clients may

use multiple servers or paths. In Chapter 3, we focus on automating the diagnosis for latency increases for

CDN networks.

1.2.3 Rethink BGP Protocol Design

In the last two subsections, we focused on the challenges that ISPs and CDNs face today with the existing

routing protocols. In this subsection, we rethink the design of the routing protocol to improve performance.

Many performance problems today are caused by the routing protocol: first, the BGP route selection

(i.e., how the router chooses routes) is based on the length of the AS-level path, which is not necessarily a

good indicator of performance. Second, routing changes cause lots of performance disruptions. Our study

shows that 42.2% of the big latency increases in a large CDN are correlated with inter-domain routing

changes. Moreover, today’s inter-domain routing protocol does not support multiple paths to the same

destination. Thus, the ISPs or CDNs have relatively few alternate paths, because each of its neighbors

advertises at most one path.

In Chapter 4, we focus on designing the routing protocol for better performance: which satisfies the

requirements of fast convergence, route selection based on performance, and scalable multi-path support.

1.3 Contributions

In this dissertation, we present two techniques: scalably tracking route changes for ISPs, and diagnosing

wide-area latency increases for CDNs. We design and implement systems which are deployable for use

in network management. We also design a BGP variant, and show its performance benefits: fast routing

convergence, scalable multi-path support, and passive monitoring for route selection based on performance.

1.3.1 A Scalable Technique for Tracking Route Changes for ISPs

First, we propose a technique for tracking inter-domain routing changes for ISPs. We focus on answering

this question from a given network’s point of view: when traffic to a particular destination enters the

network at some router, what inter-domain route will it use to exit the network and, beyond that, what

downstream path will it take to reach the destination.

11

Realizing a system to track the inter-domain route changes is challenging for two reasons: first, routing

updates are advertised at the granularity of prefix, which is a block of consecutive IP addresses. An IP

prefix is represented in the format of an IP address, followed by the prefix length. The IP address in the

prefix is the start IP address of this block of IP addresses. The prefix length is the number of shared initial

bits shared by this group of IP addresses. A single IP address could be covered by multiple prefixes. The

packet forwarding in such a case is governed by the longest matching prefix, which can change over time

as routes are updated. Thus, in order to know the route for a particular IP address, we need to track the

changes for its longest matching prefix. Second, in some network diagnosis scenarios, the operators need

to know routes to hundreds of thousands of IP addresses at a given time. For such cases, our system needs

to answer a large number of queries in real time.

This dissertation makes the following contributions to handle these challenges:

• To handle nested prefixes, we introduce the notion of an address range. An address range is a

group of IP addresses that have the same set of matching prefixes. Address ranges facilitate rapid

determination of route changes for an IP address. We propose an algorithm to efficiently determine

changes to address ranges as well as their matching prefixes and associated routes as BGP updates

arrive.

• We designed, implemented, and evaluated the tool that answers queries about routing changes on

behalf of network management applications. To answer queries for a large number of IP addresses,

we implement two optimizations to our system: (i) amortize the I/O cost by reading the address

range records once for multiple queries; (ii) take advantage of multi-core processors prevalent today

by distributing the workload across individual cores. Experiments with BGP measurement data from

a large ISP backbone demonstrate that our system answers queries in real time and at scale.

1.3.2 A System for Diagnosing Wide-Area Latency Increases for CDNs

Next, we propose techniques for CDNs to classify the large latency increases, based on measurement data

that can be readily and efficiently collected—measurements of traffic, routing, and performance to and

from their own servers.

Finding the root cause of latency increases is difficult. Many factors can contribute to higher delays,

and these factors are usually correlated. The scale of large CDNs also introduces challenges. A group of

12

clients may send requests to multiple front-end servers, and the traffic may traverse multiple ingress and

egress routers. Thus, in order to analyze the latency increases for groups of requests, we need to define the

metrics to distinguish the changes from an individual router or server.

This dissertation makes the following contributions, in diagnosing wide-area latency increases:

• Decision tree for separating cause from effect: We identify the causal relationship among the var-

ious possible causes which lead to latency increases. Based on this causal relationship, we present a

decision tree for separating the causes of latency changes from their effects. We use the measurement

data to identify suitable thresholds to identify large latency changes, and to distinguish one possible

cause from another.

• Metrics to analyze routing and traffic data over sets of servers and routers: We are motivated to

analyze latency increases and traffic shifts over sets of servers and routers. For all potential causes

of the latency increase in the decision tree, we propose metrics to quantify the proportion of the

latency increases contributed by each possible cause. Furthermore, we define the metric to quantify

the proportion of latency increases contributed by a single router or server, as well as a way to

summarize the contributions across all routers and servers.

• Latency characterization for Google’s CDN: We apply our methodology to traffic, performance,

and routing data from Google’s CDN. Our results show that about three quarters of these large in-

creases in latency were explained (at least in part) by a large increase in latency to reach an existing

front-end server; around one third of the large increases of latency involved a significant shift of

client traffic to different front-end servers. We also present several events as case studies to highlight

the challenges of managing wide-area performance for CDN networks.

1.3.3 A Routing Protocol Designed for Better Performance

Finally, we propose a variant of the BGP routing protocol called “next-hop BGP”. The key idea is to

move from today’s path-based routing (where routing decisions depend on the entire AS path) to next-hop

routing—a solution that selects and exports routes based only on the neighboring domain. This dissertation

makes the following contributions, which improves the network performance of the inter-domain routing

protocol:

13

• A protocol with fast convergence to reduce transit disruptions: We show, both analytically and

experimentally, that next-hop routing leads to much fewer update messages. Our simulations show

that next-hop routing is especially effective at preventing serious convergence problems.

• Selection of the next-hop based on performance, not shortest AS path: Our protocol offers

an efficient way for selecting routes based on the performance. In addition, we present the design

of passive monitoring schemes for ISPs, CDNs, and stub networks to measure the performance of

routes through different next-hop ASes, so that they could select routes based on the performance.

• Scalable multi-path support to avoid congestion and failure: Next-hop BGP also lowers the

barrier to multi-path routing. Hence, it brings us closer to achieving the benefits that come with multi-

path routing (e.g., improved availability, better recovery from failures, load balancing, customized

routes selection, and more).

• Less complexity, ease of configuration and fewer errors: We explain how next-hop routing can

be implemented in a backwards-compatible manner. We also discuss how it can simplify router

implementation and configuration, and thus minimize software complexity for vendors, require less

training for network operators, and lead to fewer configuration errors.

Collectively, the contributions of this dissertation provide effective systems solutions for ISPs and

CDNs to automatically diagnose network performance disruptions in the wide area. We also propose a

transition from today’s path-based routing to next-hop routing, and our results show that next-hop rout-

ing leads to significantly better network performance than path-based routing with BGP. Chapter 2 and 3

describes the case studies of network diagnosis for an ISP and a CDN in detail. Chapter 4 presents the

improved design of BGP, followed by the conclusion in Chapter 5.

14

Chapter 2

Route Oracle: Tracking Route Changes

Scalably for ISPs

2.1 Introduction

Many network-management problems in large backbone networks need answer to a seemingly simple

question: from a given network’s point of view, when traffic to a given destination enters the network at

some router, what router it will use to exit the network and, beyond that, what downstream path it will take

to reach the destination. Answering this question at scale and in real time is challenging. Yet, knowing the

answer to this seemingly simple question is crucial for performing a wide range of network management

tasks. We describe our system called Route Oracle that answers this question at scale and in real time.

The Internet is divided into thousands of ASes, and BGP allows ASes to exchange information about

how to reach external destinations. A BGP route contains many attributes including these key ones: the

egress router (i.e., the last router before packets leaves a given AS) and the AS path (i.e., the list of ASes

on the downstream path to the destination. Knowing the egress router and AS path for an individual IP

address, both currently and at a given time in the past, is crucial for several management tasks such as trou-

bleshooting reachability problems in response to customer complaints. While knowing the egress router

and AS path already provides vital information, joining this data with other information could form the

basis for even more powerful applications. For example, joining the routing data from the intra-domain

15

routing protocol could provide the path traversed by traffic from ingress to egress routers in an AS. Sim-

ilarly, joining with the performance measurements for an application would allow network operators to

correlate performance impairments with route changes in the network.

Realizing a system to track BGP route changes is challenging for two reasons:

• In BGP, routing updates are advertised in terms of prefixes, and prefixes can be nested. Thus a single

IP address could be covered by multiple prefixes. The packet forwarding in such cases is determined

by the longest matching prefix, which can change over time as routes are advertised and withdrawn.

Thus, in order to know the route for a particular IP address, we need to track the changes to its longest

matching prefix, and this needs to be done at the rate of BGP updates, especially for applications that

need to know routes in real time.

• Some applications need to know routes to hundreds of thousands of IP addresses at a given time. An

example is a CDN serving a large number of clients that wants to know the routing changes for all its

clients to troubleshoot latency increases. For such applications, our system needs to answer a large

number of queries in real time.

This chapter overcomes these challenges by making the following contributions:

• Characterization of Prefix Nesting and Prefix-Match Changes: We analyze the effects of BGP

routing changes on the longest-matching prefix. We find that more than 30% of BGP updates do

not simply switch an existing prefix from one route to another. In fact, 14.8% of BGP updates

cause addresses to gain or lose reachability, and 13.2% of updates cause addresses to switch to a

different longest-matching prefix. These prefix-match changes have a variety of causes, including

route flapping, sub-prefix hijacking, and failover to backup routes.

• The Concept of Address Range to Track Routes Scalably for IP Addresses: We introduce the

concept of an address range. An address range is a group of consecutive IP addresses that share

the same group of matching prefixes. We design the algorithm to efficiently determine changes to

address ranges as well as their matching prefixes and associated routes as BGP updates arrive. The

resulting data structure facilitates rapid determination of route changes for an IP address – we just

need to look for the appropriate address ranges instead of prefixes.

16

• Route Oracle Tool with Performance Evaluation: We present the design and implementation of

the Route Oracle tool. To answer queries for a large number of IP addresses, we implement several

optimizations to Route Oracle: (i) we archive the pre-processed address range records to speed up

query processing, (ii) read address range records once for multiple queries to amortize the I/O cost,

and (iii) take advantage of multi-core processors prevalent today by distributing the workload across

individual cores. Performance evaluation with BGP measurement data from a large ISP backbone

illustrate that our system answers queries in real time and at scale.

We have deployed Route Oracle in a large Tier-1 ISP where it is being used to troubleshoot performance

impairments for various services. In fact, the optimizations described above were implemented after the

initial trial which revealed that the users were interested in using the system for hundreds of thousands of

IP addresses in real time.

The rest of the chapter is organized as follows. In Section 2.2, we further motivate Route Oracle by

describing three applications of the tool. Next, we describe the challenges of building Route Oracle, by

characterizing prefix nesting and the dynamics of prefix-match changes in Section 2.3. Then, we present

the algorithm to efficiently track prefix and route changes for address ranges in Section 2.4, followed

by the overall design and implementation of Route Oracle in Section 2.5. In Section 2.6, we evaluate

the performance of Route Oracle. We present related work in Section 2.7, and conclude the chapter in

Section 2.8.

2.2 Motivating Applications

In this section, we present three possible applications of Route Oracle. We show that determining the egress

router and AS path to external destinations is an important building block for many network management

tasks. For each application, we present the challenges of the application, and how Route Oracle could

effectively handle it. We also explain why each application needs to track routing changes at scale and in

real time.

2.2.1 Historical Traceroute

Traceroute is a popular active measurement tool, which lists the hops along the path to the destination. It is

extensively used by the network operators to troubleshoot reachability or performance problems. Tracer-

17

oute is implemented by sending IP packets in real time. Therefore, if traceroute result was not collected in

the past, it would be impossible to roll back to a time in the past to see the path at that time.

However, having a “historical traceroute” that provides paths from any vantage point to a given desti-

nation at any time in the past would be valuable for troubleshooting events. The straightforward approach

to implement such historical traceroute is to collect and archive the traceroute results. However, collecting

traceroute data from many vantage points to all the destination IP addresses is too expensive due to large

probing and storage requirements. Instead, we propose to leverage the passively collected routing updates:

from the BGP updates, we could determine the egress router and AS path the packets traverse; and from

the routing messages of the intra-domain routing protocol like OSPF, we could determine the hop-by-hop

path (from the vantage point to the egress router) inside the ISP. Our Route Oracle tool provides the former

capability.

2.2.2 Analyzing External Routing Disruptions

One of the most important tasks of network operations is to react quickly to large network disruptions.

Disruptions like an under-sea cable cut could result in loss of reachability or serious congestion in a large

portion of a geographical region. Characterization of these events could help network operators understand

the impact on their networks: what percent of the IP addresses in the affected geographical region became

unreachable? How was the traffic rerouted to reach the destination, and did it cause any traffic shifts inside

the network? Did the packets actually reach the destination, and were there any performance degradations?

Knowing answers to these questions would help the network operators make decisions on how to respond

to the event, including redirecting the traffic through a better route, or performing traffic engineering to

direct traffic away from congested links.

Answering these questions requires determining the routes or route changes of all the IP addresses in the

affected geographical regions. Route changes for these IP addresses should not only be processed at scale,

but also in real time, in order to get the latest status of the event. Based on these results, aggregated statistics

like the percent of routable IP addresses could indicate the overall impact on reachability. Aggregating

the routes across egress routers and nexthop ASes could tell how the traffic shifted inside the network.

Joint analysis with the traffic and performance data could help operators monitor performance along each

rerouted path.

18

2.2.3 Service-Level Performance Management

With the deployment of many network applications, ISPs are facing the challenge of service quality man-

agement. Performance monitoring at the application layer alone is not enough to troubleshoot performance

degradation of network services. Instead, network operators need to correlate the performance problems

with network-layer changes (such as routing changes, or network congestion) for root-cause analysis.

As an example, consider an ISP hosting a Content Distribution Network (CDN). Such an ISP would be

interested in monitoring the performance of its CDN, by measuring the round-trip time (RTT) to the clients.

A simple approach is to monitor the performance of content download for each client. However, the RTT

of individual clients is likely to vary significantly. Instead, if we could aggregate the RTTs over clients

using the same paths (e.g., clients leaving the network at the same egress router), then large changes in the

average RTT would show the performance changes caused by rerouting or congestion inside the network.

In this case, we need the capability to determine the routes for all the clients’ IP addresses at scale and in

real time. Furthermore, this real-time performance information could be used to guide the selection of the

server that should serve each client. 1

To summarize the requirements from these applications, our system needs to track the changes of the

egress router and AS path: (i) at scale: for thousands of IP address (e.g., all the IP addresses from the same

country, or ISP), (ii) and in interactive mode so that the network operators can get the answer quickly and

take actions based on the results.

2.3 Prefix Nesting and Prefix-Match Changes

In this section, we present the background of prefix nesting, with static analysis on the extent of prefix

nesting. We also characterize the dynamics of the prefix-match changes, and correlate with the traffic data

to understand its impact on the IP reachability. The goal of this section is to motivate the data structure and

algorithm we use in the Route Oracle tool.

In the routing table, an IP address could be covered by multiple prefixes. For example, IP address

128.112.0.0 could be covered by both 128.112.0.0/16 and 128.112.0.0/24. When the IP packets destined

to 128.112.0.0 are forwarded, routers perform the longest prefix match (LPM), and use the route of prefix

1Note that for the CDN case study in the next chapter, the data we get has already been aggregated at the prefix level. Thus, we
do not have to solve the problem on determing routes for individual IP addresses and grouping the client IPs according to the routes
(e.g., by egress router or AS path).

19

128.112.0.0/24 to deliver the packets to the destination. We analyzed a BGP routing table collected from a

router in a large ISP on February 1, 2009. The result showed that 24.2% of the IP addresses were covered

by multiple prefixes.

Nesting of prefixes is quite common for a variety of reasons. First, regional Internet registries allo-

cate large address blocks to Internet Service Providers (ISPs), who in turn allocate smaller blocks to their

customers. Second, customers that connect to the Internet at multiple locations may further sub-divide

these address blocks to exert fine-grained control over load balancing and backup routes. Third, ISPs may

also announce multiple blocks to protect themselves from route hijacking—for example, AT&T announces

prefixes 12.0.0.0/9 and 12.128.0.0/9, in addition to the 12.0.0.0/8 supernet, to prevent other ASes from

accidentally hijacking traffic intended for destinations in 12.0.0.0/8.

As a router receives more and more BGP updates, the longest matching prefix for an IP address may

change over time. In [3], we used BGP update messages collected for the month of February 2009 from the

router in the tier-1 ISP backbone, and determined the frequency of BGP updates that affected the longest-

matching prefix for IP addresses. Our analysis revealed that 13% of the BGP updates caused some IP

addresses to change their longest-matching prefix. Because of frequent changes in longest prefix match,

tracking the prefix match changes efficiently is necessary.

In this section, we begin by characterizing the phenomena of prefix nesting, and the dynamics of how

the BGP updates affect the longest-matching prefix for IP addresses. Then, we study four main categories

of prefix-match changes, based on the origin ASes (i.e., the AS that first announces the prefix into BGP) of

the two prefixes and how often the more-specific prefix is available.

2.3.1 Static Analysis of Prefix Nesting

To understand the nesting of prefixes, we analyze a BGP routing table collected from a router in a large ISP

on February 1, 2009. We ignore small prefixes (with mask longer than /24) corresponding to the ISP’s own

routers and links, as they are not externally visible. We characterize prefix nesting from two perspectives:

(i) how many prefixes cover each IP address? and (ii) what fraction of addresses covered by a prefix use

that prefix for packet forwarding?

The light bars in Figure 2.1 plot the distribution of the number of prefixes covering each IP address,

with a logarithmic scale on the y-axis. While 75.8% of IP addresses are covered by a single prefix, 19.7%

are covered by two prefixes, and 4.0% by three prefixes; some addresses are covered by as many as seven

20

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 IP
s

(lo
g

sc
al

e)

Number of Prefixes Covering the IP Address

Fraction of IPs
Weighted by Traffic

Figure 2.1: Distribution of number of matching prefixes (from a BGP routing table on Feb 01, 2009
00:00:00 GMT)

prefixes. In addition, destination addresses that match multiple prefixes are responsible for a higher fraction

of the traffic, relative to other destinations, as seen by the dark bars in Figure 2.1. This bars plots the

distribution weighted by the volume of traffic, as computed from the Netflow traces. While 61.6% of the

traffic is destined to addresses matching a single prefix, 31.3% of the traffic corresponds to two prefixes,

and 6.0% to three prefixes. We see similar trends for both histograms across a variety of routers and time

periods for data collected in the same ISP.

We also explore what fraction of the IP addresses covered by a prefix use that prefix for packet forward-

ing. We use the same routing table snapshot for this analysis, which was taken on Feb 01, 2009. Table 2.1

shows the results for five sets of prefixes, grouped by mask length. Interestingly, 17% of the /8 prefixes

are not the longest-matching prefix for any of the addresses they cover; the 12.0.0.0/8 prefix mentioned in

Section 4.1 is one example. In fact, 39% of the /8 prefixes handle forwarding for less than half of their

addresses, as seen by summing the first three rows of the “/8” column in Table 2.1. For smaller prefixes

(with larger mask lengths), the prefixes are responsible for a larger fraction of the IP addresses they contain.

Because we filtered the prefixes with mask length larger than 24 for this analysis, the /24 prefixes are the

longest-matching prefix for all of their IP addresses. We saw similar results when analyzing a routing-table

snapshot taken on Mar 01, 2009.

The nesting of prefixes suggests that BGP update messages may change which prefix is used to forward

traffic to particular destination addresses. In the following sections, we track the evolution of the longest-

21

Fraction of Prefix Mask Lengths
IP Addresses /8 /12 /16 /20 /24

0 0.17 0.16 0.09 0.04 0.00
(0, 0.25] 0.13 0.14 0.02 0.02 0.00

(0.25, 0.5] 0.09 0.06 0.03 0.03 0.00
(0.5, 0.75] 0.09 0.06 0.03 0.04 0.00
(0.75, 0.9] 0.13 0.05 0.03 0.07 0.00

(0.9, 1] 0.39 0.53 0.81 0.80 1.00

Table 2.1: Prefix coverage for different mask lengths (from a BGP routing table on Feb 01, 2009 00:00:00
GMT)

matching prefix to understand when and how BGP routing changes affect the forwarding of IP packets.

2.3.2 Frequency of Prefix-Match Changes

The BGP update messages from a top-level route reflector give us a view of BGP routing changes seen at a

large Point-of-Presence (PoP) in the ISP backbone. We start by reading a BGP table snapshot taken on Feb

01 2009, followed by the stream of BGP update messages from Feb 01 to Feb 28, 2009. We filter duplicate

update messages, including those sent after resets of our monitoring session [4] to the route reflector. We

find four main categories of BGP update messages, as summarized in Table 2.2:

Updating a route for an existing prefix: Just under 70% of the update messages are announcements

that merely change the route for an existing IP prefix, as indicated by the first row of the table. These

update messages do not affect the longest-matching prefix used for forwarding data packets.

Gaining or losing reachability: Another 14.8% of messages either add or remove the only prefix

that covers some range of IP addresses. Half are withdrawal messages that leave these addresses with no

matching prefix, and the other half are announcements that allow these addresses to go back to having a

matching prefix.

Changing the longest-matching prefix: Another 13.2% of messages cause some addresses to change

to a different longest-matching prefix. Half are withdrawal messages that force these addresses to match

a less-specific prefix, and the other half are announcements that allow these addresses to match a more-

specific prefix.

Affecting a prefix that is not used for forwarding: The remaining 2.5% of update messages either

add or remove a prefix that is not the longest-matching prefix for any IP addresses2. These prefixes are

2In this category, we see more announcements than withdrawals—a seemingly odd phenomenon we intend to investigate further.

22

Category % Updates
Same prefix, route change 69.4%
Gain reachability 7.4%
Lose reachability 7.4%
More-specific prefix 6.6%
Less-specific prefix 6.6%
No impact announcements 2.3%
No impact withdrawals 0.2%

Table 2.2: Classification of BGP update messages

supernets like 12.0.0.0/8 that corresponded to address space that is completely covered by more-specific

prefixes like 12.0.0.0/9 and 12.128.0.0/9.

Analysis of BGP update messages for a different time period (namely, March 2009) leads to very similar

results. In the rest of this section, we focus on the 13.2% of BGP update messages that cause prefix-match

changes.

2.3.3 Characterization of Prefix Match Changes

To analyze the prefix-match changes, we first account for the effects of route flapping, where a prefix is

repeatedly announced and withdrawn for a long period of time. As in previous work [5], we group update

messages for the same prefix that occur with an inter-arrival time of less than 70 seconds, assuming these

updates are part of the same BGP convergence event. Since most convergence events last less than 600

seconds (five minutes) [5], we assume longer events correspond to persistent flapping, and remove these

unstable prefixes from further analysis. This step filtered 117 prefixes and about 2.7% of the prefix-match

changes. This leaves us with 1,259,532 prefix-match changes for the month of February 2009 for further

analysis.

Then, we begin to characterize the prefix match changes. Recall that an address range is a group of

consecutive IP addresses that share the same group of matching prefixes. Looking at the pre-processed mea-

surement data, we notice that most address range have a single prefix that serves as the longest-matching

prefix the vast majority of the time. In fact, 95.2% of the address ranges have a prefix they use more than

90% of the time, and 98.7% have a prefix they use more than 60% of the time. We apply a threshold of 60%

to identify the dominant prefix for each address range, and analyze the prefix-match changes that cause an

We suspect that, over time, some ASes introduce additional supernet routes as part of configuring backup routes.

23

Origin ASes Prefix Match #Events Possible Explanations
Same More-specific 87,996 (13.0%) Route leak
Same Less-specific 395,755 (58.5%) Load balancing, failover to backup route

Different Less-specific 172,260 (25.5%) Customer failure
Different More-specific 20,186 (3.0%) Sub-prefix hijacking, announcement of new customer route

Table 2.3: Four classes of prefix-match events and their possible causes

address range to stop using its dominant prefix. This leaves us with 676,197 prefix-match changes to ana-

lyze. For some address ranges, these events involve the brief announcement (and subsequent withdrawal)

of a more-specific prefix; for others, these events involve the brief withdrawal of the dominant prefix and

the temporary use of a less-specific route. As such, we classify prefix-match changes in terms of whether

the dominant route is more-specific or less-specific than the other (briefly used) prefix. To understand the

possible reasons for the prefix-match changes, we also compare the origin ASes of the old and new prefixes.

This leaves us with four cases, as summarized in Table 2.3. Note that the more-specific and less-specific

prefix match mentioned in the table are the briefly used prefixes.

Same origin AS, more-specific prefix: About 13.0% of the prefix-match changes involve brief an-

nouncement of a more-specific prefix with the same origin AS as the dominant prefix. We suspect these

prefix-match changes are caused by temporary route leaks, where the more-specific prefix is announced

inadvertently due to a configuration mistake that is fixed relatively quickly (e.g., within a few hours or at

most a day or two).

Same origin AS, less-specific prefix: About 58.5% of the prefix-match changes involve brief with-

drawal of the dominant prefix that leads to the temporary use of a less-specific route with the same origin

AS. We suspect that these prefix-match changes are caused by multi-homed ASes that announce both pre-

fixes for fine-grain control over load balancing and backup routes. For example, a multi-homed stub AS

connected to two providers may announce 15.0.0.0/17 to one provider and 15.0.128.0/17 to the other, and

the supernet 15.0.0.0/16 to both. The more-specific 15.0.0.0/17 prefix would be withdrawn whenever the

link to the first provider fails, and the less-specific 15.0.0.0/16 would remain because the route is also

announced via the second provider.

Different origin ASes, less-specific prefix: About 25.5% of the prefix-match changes involve brief

withdrawal of the dominant prefix that leads to the temporary use of a less-specific route with a different

origin AS. We suspect that these prefix-match changes occur when a customer AS fails, but its provider

24

does not. For example, suppose a provider that announces 12.0.0.0/8 has allocated 12.1.1.0/24 to one of

its customers. If the customer fails, the customer’s route for 12.1.1.0/24 is withdrawn, while the provider’s

12.0.0.0/8 route remains.

Different origin ASes, more-specific prefix: Only 3.0% of the prefix-match changes involve the brief

announcement of a more-specific prefix from a different origin AS. We suspect some of these announce-

ments correspond to “sub-prefix hijacking” caused by a configuration mistake or a malicious attack. For

example, during the infamous hijacking of YouTube in February 2008 [6], Pakistan Telecom mistakenly

announced 208.65.153.0/24, a subnet of YouTube’s 208.65.152.0/22 address block. Another cause could

be an ISP that inadvertently misconfigures a route filter that is supposed to block small address blocks

announced by one of its customer ASes.

2.4 Tracking Prefix Match Changes

In this section, we present how to determine routes (more specifically egress router and AS path) to des-

tinations given IP addresses, ingress router (where the IP packets enter the network), and time. We use

the BGP routes from the specified vantage point and time period as inputs for the algorithm. Since an IP

address could be covered by multiple prefixes, the key problem is to track the longest prefix match and the

associated routes for the IP addresses of interest as BGP updates are received.

We begin by exploring the most obvious design option of using the forwarding table of IP routers to

track longest-prefix match (LPM) changes. Then, we point out the scaling challenge of this approach,

and introduce the notion of an address range which is a group of IP addresses that have the same set of

matching prefixes, to track routing changes efficiently. Last, we present the algorithm to track prefix match

changes using address ranges, and demonstrate its benefits by run-time analysis. We also point out that the

using address ranges facilitates parallelization of the algorithm.

2.4.1 Tracking Prefix Match Changes by the Forwarding Table

The most obvious way to implement the function of tracking LPM changes is to use the forwarding table

of the IP routers. This could be done by running the router software to compute the routes and update the

forwarding table. As the queries come in, the forwarding table would be able to output the results based on

the longest prefix match.

25

Assume we have n prefixes initially in the routing table at time t1, and m updates from time t1 to t2. If

the query is for one particular IP address from time t1 to t2, then the time complexity to get the answer is

O(n + m). This is because we need to process all the initial routes and updates. The space complexity is

p, where p stands for the number of prefixes covering the query IP address. This is because the LPM might

change, and we need to keep track of all the prefixes covering this IP address. Since there are no more than

32 prefixes covering one IP address, the space complexity is actually O(1).

Suppose the queries are for many (say k) IP addresses from time t1 to t2. Then, instead of tracking the

related prefixes, we need to keep track of all the prefixes in the forwarding table. The space complexity is

O(n), which includes all the routes. The forwarding table of routers uses the data structure of the Patricia

Trie, which is similar to the tree, so that it takes log(n) time to access and update each elements. As

for the time complexity, it takes O(n ∗ log(n)) to initialize the data structure. For each route, we also

need to check if it affects the query IP address, so it takes O(n ∗ k) totally for k queries. Similarly for

each of the updates, it takes O(log(n)) to update the data structure, and it takes O(k) to check for the

queries. Therefore, the total time complexity (including initialization and processing of the updates) is

O(n ∗ (log(n) + k)) + O(m ∗ (log(n) + k)), which is O((n + m) ∗ (log(n) + k)). In practice, the number

of routes in the routing table (which is n in the formula) is on the order of 300,000, the number of updates

(m) is on the order of millions, and the number of queries could be hundreds of thousands. Thus, the query

processing time could be large.

Since our goal is to reduce the query time, and this could be done by trading off more space for less

time. We could achieve this by pre-processing the routes and updates, and storing the pre-processed results.

Suppose we have one IP address in the query, and it takes O(n + m) to pre-compute the LPM for this

particular IP address. The storage space for the results is O(s), where s represents the number of routes

and updates which affects the LPM of the query IP address. In this way, the actual query processing time

is reduced to O(s), by simply outputting the results. However, this approach would not scale if we need to

store the results for all IP address, since the total number of IP addresses is 232. In the next subsection, we

introduce the idea of address range to track the LPM changes scalably.

2.4.2 Address Ranges and the Associated Data Structure

In this section, we present a method to track prefix match changes for a group of IP addresses. Because of

the nesting of prefixes, an IP address could match several prefixes with different mask lengths over time. In

26

[12.0.0.0−12.0.0.255] [12.1.0.0−12.255.255.255]

[12.0.1.0−12.0.255.255]

/8 /16 /24 /8 /16 /8

prefix

12.0.0.0/8
12.0.0.0/16
12.0.0.0/24

Routing Table

BGP route

Figure 2.2: Storing address ranges and prefix sets for prefixes 12/8, 12/16, and 12/24

order to track prefix-match changes over time, we need to store information about changes to all prefixes

covering the IP address. We refer to the collection of all matching prefixes for a given IP address as its

prefix set; packet forwarding is driven by the longest-matching prefix in the set at any time. For example,

suppose a BGP routing table contains prefixes 12.0.0.0/8 and 12.0.0.0/16. Then, IP address 12.0.0.0 has

the prefix set {/8, /16}. IP address 12.0.0.1 also matches the same prefixes. However, the prefix set for

12.1.0.1 is {/8}.

Rather than tracking the prefix set for each individual IP address, we group contiguous addresses that

have the same prefix set into an address range. For example, prefixes 12.0.0.0/8 and 12.0.0.0/16 divide the

IP address space into two address ranges—[12.0.0.0, 12.0.255.255] with prefix set {/8, /16} and [12.1.0.0,

12.255.255.255] with prefix set {/8}. Note that address ranges differ from prefixes in that the boundaries

of an address range are not necessarily powers of two. For instance, no single prefix could represent all IP

addresses in the range [12.1.0.0, 12.255.255.255].

As we process BGP update messages, address ranges may be created, subdivided or updated. For ease

of searching for the affected address range(s), we store information about address ranges in a binary tree, as

shown in Figure 2.2. A binary tree efficiently supports all the operations we need (including inserting a new

address range, lookup an address range) in an average time of O(log n), where n is the number of address

ranges. In comparison, the brute-force solution that simply stores address ranges in arrays would operate in

an average time of O(n). Each node in the binary tree contains the left-most address in the address range,

and each node keeps a pointer to the size of the address range and the associated prefix set. Each element

27

of the prefix set includes a pointer to the BGP route for that prefix; to save memory, we store a single copy

of each BGP route. As illustrated in Figure 2.2, both address ranges [12.0.0.0, 12.0.0.255] and [12.0.1.0,

12.0.255.255] have prefix 12.0.0.0/16 in their prefix sets, and their prefix sets store the pointers to the route

entry for 12.0.0.0/16. Note that in the figure, we only show the pointers from the most-specific prefixes to

the routing table for illustration.

2.4.3 Algorithm for Tracking Changes to Address Ranges

Next, we present an algorithm that reads BGP table dumps or update messages as input, and tracks the

changes to the address ranges and their associated prefix sets. The algorithm first determines the address

range(s) covered by the prefix, perhaps creating new address ranges or subdividing existing ones. Then, for

each of the associated address ranges, the algorithm modifies the prefix set as needed.

Updating address ranges: A BGP announcement for a new prefix may require creating new address

ranges or subdividing existing ones. For example, suppose 18.0.0.0/16 is announced for the first time, and

no earlier announcements covered any part of the 18.0.0.0/16 address space; then, our algorithm inserts a

new address range [18.0.0.0,18.0.255.255], with a prefix set of {/16}, into the binary tree. As another ex-

ample, suppose we have previously seen route announcements only for 12.0.0.0/8 and 12.0.0.0/16; then, the

binary tree would contain [12.0.0.0,12.0.255.255] with prefix set {/8, /16}, and [12.1.0.0,12.255.255.255]

with prefix set {/8}. On processing an announcement for 12.0.0.0/24, our algorithm would subdivide

[12.0.0.0,12.0.255.255] into two address ranges—one with prefix set {/8, /16, /24} and another with

{/8, /16}, as shown in Figure 2.2. Currently, our algorithm does not delete or merge address ranges after

withdrawal messages. We take this lazy approach towards deleting and merging address ranges because

withdrawn prefixes are often announced again later, and because we have seen empirically that the number

of address ranges increases very slowly over time.

Updating prefix set for address ranges: Continuing with the example in Figure 2.2, suppose the route

for 12.0.0.0/16 is withdrawn. Then, the algorithm would determine that both [12.0.0.0-12.0.0.255] and

[12.0.1.0,12.0.255.255] have /16 removed from the prefix set. For addresses in [12.0.1.0-12.0.255.255],

the withdrawal would change the longest matching prefix to the less specific 12.0.0.0/8.

Lastly, we estimate the time and space complexity for this algorithm. The pre-processing time for n

routes and m updates from time t1 to t2 is n ∗ log(n) + m ∗ log(n) = (n + m) ∗ log(n). This is because it

takes O(log(n)) to perform a single operation on the tree. The storage space for the results of LPM changes

28

is O(n + m), since we need to track all routes and updates at most. As for the actual query processing, it

only takes the time of O(k ∗ (n + m)), by looking up the results for each query IP address.

Another advantage of the address ranges is that it breaks the dependency among the prefixes. By

having the pre-processing records of address ranges, we no longer need to process the updates by time

consequentially for the queries; instead, we could parallelize the processing for all the result entries for all

the queries. Therefore, the query time could be further reduced to O(k ∗ (n + m)/c), where c stands for

the number of CPUs available for parallel processing.

In summary, in this section, we present the idea of using address ranges to track the LPM changes

for IP addresses at scale. We also point out another benefit of the address ranges, which is to remove the

dependency among the prefixes and facilitate parallelization.

2.5 Route Oracle Design and Implementation

Using the algorithm of Section 2.4 as a basis, we present the overall design and implementation of Route

Oracle in this section. We begin with the overview of the design, and follow it with a detailed description

of the two main parts of the design: the pre-processing module that converts BGP updates to updates of

address range records, and the query module that identifies the routes for IP addresses based on these

records.

2.5.1 System Overview

The input to Route Oracle consists of a list of IP addresses, a vantage-point router, and the time period

over which route changes are desired. The output is routes for each IP address at the start time, and then

changes to them during the specified time period. The route includes the longest matching prefix, egress

router and the AS path. The basic way to handle such a query is to process the BGP updates from the

specified vantage point and time period using the algorithm we presented in the last section, and output the

result. For example, for the query of route changes for IP address 128.112.0.0 from t1 to t2 at vantage point

v, the algorithm will have to process BGP updates from vantage point v from t1 to t2. The output could

be: at time t1, the longest prefix match is /24, with associated route r1; at time t3 (which is before t2), the

IPs change to a less-specific prefix match /16, with route r2; and finally no route changes for the address

till t2. However, this basic approach does not scale well with the number of IP addresses due to nesting of

29

BGP routing table snapshot

BGP updates

Precomputation

Route Oracle

Query Processing

(or prefixes, IP ranges)
list of IP addresses
query time period

vantage point
Input:

(including prefix match, egress router, AS path)

route and changes for each query

incremental route updates for address ranges

snapshot of routes for address ranges

Figure 2.3: Route Oracle System Design

prefixes. The nesting of prefixes means that for each IP address, every update containing a matching prefix

needs to be processed to see if the longest prefix match, and hence the route, changed for the address or

not.

To overcome this, we convert prefix-based BGP updates to routing changes for address ranges by using

the algorithm specified in Section 2.4. Since address ranges do not overlap, answering queries for route

changes scales much better for a large number of addresses in the input. In fact, once we convert BGP

updates into address ranges, we save the resulting records for future use, and answer all queries using these

records, thereby amortizing the cost of conversion across all subsequent queries.

To summarize, our design of Route Oracle consists of two modules as shown in Figure 2.3: A pre-

processing module that transforms the BGP update stream into a stream of address ranges and associated

route changes; and a query module that determines route changes for desired IP addresses using the address

range records. In the following subsections, we provide detailed descriptions of these two modules.

2.5.2 Precomputing Route Updates for Address Ranges

The pre-processing part uses the algorithm presented in the previous section to track the longest prefix

match and route changes for all the IP addresses. The inputs to the pre-processing part are BGP routing

table snapshots and BGP updates. The output consists of address ranges and route changes to them. Each

record contains the following attributes: the address range, time of the route change, the longest prefix

match, the egress router, and the AS path. In addition, we also include information on how the longest

30

prefix match was changed compared with the previous route (e.g., change to a more-specific or less-specific

prefix), and whether the egress router and AS path were changed compared to the previous route.

Since BGP is an incremental protocol where updates are only sent by a router when its route to a prefix

changes, the BGP monitor deployed in the tier-1 ISP generates periodic snapshot of routes for all prefixes.

Using the snapshot of prefixes and their routes, the module determines and stores a snapshot of all the

address ranges and routes associated with them. It then records changes to address ranges and routes as

subsequent BGP updates are received.

We should note that the time interval between snapshots of all address range records has a direct bearing

on query processing time since, given a query, we have to process address ranges starting from the latest

snapshot before the query time period. Thus, storing snapshots more frequently will reduce query time.

However, this will increase the storage space, and hence there is a tradeoff between how often snapshots

are stored versus query processing time. At present, we store one snapshot per day to coincide with the

BGP routing tables which are generated at the beginning of every day.

We store all the address range records for a given day under the same directory, with the file names

indicating the IP address of the vantage point. Directories are named hierarchically according to year,

month and day. This facilitates easy searching of files for a given time period. The address range updates

are stored in multiple files with each file spanning a fixed interval (currently 15 minutes) of the day. The

files are compressed to reduce the storage space. All the records are written in network byte-order for

platform compatibility.

2.5.3 Query Processing

The query module uses the address range records (snapshots + updates) to answer queries regarding routes

for IP addresses. The input to the query module is a list of IP addresses, the vantage point and the time

interval over which routes are desired. The output is routes at the beginning of the time interval for each

address range and changes to them over the interval. The input IP addresses can be specified as address

ranges or prefixes.

When a query is received, the module first determines the latest address range snapshot prior to the

start time of the interval. It then applies updates of address range records to determine the state at the start

time, and then continues processing address range records till the end time to determine route changes.

For each address range, the module checks if the range overlaps with the input IP address list, and if so,

31

the record is used to update the route for the affected IP addresses. Note that since the address range files

are stored hierarchically based on their time stamps, the module can quickly locate files for a specific time

interval. For instance, let us assume that the query is for route changes of a single IP address 128.112.0.0

from October 24, 2009 9:00 a.m. to 5:00 p.m.. In this case, the query module will read the address range

snapshot at the beginning of the day on October 24, 2009, and then address range updates till 9:00 a.m. to

get the latest route for 128.112.0.0 just at the start time of the query time period. Then, the module will

read the address range updates from 9:00 a.m. to 5:00 p.m., and output all route changes for the IP address

in question.

We have implemented two optimizations to further reduce the query response time. First, if the user

inputs a list of IP addresses in a query, we amortize the cost of reading address range records across all the

IP addresses. This is because the reading of the address range files dominates the overall query processing

time. As we read address ranges sequentially, we compare each record with all the IP address ranges and

prefixes in the list. This way, the reading of the result record files is amortized over all IP addresses.

Second, we parallelize the processing of the address range files given the prevalence of multi-core

machines. Since address range updates for fixed time intervals are stored in separate files, we parallelize

the reading and processing of these files by submitting multiple processes each processing one file at a time.

The route changes determined by all these processes are gathered at the end, and sorted in chronological

order before generating the output.

2.6 Performance Evaluation

This section presents performance evaluation of the Route Oracle tool. For the pre-processing module,

our aim is to verify that it can keep up as BGP updates arrive. For the query module, we evaluate its

performance – both response time and resource usage – as a function of the size of the input. We also

evaluate the effect of optimizations – parallelization in particular – on the performance of the query module.

Our experiments were run on an standard off-the-shelf SMP server, with two quad-core Xeon X5460

Processors. Each CPU is 3.16 GHz and has 6 MB of cache. The server contains 16 GB of total RAM. We

apply our tool to BGP routing table and update messages collected for the month of August 2009 from a

top-level route reflector in a tier-1 ISP backbone. The queried IP addresses were randomly selected from

the routing table.

32

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6

C
C

D
F

 o
ve

r
al

l r
un

s

pre-processing time for BGP updates received over fixed time-interval (seconds)

5 mins
10 mins
20 mins

Figure 2.4: CCDF of the time spent by the pre-processing module to convert BGP updates received over
fixed time-interval into address range records.

We first evaluate the pre-computation module of the tool, focusing on the time to process BGP updates.

Next, we evaluate how the query processing time varies as the query time period grows. Then, we evaluate

the scalability of the query processing, as the number of queried IP addresses grow, and show the memory

resource consumption. Finally, we demonstrate the benefit of parallelization in query processing.

2.6.1 Pre-processing Time

In this subsection, we evaluate how long it takes to convert BGP updates into address range records. To do

this, we consider BGP updates received over fixed time-intervals of 5, 10 and 20 minutes, and compute the

time spent by the pre-processing module on each batch of updates. We present results for updates received

on August 01, 2009; similar results were observed for other days.

Figure 2.4 shows the pre-processing time for BGP updates received over various fixed time-intervals as

a CCDF (complementary cumulative distribution function). As can be seen, of all the BGP updates received

and processed in 5 minutes interval, 99% could be processed within 2 seconds, and the maximum time to

process the BGP updates received in 20 minutes interval is about 5 seconds. This clearly demonstrates that

the pre-processing module is able to handle BGP updates in real time as they arrive.

In order to better understand what factor mainly determines the pre-computation time, we counted the

number of BGP updates received over fixed time intervals. For each point in Figure 2.5, the number on

the x-axis stands for the number of BGP updates received over the fixed time-interval, while the number

33

 1

 2

 3

 4

 5

 6

 0 50000 100000 150000 200000 250000

pr
e-

pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

number of BGP updates received over fixed time-interval

5 mins
10 mins
20 mins

Figure 2.5: Pre-processing time varies according to the number of BGP updates received over the fixed
time-interval.

on the y-axis presents the time spent on processing the updates. The figure clearly illustrates the linear

relationship between the pre-computation time and the number of BGP updates received over the interval.

The start point of each curve shows that it takes approximately 1.5 seconds to finish the fixed steps of the

pre-computation part which includes bootstrapping the data structures used by the pre-processing module,

and writing the address range records to files at the end. As the number of BGP updates increases, the

pre-processing time increases linearly.

2.6.2 Query Processing Time

The query processing time is a function of many parameters, including the length of the query time period,

the number of IP addresses queried, and the number of processes run in parallel. In this subsection, we

evaluate the query processing time along these three dimensions, and understand how these factors affect

the query processing time.

We start by measuring the query processing time for a single IP address, where a single process is used

to handle the query. We vary the start and end times of the query time period on August 01, 2009. We first

choose a random start time on that day, then choose a random end time between the start time and the end

of the day. Figure 2.6 shows the result, where each point stands for one experiment with a randomly chosen

IP address to query, random start time and random end time. The x-axis denotes the query end time from

the beginning of the day.

34

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
on

ds
)

query end time (minutes)

query process time

Figure 2.6: Query processing time versus end time.

Figure 2.6 illustrates that the query processing time grows linearly with the end time of the query. This

is because irrespective of the start time, the query module has to process all the address range records from

the last snapshot (which happens to be the beginning of the day) till the end time since the address range

records from the snapshot till the start time are used to determine the routes used at the start time. This

explains why the query processing time depends on the length from the beginning of day to the query end

time. In addition, note that the time spent on answering the query for a single IP address for a one-day

period is no more than 3.5 seconds.

We should also emphasize that the query time can reduced by storing more frequent snapshots at the

cost of more storage space. Based on the worst-case time of 3.5 seconds, we believe that storing one

snapshot per day provides us with a pretty good performance at a reasonable storage cost (few MBytes per

snapshot).

2.6.3 Scalability of Query Processing

Next, we evaluate the scalability of query processing by increasing the number of queried IP addresses. We

also show how the amortization of file processing over the IP addresses reduces the query processing time.

In addition, we evaluate the memory consumption as the number of queried IP addresses grows. For this

experiment, we use the query time period of one hour. We increase the number of number of IP addresses

from 1, 2, 4, 8, ... till about 130,000. The IP addresses used for the queries are all randomly chosen. As in

35

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20000 40000 60000 80000 100000 120000 140000

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
on

ds
)

number of IP addresses queried

query time period: one hour

Figure 2.7: Query processing time versus number of IP addresses queried.

the previous section, we use a single process to answer all the queries.

Figure 2.7 shows the query processing time in seconds, as the number of queried IP addresses increases.

The figure shows that it takes about half an hour to process 130,000 IP addresses for a time interval of one

hour. The query processing time grows linearly as the number of queried IP addresses increases. However,

the slope is lower at the beginning of the curve, but increases at some point (in fact two points) as the

number of IP addresses increases. We believe this is because when number of IP addresses are lower, the

time to read the address range records, which is amortized over all IP addresses, dominates. In contrast,

when the number of IP addresses becomes large, the time spent on processing the address range records

starts dominating, resulting in a higher slope for the curve.

Figure 2.8 shows the peak virtual memory utilization during the same experiment. As illustrated by the

figure, the memory utilization grows as the number of queried IP addresses increases, and the peak virtual

memory used for processing about 130,000 IP addresses for an hour is about 480 MB. The increase in

memory consumption as the number of queried IP addresses increases is because we store all the matching

address range records in memory before outputting them at the end. Another factor affecting the peak

virtual memory utilization is the query time period, since the query time period determines the number of

address range records that must be stored in memory.

36

 0

 100000

 200000

 300000

 400000

 500000

 0 20000 40000 60000 80000 100000 120000 140000

pe
ak

 v
irt

ua
l m

em
or

y
ut

ili
za

tio
n

(k
)

number of IP addresses queried

query time period: one hour

Figure 2.8: Peak virtual memory utilization versus number of IP addresses queried.

#IPs Queried Query Processing Time (Secs)
1 26.1

10 26.1
100 27.7
1000 54.5

10000 279.7

Table 2.4: Query processing time (without parallelization) versus number of IP addresses queried.

2.6.4 Parallelization of Query Processing

Last, we evaluate the benefits of parallelization achieved on multi-core machines. For this experiment, we

extend the query time period to 10 days from August 01 to August 10, 2009. We vary the number of IP

addresses queried by randomly choosing 1, 10, 100, 1000, and 10000 IP addresses. Recall that the server

on which experiments were run had two quad-core CPUs, i.e., 8 processing cores each running at 3.16

GHz.

We start by measuring the query processing time by using only one process with no parallelization.

These numbers serve as a benchmark against which we compare the processing time with multiple parallel

processes. Table 2.4 shows these numbers for varying number of IP addresses over the query time period

of 10 days.

Next, for the same set of IP addresses queried, we vary the number of concurrent processes submitted

in parallel from 2 to 14. We measure the query processing time, and divide it by the query processing time

37

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

no
rm

al
iz

ed
 q

ue
ry

 p
ro

ce
ss

in
g

tim
e

number of concurrent processes

1 IP
10 IPs

100 IPs
1000 IPs

10000 IPs

Figure 2.9: normalized query processing time versus number of concurrent processes

without parallelization given by Table 2.4. Figure 2.9 shows the result of this experiment, where the y-axis

is the normalized processing time. As illustrated by the figure, the benefits of parallelization increase, as the

number of queried IP addresses increases, since more IP addresses mean more time to process the address

range records. For example, the query of 10,000 IP addresses takes about 5 minutes to process without

parallelization. This number is reduced to 53%, 30%, 23% and 19% of its value when we increase the

parallelization to 2, 4, 6 and 8 processes, respectively. No further gain is achieved in processing time by

submitting more than eight processes in parallel.

Since the performance levels out when number of processes reach the number of cores, we suspect that

the CPU is the performance bottleneck. We confirmed this by tracking the CPU utilization at one minute

intervals during the course of the experiment when eight parallel processes were running. As expected,

the utilization stayed at 100% during much of the processing, confirming that no further gain is possible

beyond eight processes on this particular eight core server.

2.7 Related Work

Understanding route changes is fundamental to network troubleshooting. Packet Design [7] provides Route

Explorer to capture the complete stream of routing updates received. In particular, Route Explorer has an

animated historical playback feature which lets the operators diagnose problems by quickly rewinding to

past routing activities at a specific time. In our work, Route Oracle takes one step further to handle the

38

prefix-match changes, and outputs route changes for IP addresses of interest.

RouteViews [8] and RIPE-NCC [9] provide publicly available passive measurements of BGP route

updates. In these projects, the BGP monitors are fed with BGP announcements and withdrawal messages

received via an external BGP session with one router in the participating AS. Proposals have been made to

pin-point the location and cause of routing changes using these measurement infrastructures [10, 11, 12].

In comparison, Route Oracle allows one to understand how route changes actually affect routes for IP

addresses.

Our work also relates to earlier studies that used BGP measurement data to analyze the relationship

between IP prefixes [13, 14, 15, 16, 9]. For example, the work on BGP policy atoms [13, 14] showed that

groups of related prefixes often have matching AS paths, even when viewed from multiple vantage points;

typically, a more-specific prefix had different AS paths than its corresponding less-specific prefix [13].

Other researchers analyzed BGP table dumps to understand the reasons why each prefix appears in the inter-

domain routing system, and the reasons include delegation of address space to customers, multi-homing,

and load balancing [15, 16]. In contrast, our system focuses on tracking the changes in the longest-matching

prefix rather than a static analysis of a BGP table dump.

Our work also relates to earlier analysis of BGP routing dynamics [2, 17, 18, 5]. These studies analyze

announcement and withdrawal message for each destination prefix, and group related BGP update mes-

sages to identify BGP convergence events and route flapping. Whereas these studies treat each IP prefix

independently, our analysis of BGP update dynamics focuses on the relationship between nested prefixes.

Still, we draw on the results in these earlier studies when selecting thresholds for identifying phenomena

such as BGP path exploration and route flapping. Our work also relates to measurement studies of pre-

fix hijacking, and particularly subprefix hijacking [19, 20] that triggers a change in the longest-matching

prefix. Yet, our study considers a wider range of causes of prefix-match changes.

Previous studies have also characterized IP reachability through direct or indirect observations of the

underlying data-plane paths used to forward packets [21, 22, 23, 24, 25, 26, 27]. Most of these studies

involve active probing (using ping, traceroute, or custom tools) [21, 22, 23, 24], sometimes triggered by

passive observations of reachability problems [21, 22]. Other work has focused on analysis of passively

collected traffic measurements (such as Netflow data or Web server logs) to detect possible routing changes

or reachability problems [25, 26, 27]. In contrast, our work has focused primarily on how the longest-

matching prefix, used in packet forwarding, changes over time. That said, these previous studies are quite

39

relevant to our ongoing analysis of the Netflow data to understand the impact of these prefix-match changes

on end-to-end reachability.

2.8 Summary

In this chapter, we presented Route Oracle, a scalable system to determine the BGP routes (and thus AS

Path and egress router) used by one or more IP addresses from a given router in a network. We believe

that the system should form a basis for several network and service management applications. The key

component of Route Oracle is an algorithm to track changes to the longest prefix-match for IP addresses as

BGP route updates arrive. Our system uses this algorithm to convert BGP updates which are prefix-based

into route updates to non-overlapping IP address ranges. This step facilitates queries about route changes

for a large number of IP addresses. We also described other optimizations that further reduce the query

response time. Our systematic evaluation demonstrated Route Oracle’s ability to handle queries at scale and

in real time. We have deployed Route Oracle in a large Tier-1 ISP where it is being used to troubleshoot

performance impairments for various services. The system optimizations described in the chapter were

implemented based on feedback from this user community.

40

Chapter 3

Diagnosing Wide-Area Latency

Increases for CDNs

3.1 Introduction

Content Distribution Networks (CDNs) offer users access to a wide variety of services, running on geo-

graphically distributed servers. Many web services are delay-sensitive interactive applications (e.g., search,

games, and collaborative editing). CDN administrators go to great lengths to minimize user-perceived la-

tency, by overprovisioning server resources, directing clients to nearby servers, and shifting traffic away

from overloaded servers. Yet, CDNs are quite vulnerable to increases in the wide-area latency between

their servers and the clients, due to interdomain routing changes or congestion in other ASes. The CDN

administrators need to detect and diagnose these large increases in round-trip time, and adapt to alleviate

the problem (e.g., by directing clients to a different front-end server or adjusting routing policies to select

a different path).

To detect and diagnose latency problems, CDNs could deploy a large-scale active-monitoring infras-

tructure to collect performance measurements from synthetic clients all over the world. Instead, this chapter

explores how CDNs can diagnose latency problems based on measurements they can readily and efficiently

collect—passive measurements of performance [28], traffic [29], and routing from their own networks. Our

goal is to maximize the information the CDN can glean from these sources of data. By joining data col-

41

Figure 3.1: CDN architecture and measurements

lected from different locations, the CDN can determine where a client request enters the CDN’s network,

which front-end server handles the request, and what egress router and interdomain path carry the response

traffic, as shown in Figure 3.1. Using this data, we analyze changes in wide-area latency between the clients

and the front-end servers. The rest of the user-perceived latency, which is between the front and back-end

servers, is under the CDN’s direct control and relatively easy to troubleshoot problems.

Finding the root cause of latency increases is difficult. Many factors can contribute to higher delays,

including internal factors like how the CDN selects servers for the clients, and external factors such as

interdomain routing changes. Moreover, separating cause from effect is a major challenge. For example,

directing a client to a different front-end server might change where traffic enters and leaves the CDN

network and the routes correspondingly. However, in this case, the routing changes is not the original

cause of all the changes. Therefore, in order to classify the large increases in latency, our classification

must first determine whether client requests shifted to different front-end servers, or the latency to reach

the existing servers increased. Only then can we analyze why these changes happened. For example, the

front-end server may change because the CDN determined that the client is closer to a different server, or

because a load-balancing policy needed to shift clients away from an overloaded server. Similarly, if the

round-trip time to a specific server increases, routing changes along the forward or reverse path (or both!)

could be responsible.

42

The scale of large CDNs also introduces challenges. To measure and control communication with

hundreds of millions of users, CDNs typically group clients by an IP prefix or a geographic region. For

example, a CDN may collect round-trip times and traffic volumes by IP prefix, or direct clients to front-end

servers by region. During any measurement interval, a group of clients may send requests to multiple front-

end servers, and the traffic may enter and leave the CDN network at multiple ingress and egress routers.

Thus, in order to analyze the latency increases for groups of requests, we need to define the metrics to

distinguish the changes from an individual router or server.

In designing our methodology for classifying large latency increases, we make the following contri-

butions. Our general methodology could be applied to other CDNs, by collecting and using similar data

sets.

• Decision tree for separating cause from effect: A key contribution of this chapter is that we de-

termine the causal relationship among various factors that lead to latency increases. We propose a

decision tree for separating the causes of latency changes from their effects, and identify the data sets

needed for each step in the analysis. We analyze the measurement data to identify suitable thresholds

to identify large latency changes and to distinguish one possible cause from another.

• Metrics to analyze over sets of servers and routers: Our analysis methodology can analyze latency

increases and traffic shifts over sets of servers and routers. We propose metrics to quantify the extent

of the latency increases caused by various potential causes. For each potential cause, we define the

metric to quantify the contribution of latency increases by a single router or server, as well as a way

to summarize the contributions across all routers and servers.

• Latency characterization for Google’s CDN: We apply our methodology to one month of traffic,

performance, and routing data from Google’s CDN, and identified that nearly 1% of the daily latency

changes increase delay by more than 100 msec. Our results show that 73.9% of these large increases

in latency were explained (at least in part) by a large increase in latency to reach an existing front-end

server, with 42.2% coinciding with a change in the ingress router or egress router (or both!). Around

34.7% of the large increases of latency involved a significant shift of client traffic to different front-

end servers, often due to load-balancing decisions or changes in the CDN’s own view of the closest

server.

• Case studies to highlight challenges in CDN management: We present several events in greater

43

detail to highlight the challenges of measuring and managing wide-area performance. These case

studies illustrate the difficulty of building an accurate latency-map to direct clients to nearby servers,

the extra latency client experience when flash crowds force some requests to distant front-end servers,

and the risks of relying on AS path length as an indicator of performance.

The rest of the chapter is organized as follows. Section 3.2 provides an overview of the architecture of

the Google CDN, and the datasets we gathered. Section 3.3 describes our decision-tree methodology for

characterizing latency increases. Section 3.4 presents a high-level characterization of the latency changes

in the Google’s CDN, and identifies the large latency events we study. Next, we present the results of

our characterization in Section 3.5, followed by several case studies in Section 3.6. Then, we discuss the

future research directions in Section 3.7, and present related work in Section 3.8. Finally, we conclude in

Section 3.9.

3.2 Measuring the CDN Network

In this section, we first provide a high-level overview of the network architecture of Google’s CDN. Then,

we describe the measurement dataset we gathered for our analysis in the rest of the chapter.

3.2.1 CDN Architecture

The infrastructure of Google’s CDN consists of many servers in the data centers spread across the globe.

The client requests are first served at a front-end (FE) server, which provides caching, content assembly,

pipelining, request redirection, and proxy functions for the client requests. To have greater control over

network performance, CDN administrators typically place front-end servers in managed hosting locations,

or ISP points of presence, in geographic regions nearby the clients. The client requests are terminated at the

FEs, and (when necessary) served at the backend servers which implement the corresponding application

logic. Inside the CDN’s internal network, servers are connected by the routers, and IP packets enter and

leave the network at edge routers that connect to neighboring ISPs.

Figure 3.1 presents a simplified view of the path of a client request. A client request is directed to an

FE, based on proximity and server capacity. Each IP packet enters the CDN network at an ingress router

and travels to the chosen FE. After receiving responses from the back-end servers, the FE directs response

traffic to the client. These packets leave the CDN at an egress router and follow an AS path through one or

44

Data Set Collection Point Logged Information
Performance front ends (FEs) (client /24 prefix, country, RPD, average RTT)
Traffic ingress routers (client IP address, FE IP address, bytes-in)

egress routers (FE IP address, client IP address, bytes-out)
Routing egress routers (client IP prefix, AS path)
Joint data (client IP prefix, FE, RPD, RTT, {ingress, bytes-in}, {egress, AS path, bytes-out})

Table 3.1: Measurements of wide-area performance, traffic, and routing

more Autonomous Systems (ASes) en route to the client. The user-perceived latency is affected by several

factors: the location of the servers, the path from the client to the ingress router, and the path from the

egress router back to the client. From the CDN’s perspective, the visible factors are: the ingress router, the

selection of the servers, the egress router, and the AS path.

Like many CDNs, Google uses DNS to direct clients to front-end servers, based first on a latency map

(preferring the FE with the smallest network latency) and second on a load-balancing policy (that selects

another nearby FE if the closest FE is overloaded) [30]. To periodically construct the latency map, the

CDN collects round-trip statistics by passively monitoring TCP transfers to a subset of the IP prefixes.

In responding to a DNS request, the CDN identifies the IP prefix associated with the DNS resolver and

returns the IP address of the selected FE, under the assumption that end users are relatively close to their

local DNS servers. Changes in the latency map can lead to shifts in traffic to different FEs. The latency

between the front-end and back-end servers is a known and predictable quantity, and so our study focuses

on the network latency—specifically, the round-trip time—between the FEs and the clients.

3.2.2 Passive Measurements of the CDN

The measurement data sets, which are routinely collected at the servers and routers, are summarized in

Table 3.1. The three main datasets—performance, traffic, and routing measurements—are collected by

different systems. The measurement data gathered is composed of latency sensitive traffic, and specifically

excludes video traffic, as that is latency insensitive.

Client performance (at the FEs): The FEs monitor the round-trip time (RTT) for a subset of the TCP

connections by measuring the time between sending the SYN-ACK and receiving an ACK from the client.

If this SYN-ACK RTT is larger than the RTT for data transfers in the same TCP connection, then the servers

log the shorter RTT value instead (which is the RTT for data transfer in this case). These measurements

45

capture the propagation and queuing delays along both the forward and reverse paths to the clients. Each

FE also counts the number of requests, producing a daily summary of the round-trip time (RTT) and the

requests per day (RPD) for each /24 IP prefix. Each /24 prefix is associated with a specific country, using

the IP address-to-Geo mapping. We use it to group prefixes in nearby geographical regions for our study.

Netflow traffic (at edge routers): The edge routers collect traffic measurements using Netflow [29].

The client is the source address for incoming traffic and the destination address for outgoing traffic; simi-

larly, the FE is the destination for incoming traffic, and the source for outgoing traffic. Netflow performs

packet sampling, so the traffic volumes are estimates after correcting for the sampling rate. This leads to

records that summarize traffic in fifteen-minute intervals, indicating the client IP address, front-end server

address, and traffic volume. Traffic for a single client address may be associated with multiple routers or

FEs during the interval.

BGP routing (at egress routers): The edge routers also collect BGP routing updates that indicate the

sequence of Autonomous Systems (ASes) along the path to each client IP prefix. (Because BGP routing is

destination based, the routers cannot collect similar information about the forward path from clients to the

FEs.) A dump of the BGP routing table every fifteen minutes, aligned with the measurement interval for

the Netflow data, indicates the AS-PATH of the BGP route used to reach each IP prefix from each egress

router.

Joint data set: The joint data set used in our analysis combines the performance, traffic, and routing

data, using the client IP prefix and FE IP address as keys in the join process. First, the traffic and routing

data at the egress routers are joined by matching the client IP address from the Netflow data with the

longest-matching prefix in the routing data. Second, the combined traffic and routing data are aggregated

into summaries and joined with the performance data, by matching the /24 prefix in the performance data

with the longest-matching prefix from the routing data. Note that the /24 prefix is the finest granularity in

our measurement study. The resulting joint data set captures the traffic, routing, and performance for each

client IP prefix and front-end server, as summarized in Table 3.1. The data set is aggregated to prefix level.

In addition, the data do not contain any user-identifiable information (such as packet payloads, timings of

individual requests, etc.) The data set we study is based on a sample, and does not cover all of the CDN

network.

The data have some unavoidable limitations, imposed by the systems that collect the measurements:

the performance data does not indicate which ingress and egress router were used to carry the traffic, since

46

the front-end servers do not have access to this information. This explains why the joint data set has a set

of ingress and egress routers. Fortunately, the Netflow measurements allow us to estimate the request rate

for the individual ingress routers, egress routers, and AS paths from the observed traffic volumes; however,

we cannot directly observe how the RTT varies based on the choice of ingress and egress routers. Still, the

joint data set provides a wealth of information that can shed light on the causes of large latency increases.

Latency map, and front-end server capacity and demand: In addition to the joint data set, we

analyze changes to the latency map used to drive DNS-based server selection, as discussed in more detail

in Section 3.3.2. We also collect logs of server capacity and demand at all front-end servers. We use the

logs to determine whether specific FE is overloaded at a given time (when the demand exceeded capacity,

and requests were load balanced to other front-end servers).

3.3 Methodology

Analyzing wide-area latency increases is difficult, because multiple inter-related factors can lead to higher

round-trip times. As the choice of ingress and egress routers depends on the front-end server, our classi-

fication starts by determining whether or not the front-end server changes, as shown in the first branch in

Figure 3.2. Our analysis accounts for the fact that clients may direct traffic to multiple front ends, either

because the front-end server changes or because different clients in the same region use different front-end

servers.

In this section, we present the methodology we use to analyze latency increases, as illustrated in Fig-

ure 3.2. First, we propose metrics for distinguishing FE changes from latency changes that affect individual

FEs. Then, we describe the techniques to identify the cause of FE changes (the latency map, or load bal-

ancing). Lastly, we present the method to correlate the latency increases that affect individual FEs with

routing changes. Table 3.2 summarizes the notation used in this chapter.

3.3.1 Front-End Server and Latency Metrics

Analyzing latency increases is relatively easy if all clients use the same FE. In this case, the average round-

trip time could increase for one of two main reasons: front-end server changes, or latency increases at

specific FEs. It is worth mention that each front-end server represents one data center, which has hundreds

to thousands of servers. Because of the high redundancy in the data centers, there is no category for FE

47

Characterize
Latency

Performance Data

Events FE Change
vs.

FE Latency Increase

Classification

Latency Map Change
vs.

Load Balancing

Routing Changes:
Ingress Router

Egress Router, AS Path

BGP Routing
Netflow Traffic

Latency Map
FE Capacity and Demand

Report

FE Server
Changes

FE Latency
Changes

(Section 3.4) (Section 3.3.1)

(Section 3.3.2, 3.3.3)

(Section 3.3.4)

Figure 3.2: Classification of large latency changes using passive measurements

failures (which means the entire data center is shut down).

• Front-end server changes (∆FE): The clients switch from one front-end server to another, where

the new server used has a higher RTT. This change could be caused by an FE failure or a change in

the CDN’s server-selection policies, as shown in the upper branch of Figure 3.2.

• Front-end latency changes (∆Lat): The clients could continue using the same FE, but have a higher

RTT for reaching that server. The increased latency could stem from changes along the forward or

reverse path to the client, as shown in the lower branch of Figure 3.2.

The analysis is more difficult if clients contact multiple front-end servers, and the RTT and RPD for each

server changes. Correctly distinguishing all of these factors requires grappling with sets of front-ends and

weighing the RTT measurements appropriately.

The average round-trip time experienced by the clients is the average over the requests sent to multiple

front-ends, each with its own average round-trip time. For example, consider a region of clients experi-

encing an average round-trip time of RTT1 at time 1, with a request rate of RPD1i and round-trip time

RTT1i for each front-end server i. Then,

RTT1 =
∑

i

RTT1i ∗
RPD1i

RPD1

48

Symbol Meaning
RTT1, RTT2 round-trip time for a client region at time 1 and time 2
∆RTT change in RTT from time 1 to time 2 (i.e., RTT2 −RTT1)
RTT1i, RTT2i round-trip time for requests to FEi at time 1 and time 2
RPD1, RPD2 requests for a client region at time 1 and time 2
RPD1i, RPD2i requests to FEi at time 1 and time 2
∆FEi latency change contribution from traffic shifts at FEi

∆Lati latency change contribution from latency changes at FEi

∆FE latency change contribution from traffic shifts at all FEs
∆Lat latency change contribution from latency changes at all FEs
r1i, r2i fraction of requests served at FEi predicted by the latency map at time 1 and time 2
∆LatMap fraction of requests shifting FEs predicted by the latency map
∆FEDist actual fraction of requests shifting FEs
LoadBalance1 fraction of requests shifting FEs by the load balancer at time 1
∆LoadBal difference of the fraction of requests shifting FEs by the load balancer from time 1 to time 2
∆Ingress fraction of the traffic shifting ingress router at a specific FE
∆EgressASPath fraction of the traffic shifting (egress router, AS path) at a specific FE

Table 3.2: Summary of key notation

where RPD1 =
∑

i RPD1i is the total number of requests from that region, across all front-end servers,

for time period 1. A similar equation holds for the second time period, with the subscripts changed to

consider round-trip times and request rates at time 2.

The increase in average round-trip time from time 1 to time 2 (i.e., ∆RTT = RTT2 −RTT1) is, then,

∆RTT =
∑

i

(
RTT2i ∗

RPD2i

RPD2
−RTT1i ∗

RPD1i

RPD1

)

The equation shows how the latency increases could come either from a higher round-trip time for the same

server (i.e., RTT2i > RTT1i) or a shift in the fraction of requests directed to each FE (i.e., RPD2i/RPD2

vs. RPD1i/RPD1), or both. Note that in cases when the set of FE server changes, this equation still holds.

To tease these two factors apart, consider one FE i, and the term inside the summation. We can split the

term into two parts that sum to the same expression, where the first captures the impact on the round-trip

time from traffic shifting toward front-end server i:

∆FEi = RTT2i ∗
(

RPD2i

RPD2
− RPD1i

RPD1

)

49

where ∆FEi is high if the fraction of traffic directed to front-end server i increases, or if the round-trip

time is high at time 2. The second term captures the impact of the latency to front-end server i increasing:

∆Lati = (RTT2i −RTT1i) ∗
RPD1i

RPD1

where the latency is weighted by the fraction of requests directed to front-end server i, to capture the

relative impact of this FE on the total increase in latency. Through simple algebraic manipulation, we can

show that

∆RTT =
∑

i

(∆FEi + ∆Lati).

As such, we can quantify the contribution to the latency change that comes from shifts between FEs:

∆FE =
∑

i

∆FEi/∆RTT

and latency changes for individual front-end servers

∆Lat =
∑

i

∆Lati/∆RTT

where the factors sum to 1. For example, if the FE change contributes 0.85 and the latency change con-

tributes 0.15, we can conclude that the latency increase was primarily caused by a traffic shift between

front-end servers. If the FE change contributes -0.1 and the latency change contributes 1.1, we can con-

clude that the latency increase was due to an increase in latency to reach the front-end servers rather than a

traffic shift; if anything, the -0.1 suggests that some traffic shifted to FEs with lower latency, but this effect

was dwarfed by one or more FEs experiencing an increase in latency.

In the following subsections, we present the method to identify the causes of the FE changes: the

latency map and load balancing.

3.3.2 Latency Map: Closest Front-End Server

Google CDN periodically constructs a latency map to direct clients to the closest front-end server. The

CDN constructs the latency map by measuring the round-trip time for each /24 prefix to different front-end

servers, resulting in a list mapping each /24 prefix to a single, closest FE. From the latency map, we can

50

compute the target distribution of requests over the front-end servers for groups of co-located clients in two

time intervals. To combine this information across all /24 prefixes in the same region, we weigh by the

requests per day (RPD) for each /24 prefix. This results in a distribution of the fraction of requests r1i from

the client region directed to front-end server i, at time 1.

As the latency map and the request rates change, the region may have a different distribution {r2i} at

time 2. To analyze changes in the latency map, we consider the fraction of requests that should shift to

different front-end servers:

∆LatMap =
∑

i

|r2i − r1i|/2

Note that we divide the difference by two, to avoid double counting the fraction of requests that move

away from one FE (i.e., r2i − r1i decreasing for one front-end server i) and towards another (i.e., r2i − r1i

increasing for some other front-end server).

3.3.3 Load Balancing: Avoiding Busy Servers

In practice, the actual distribution of requests to front-end servers does not necessarily follow the latency

map. Some FEs may be overloaded, or unavailable due to maintenance. To understand how the traffic

distribution changes in practice, we quantify the changes in front-end servers as follows:

∆FEDist =
∑

i

∣∣∣∣RPD2i

RPD2
− RPD1i

RPD1

∣∣∣∣ /2

That is, we calculate the fraction of requests to FE i at time 1 and time 2, and compute the difference,

summing over all front-end servers. As with the equation for ∆LatMap, we divide the sum by two to

avoid double counting shifts away from one front-end server and shifts toward another.

The differences are caused by the CDN’s own load-balancing policy, which directs traffic away from

busy front-end servers. This may be necessary during planned maintenance. For example, an FE may

consist of a cluster of computers; if some of these machines go down for maintenance, the aggregate server

capacity decreases temporarily. In other cases, a surge in client demand may temporarily overload the clos-

est front-end server. In both cases, directing some clients to an alternate front-end server is important for

preventing degradation in performance. A slight increase in round-trip time for some clients is preferable

to all clients experiencing slower downloads due to congestion.

To estimate the fraction of requests shifted by the load balancer, we identify front-end servers that

51

handle a lower fraction of requests than suggested by the latency map. The latency map indicates that

front-end server i should handle a fraction r1i of the requests for the clients at time 1. In reality, the server

handles RPD1i/RPD1.

LoadBalance1 =
∑

i

[
r1i −

RPD1i

RPD1

]+
where []+ indicates that the sum only includes the positive values, with the target request load in excess of

the actual load. Similarly, we define the fraction of queries load balanced at time 2 as LoadBalance2.

If much more requests are load balanced on the second day, then more requests are directed to alterna-

tive FEs that are further away, leading to higher round-trip times. Thus, we use the difference of the load

balancer metric to capture more load balancing traffic at time 2:

∆LoadBal = LoadBalance2 − LoadBalance1

We expect the load-balancing policy to routinely trigger some small shifts in traffic.

3.3.4 Identifying Routing Changes

Next, our analysis focuses on events where the RTT jumps significantly for specific FEs. Note that multiple

FEs might share the same ingress or egress routers. These increases in round-trip time at a specific FE could

be caused by routing changes, or by congestion along the paths to and from the client. Since the CDN does

not have direct visibility into congestion outside its own network, we correlate the RTT increases only with

the routing changes visible to the CDN—changes of the ingress router where client traffic enters the CDN

network, and changes of the egress router and the AS path used to reach the client.

Recall that the latency metric ∆Lat can be broken down to the sum of latency metrics at individual

FEs (i.e., ∆Lati). We focus our attention on the FE with the highest value of ∆Lati, because the latency

change for requests to this FE has the most impact on the latency increase seen by the clients. Then,

we define metrics to capture what fraction of the traffic destined to this FE experiences a visible routing

change. Focusing on the front-end server i with the highest latency increase, we consider where the traffic

enters the network. Given all the traffic from the client region to the front-end server, we can compute

the fractions f1j and f2j entering at ingress router j at time 1 and time 2, respectively. Note that we

compute these fractions from the “bytes-in” statistics from the Netflow data, since the front-end server

52

cannot differentiate the requests per day (RPD) by which ingress router carried the traffic.

To quantify how traffic shifted to different ingress routers, we compute:

∆Ingress =
∑

j

|f2j − f1j |/2

Note that the difference between the fractions is divided by two, to avoid double counting traffic that shifts

away from one ingress router and toward another. Similarly, we define a metric to measure the fraction of

traffic to a FE that switches to a different egress router or AS path. Suppose the fraction of traffic to (egress

router, AS path) k is g1k at time 1 and g2k at time 2. Then,

∆EgressASPath =
∑

k

|g2k − g1k|/2

similar to the equation for analyzing the ingress routers. These metrics allow us to correlate large increases

in latency to server i with observable routing changes. Note that the analysis can only establish a correlation

between latency increases and routing changes, rather than definitively “blaming” the routing change for

the higher delay, since the performance measurements cannot distinguish RTT by which ingress or egress

router carried the traffic.

3.4 Distribution of Latency Changes

In the rest of the chapter, we apply our methodology to measurement data from Google’s CDN. The BGP

and Netflow data are collected and joined on a 15-minute timescale; the performance data is collected

daily, and joined with the routing and traffic data to form a joint data set for each day in June 2010. For our

analysis, we group clients by “region,” combining all IP addresses with the same origin AS and located in

the same country. In this section, we describe how we preprocess the data, and characterize the distribution

of daily increases in latency to identify the most significant events.

As our datasets are proprietary, we are not able to reveal the exact number of regions, events, or thresh-

old of RPD. Instead, we report percentages in our tables and graphs. We believe percentages are more

meaningful, since the exact number of events and regions naturally differ from one CDN to another. In

addition, the granularity of the data, both spatially (i.e., by region) and temporally (i.e., by day) are be-

yond our control; these choices are not fundamental to our methodology, which could easily be applied to

53

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

C
C

D
F

Daily RTT Increase (ms) in 2010/06

CCDF

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1 1 10 100

C
C

D
F

Daily RTT Increase (Relative) in 2010/06

CCDF

(a) Absolute RTT increase (b) Relative RTT increase

Figure 3.3: Distribution of daily RTT increase

finer-grain measurement data.

3.4.1 Aggregating Measurements by Region

Our joint dataset has traffic and performance data at the level of BGP prefixes, leading to approximately

250K groups of clients to consider. Many of these prefixes generate very little traffic, making it difficult to

distinguish meaningful changes in latency from statistical noise. In addition, CDN administrators under-

standably prefer to have more concise summaries of significant latency changes that affect many clients,

rather than reports for hundreds of thousands of prefixes.

Combining prefixes with the same origin AS seems like a natural way to aggregate the data, because

many routing and traffic changes take place at the AS level. Yet, some ASes are quite large in their own

right, spanning multiple countries. We combine prefixes that share the same country and origin AS (which

we define as a region), for our analysis. From the performance measurements, we know the country for

each /24 prefix, allowing us to identify the country (or set of countries) associated with each BGP prefix. A

prefix spanning multiple countries could have large variations in average RTT simply due to differences in

the locations of the active clients. As such, we filter the small number of BGP prefixes spanning multiple

countries. This filters approximately 2K prefixes, which contribute 3.2% of client requests and 3.3% of the

traffic volume.

After aggregating clients by region, some regions still contribute very little traffic. For each region, we

calculate the minimum number of requests per day (RPD) over the month of June 2010. The distribution

54

of monthly minimum RPD over all the regions (not shown) reveals that most requests come from a small

fraction of the regions. We choose a threshold for the minimum RPD to filter the regions with very low

client demand. This process improves statistical accuracy, because it makes sure that we have enough

samples of requests for the regions we study. This also helps focus our attention on regions with many

clients, and reduces the volume of the measurement data we analyze. This process excludes 85.8% of the

regions, but only 6% of the traffic.

Hence, for the rest of our analysis, we focus on clients aggregated by region (i.e., by country and origin

AS), and regions generating a significant number of requests per day. Note that our analysis methodology

could be applied equally well to alternate ways of aggregating the clients and filtering the data.

3.4.2 Identifying Large Latency Increases

To gain an initial understanding of latency changes, we first characterize the differences in latency from

one day to the next throughout the month of June 2010, across all the client regions we selected. For each

region, we calculate the average daily RTT for our study. The average RTT is calculated by aggregating

over all the prefixes, weighted by the RPD for each prefix. In the rest of the chapter, we refer RTT to the

daily average RTT by regions.

We consider both the absolute changes (i.e., RTT2 − RTT1) and the relative change (i.e., (RTT2 −

RTT1)/RTT1), as shown in Figures 3.3(a) and 3.3(b), respectively. The graphs plot only the increases in

latency, because the distributions of daily increases and decreases are symmetric.

The two graphs are plotted as complementary cumulative distributions, with a logarithmic scale on both

axes, to highlight the large outliers. Figure 3.3(a) shows that latency increases less than 10msec for 79.4%

of the time. Yet, nearly 1% of the latency increases exceed 100 msec, and every so often latency increases

by more than one second. Figure 3.3(b) shows that the RTT increases by less than 10% in 80.0% of cases.

Yet, the daily RTT at least doubles (i.e., a relative increase of 1 or more) for 0.45% of the time, and we see

occasional increases by a factor of ten.

We define an event to be a daily RTT increase over a threshold for a specific region. Table 3.3 summa-

rizes the events we selected to characterize the latency increase. We choose the threshold of absolute RTT

increase as 100 ms and the threshold of relative RTT increase as 1, leading to a combined list of hundreds

of events corresponding to the most significant increases in latency: with 76.9% of the events over the

absolute RTT increase threshold; 35.6% of the events over the relative RTT increase threshold; and 12.5%

55

% Events Category
76.9% Absolute RTT Increase ≥ 100 ms
35.6% Relative RTT Increase ≥ 1

Table 3.3: Events with a large daily RTT increase

of the events over both thresholds.

3.5 Characterization

In this section, we characterize the events of large regional latency increases, which are identified in the pre-

vious section. By applying the methodology in Section Section 3.3, we first classify them into FE changes

and latency increases at individual FEs. Then, we further classify the events of FE changes according to

the causes of the latency map and load balancing; classify the events of FE latency increases according to

the causes of inter-domain routing changes.

Our high-level results in this section are summarized in Table 3.4. Nearly three-quarters of these events

were explained (at least in part) by a large increase in latency to reach an existing front-end server. These

latency increases often coincided with a change in the ingress router or egress router (or both!); still, many

had no visible interdomain routing change and were presumably caused by BGP routing changes on the

forward path or by congestion or intradomain routing changes. Around one-third of the events involved

a significant shift of client traffic to different front-end servers, often due to load-balancing decisions or

changes in CDN’s own view of the closest server. Nearly 9% of events involved both an “FE latency

increase” and an “FE server change,” which is why they sum to more than 100%.

3.5.1 FE Change vs. Latency Increase

Applying our methodology to each event identified in the last section, we see that large increases in latency

to reach existing servers (i.e., ∆Lat) are responsible for more than two-thirds of the events with a large

increase in round-trip time. To identify the cause of latency increases, we first show the CDF of ∆FE

(traffic shift) and ∆Lat (latency increase) for the events we study in Figure 3.4. The distributions are a

reflection of each other (on both the x and y axes), because ∆FE and ∆Lat sum to 1 for each event.

The graph shows that about half of the events have ∆FE below 0.1, implying that shifts in traffic

from one FE to another are not the major cause of large-latency events. Still, traffic shifts are responsible

56

Category % Events
FE latency increase 73.9%

Ingress router 10.3%
(Egress, AS Path) 14.5%
Both 17.4%
Unknown 31.5%

FE server change 34.7%
Latency map 14.2%
Load balancing 2.9%
Both 9.3%
Unknown 8.4%

Total 100.0%

Table 3.4: Classification of large latency increases (where latency more than doubles, or increases by more
than 100 msec), relative to previous day. Note that nearly 9% of events involve both FE latency increases
and FE server changes.

Threshold
0.3 0.4 0.5

∆Lat 61% 65% 71%
∆FE 23% 26% 29%
Both 16% 9% 0%

Table 3.5: Events classified by ∆Lat and ∆FE

for some of the latency increases—one event has a ∆FE of 5.83! (Note that we do not show the very few

points with extreme ∆FE or ∆Lat values, so we can illustrate the majority of the distribution more clearly

in the graph). In comparison, ∆Lat is often fairly high—in fact, more than 70% of these events have a

∆Lat higher than 0.5.

To classify these events, we apply a threshold to both distributions and identify whether ∆FE or

∆Lat (or both) exceeds the threshold. Table 3.5 summarizes the results for thresholds 0.3, 0.4, and 0.5.

These results show that, for a range of thresholds, around two-thirds of the events are explained primarily

by an increase in latency between the clients and the FEs. For example, using a threshold of 0.4 for both

distributions, 65% of events have a large ∆Lat and another 9% of events have large values for both metrics,

resulting in nearly three-quarters of the events caused (in large part) by increases in RTTs to select front-end

servers. In the rest of the chapter, we apply a threshold of 0.4 to distinguish events into the three categories

in Table 3.5. This is because the threshold of 0.5 separates the two categories apart; the threshold of 0.3

(where one factor contributes to 30% of the latency increases) is not as significant as 0.4.

57

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.5 0 0.5 1 1.5 2

C
D

F
 (

A
ll

E
ve

nt
s)

∆ FE and ∆ Lat

∆ FE
∆ Lat

Figure 3.4: ∆FE and ∆Lat for large events

3.5.2 Normal Front-End Changes

To understand the normal distribution of latency-map changes, we calculate ∆LatMap for all of the

regions—whether or not they experience a large increase in latency—on two consecutive days in June

2010. Figure 3.5 shows the results. For 76.9% of the regions, less than 10% of the requests change FEs

because of changes to the latency map. For 85.7% of regions, less than 30% of traffic shifts to different

front-end servers. Less than 10% of the regions see more than half of the requests changing front-end

servers. Often, these changes involve shifts to another front-end server in a nearby geographic region.

However, note that the distribution of ∆LatMap has a long tail, with some regions having 80% to

90% of the requests shifting FEs. For these regions, changes in the measured latency lead to changes in

the latency map which, in turn, lead to shifts in traffic to different front-end servers. These outliers are not

necessarily a problem, though, since the FEs on the second day may be very close to the FEs on the first

day. To understand the impact of these traffic shifts, we need to consider the resulting latency experienced

by the clients.

Figure 3.5 also shows the resulting distribution of ∆FEDist (i.e., the actual FE changes) for all client

regions for one pair of consecutive days in June 2010. As expected, the distribution matches relatively

closely with the distribution for ∆LatMap, though some significant differences exist. Sometimes the

traffic shifts even though the latency map does not change. This is evident in the lower left part of the

graph, where most client regions see little or no change to the latency map, but a higher fraction experience

58

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 (

N
or

m
al

 C
as

es
)

∆ LatencyMap and ∆ FEDistribution

∆ LatencyMap
∆ FEDistribution

Figure 3.5: Distribution of ∆LatMap and ∆FEDist across all client regions for one day in June 2010

as much as a 5% shift in traffic.

We expect the load-balancing policy to routinely trigger some small shifts in traffic. Figure 3.6 plots

the distribution of ∆LoadBal for all client regions for a single day in June 2010, as shown in the “Normal

Cases” curve. As expected, most clients are directed to the closest front-end server, as indicated by the

clustering of the distribution around ∆LoadBal = 0. In the next subsection, we show that the large

latency events coincide with larger shifts in traffic, as illustrated by the “∆FE Events” curve in Figure 3.6.

3.5.3 Front-End Changes during Events

To understand the influence of traffic shifts during the events, we analyze the large-latency events where

front-end changes are a significant contributor to the increase in latency (i.e., ∆FE ≥ 0.4); 35% of the

events fall into this category, as shown earlier in Table 3.5. Figure 3.7 plots the distributions of ∆LatMap

and ∆FEDist for these events. For these events, the FE distribution still mostly agrees with the latency

map. Compared with the curves in Figure 3.5, the events which experienced large latency increases have a

stronger correlation with FE changes. According to the latency map, only 14% of events have fewer than

10% of requests changing FEs; 46% of the events have more than half of queries shifting FEs. Note that

FE changes (i.e., in nearby geographical locations) do not necessarily lead to large latency increases, and

may even improve user-perceived throughput by avoiding busy servers. That said, these FE changes can

cause increases in round-trip time, so we need to understand how and why they happen.

59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

C
D

F

∆ Load Balance

Normal Cases
∆ FE Events

Figure 3.6: Distribution of ∆LoadBalance for Normal Cases and Events ∆FE ≥ 0.4

We then calculate the ∆LoadBal, the difference of fraction of traffic directed by the load balancer

from one day to the next. Figure 3.6 shows the distribution of ∆LoadBal for these events and for all client

regions. As illustrated in the figure, 92.5% of the normal cases have less than 10% of requests shifted away

from the closest front-end server. In contrast, for the ∆FE events, 27.7% of the events have a ∆LoadBal

value greater than 10%; more than 9% of the events have a ∆LoadBal in excess of 0.3, suggesting that the

load-balancing policy is responsible for many of the large increases in latency.

Based on the ∆LatMap and ∆LoadBal metrics, we classify the events into four categories: (i) cor-

related only with latency map changes, (ii) correlated only with load balancing changes, (iii) correlated

with both latency-map changes and load balancing; and (iv) unknown. We choose the 85th-percentile and

90th-percentile in the distribution for the normal cases as the thresholds for ∆LatMap and ∆LoadBal.

Table 3.6 summarizes the results: 26.7% of the events are correlated with both changes to the latency map

and load balancing; 40.8% of the events only with changes in the latency map; 8.3% of the events only

with load balancing; and 24.3% of the events fall into the unknown category. The table also shows results

for the 90th-percentile thresholds.

Note that in the “unknown” category, although the fraction of traffic shifting FEs is low, this does not

mean that the FE change is not responsible for the latency increases. This is because: what matters is the

latency difference between the FEs, not only the fraction of traffic shifting FEs. For example, even if the

fraction of traffic shifting is small, the absolute increase in latency may be high because the clients are

directed to FEs with really large RTTs. Completing this analysis is part of our ongoing work.

60

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 (

∆
F

E
 e

ve
nt

s)

∆ LatencyMap and ∆ FEDistribution

∆ LatencyMap
∆ FEDistribution

Figure 3.7: Distribution of ∆LatencyMap and ∆FEDistribution for Events ∆FE ≥ 0.4

Threshold (0.27, 0.06) (0.53, 0.08)
(Percentile) 85th 90th
Latency Map 40.8% 23.8%
Load Balancing 8.3% 12.6%
Both 26.7% 18.4%
Unknown 24.3% 45.1%

Table 3.6: Classification of Events with ∆FE ≥ 0.4

3.5.4 Inter-domain Routing Changes

In this subsection, we study the events where the round-trip time increases to existing front-end servers. We

characterize the events based on these metrics, and classify events based on changes to the ingress router,

the egress router and AS path, or both.

For better insight into whether routing changes are responsible for latency increases, we first con-

sider the prevalence of routing changes for all client regions—when latency does not necessarily increase

significantly—for a pair of consecutive days in June 2010. Figure 3.8 shows the CCDF, with the y-axis

cropped at 0.45, to highlight the tail of the distribution where clients experience a large shift in ingress

routers. Significant routing changes are relatively rare for the “Normal Cases.” In fact, 76.6% of the client

regions experience no change in the distribution of traffic across ingress routers. Less than 7% of the re-

gions experience a shift of more than 10%. As such, we see that shifts in where traffic enters Google’s

CDN network do not occur often, and usually affect a relatively small fraction of the traffic.

61

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

∆ Ingress

Normal Cases
∆ Lat Events

Figure 3.8: Ingress router shifts (∆Ingress)

However, large shifts in ingress routers are more common for the events where the round-trip time to

a front-end server increases significantly (i.e., ∆Lat ≥ 0.4), as shown by the “∆Lat Events” curve in

Figure 3.8. The events we study have a much stronger correlation with changes in the ingress routers,

compared with the normal cases. Though 55% of these events do not experience any change in ingress

routers, 22.2% of events see more than a 10% shift, and 6.7% of the events see more than half of the traffic

shifting ingress routers.

Similarly, we calculate ∆EgressASPath for both the normal cases and the ∆Lat events, as illustrated

in Figure 3.9. Compared with ingress changes, we see more egress and AS path changes, in part because

we can distinguish routing changes at a finer level of detail since we see the AS path. For the normal cases,

63% of the client regions see no change in the egress router or the AS path; 91% see less than 10% of the

traffic shifting egress router or AS path. In comparison, for the “∆Lat Events,” only 39% of the events see

no changes in the egress routers and AS paths; 32% of the events see more than 10% of the traffic changing

egress router or AS path, and 10% of the events see more than half of the traffic shifting egress routers

and/or AS paths.

Based on both of the routing indicators, we classify the events into four categories: (i) correlated

only with ingress router changes, (ii) correlated only with changes in the egress router and AS path, (iii)

correlated with both ingress changes and egress/AS-path changes, and (iv) unknown. To identify significant

shifts, we look to the distributions for “Normal Cases” and consider the 85th and 95th percentiles for shifts

in both ∆Ingress and ∆EgressASPath. Table 3.7 summarizes the results. Based on the 85th-percentile

62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

∆ EgressASPath

Normal Cases
∆ Lat Events

Figure 3.9: Egress router and AS path shifts (∆EgressASpath)

Thresholds (0.025, 0.05) (0.06, 0.09)
(Percentile) 85th 90th

Ingress 13.9% 12.6%
Egress/AS-path 19.6% 17.4%
Both 23.7% 17.6%
Unknown 42.7% 52.5%

Table 3.7: Classification of Events with ∆Lat ≥ 0.4

thresholds, 23.7% of the events are associated with large shifts in both the ingress routers and the egress/AS-

path; 13.9% of the events are associated with ingress-router shifts; 19.6% of the events are associated with

shifts in the egress router and AS path; and 42.7% of the events fall into the unknown category. We also

show results using the 90th-percentile thresholds.

Note that around half of the events fall into the unknown category, where we could not correlate la-

tency increases with large, visible changes to interdomain routing. Potential explanations include AS-level

routing changes on the forward path (from the client to the front-end server) that do not affect where traffic

enters Google’s CDN network. Intradomain routing changes in individual ASes could also cause increases

in round-trip time without changing the ingress router, egress router, or AS path seen by the CDN. Finally,

congestion along either the forward or reverse path could be responsible. These results suggest that CDNs

should supplement BGP and traffic data with finer-grain measurements of the IP-level forwarding path

(e.g., using traceroute and reverse traceroute [31]) both for better accuracy in diagnosing latency increases

and to drive new BGP path-selection techniques that make routing decisions based on direct observations

63

of performance.

3.6 Case Studies

For a better understanding of large latency increases, we explore several events in greater detail. These case

studies illustrate the general challenges CDNs face in minimizing wide-area latency and point to directions

for future work.

3.6.1 Latency-Map Inaccuracies

During one day in June 2010, an ISP in the United States (which we defined as a region in the previous

sections) saw the average round-trip time increase by 111 msec. Our analysis shows that the RTT increased

because of a shift of traffic to different front-end servers; in particular, ∆FE was 1.01. These shifts were

triggered primarily by a change in the latency map; in particular, ∆LatMap was 0.90. Looking at the

latency map in more detail revealed the reason for the change. On the first day, 78% of client requests were

directed to front-end servers in the United States, and 22% were directed to servers in Europe. In contrast,

on the second day, all requests were directed to front-end servers in Europe. Hence, the average latency

increased because the clients were directed to servers that were further away. The situation was temporary,

and the clients were soon directed to closer front-end servers.

This case study points to the challenges of identifying the closest servers and using DNS to direct clients

to servers—topics explored by several other research studies [32, 30, 33, 34, 35]. Clients do not necessarily

reside near their local DNS servers, especially with the increasing use of services like GoogleDNS and

OpenDNS. Similarly, client IP addresses do not necessarily fall in the same IP prefix as their local DNS

server. Further, DNS caching causes the local DNS server to return the same IP address to many clients over

a period of time. All of these limitations of DNS make it difficult for a CDN to exert fine-grain control over

server selection. Recent work at the IETF proposes extensions to DNS so requests from local DNS servers

include the client’s IP address [36], which should go a long way toward addressing this problem. Still,

further research on efficient measurement techniques and efficient, fine-grain control over server selection

would be very useful.

64

3.6.2 Flash Crowd Leads to Load Balancing to Distant Front-End Servers

As another example, we saw the average round-trip time double for an ISP in Malaysia. The RTT increase

was caused by a traffic shift to different front-end servers; in particular, ∆FE was 0.979. To understand

why, we looked at the metrics for front-end server changes. First, we noticed that ∆LatMap was 0.005,

suggesting that changes in the latency map were not responsible. Second, we observed that ∆FEDist =

0.34 and ∆LoadBal = 0.323, suggesting that load balancing was responsible for the shift in traffic.

Looking at the client request rate, we noticed that the requests per day jumped significantly from the

first day to the second; in particular, RPD2/RPD1 = 2.5. On the first day, all requests were served

from front-end servers close to the clients; however, on the second day, 40% of requests were directed to

alternate front-end servers that were further way. This led to a large increase in the average round-trip time

for the whole region.

This case study points to a general limitation of relying on round-trip times as a measure of client

performance. If, on the second day, Google’s CDN had directed all client requests to the closest front-

end server, the user-perceived performance would likely have been worse. Sending more requests to an

already-overloaded server would lead to slow downloads for a very large number of clients. Directing

some requests to another server—even one that is further away—can result in higher throughput for the

clients, including the clients using the remote front-end server. Understanding these effects requires more

detailed measurements of download performance, and accurate ways to predict the impact of alternate load-

balancing strategies of client performance. We believe these are exciting avenues for future work, to enable

CDNs to handle flash crowds and other shifts in user demand as effectively as possible.

3.6.3 Shift to Ingress Router Further Away from the Front-End Server

On day in June 2010, an ISP in Iran experienced an increase of 387 msec in the average RTT. We first

determined that the RTT was mainly caused by a large increase in latency to reach a particular front-end

server in western Europe. This front-end server handled 65% of the requests on both days. However,

∆Lati for this server was 0.73, meaning 73% of the increase in RTT was caused by an increase in latency

to reach this front-end server. Looking at the routing changes, we saw a ∆Ingress of 0.38. Analyzing the

traffic by ingress router, we found that, on the first day, all of the traffic to this front-end server entered the

CDN’s network at a nearby ingress router in western Europe. However, on the second day, nearly 40% of

65

the traffic entered at different locations that were further away—21% in eastern Europe and 17% of traffic

in the United States. Thus, the increase in RTT was likely caused by extra latency between the ingress

router and the front-end server, and perhaps also by changes in latency for the clients to reach these ingress

routers.

This case study points to a larger difficulty in controlling inbound traffic using BGP. To balance load

over the ingress routers, and generally reduce latency, a large AS typically announces its prefixes at many

locations. This allows other ASes to select interdomain routes with short AS paths and nearby peering

locations. However, an AS has relatively little control over whether other ASes can (and do) make good

decisions. In some cases, a CDN may be able to use the Multiple Exit Discriminator (MED) attribute in

BGP to control how individual neighbor ASes direct traffic, or perform selective AS prepending or selective

prefix announcements to make some entry points more attractive than others. Still, this is an area that is

ripe for future research, to give CDNs more control over how clients reach their services.

3.6.4 Shorter AS Paths Not Always Better

On another day in June 2010, an ISP in Mauritius experienced a 113 msec increase in the average round-

trip time. On both days, most client requests were handled by a front-end server in Asia—60% on the first

day and 74% on the second day. However, on the second day, the latency to reach this front-end server

increased substantially. Looking at the routing data, we see that traffic shifted to a different egress router

and AS path. On the first day, 56% of the traffic left Google’s CDN’s network in Asia. On the second

day, this number dropped to 10%, and nearly two-thirds of the traffic left the network in Europe over a

shorter AS path. Presumably, upon learning a BGP route with a shorter AS path, the routers preferred this

route over the “longer” path through Asia. However, AS-path length is (at best) loosely correlated with

round-trip time, and in this case the “shorter” path had a much higher latency.

This case study points to a larger problem with today’s interdomain routing system—routing decisions

do not consider performance. The BGP decision process uses AS-path length as a (very) crude measure

of performance, rather than considering measurements of actual performance along the end-to-end paths.

Future work could explore lightweight techniques for measuring the performance along different interdo-

main paths, including the paths not currently selected for carrying traffic to clients. For example, recent

work [37] introduces a “route injection” mechanism for sampling the performance on alternative paths.

Once path performance is known, CDNs can optimize interdomain path selection based on performance,

66

load, and cost. However, large CDNs with their own backbone network introduce two interesting twists on

the problem of intelligent route control. First, the CDN selects interdomain routes at multiple egress points,

rather than a single location. Second, the CDN can jointly control server selection and route selection for

much greater flexibility in directing traffic.

3.7 Future Research Directions

In this section, we briefly discuss several natural directions for future work on diagnosing wide-area latency

increases for CDNs.

Direct extensions of our measurement study: First, we plan to extend our methodology in Section 3.3

to distinguish between routing changes that affect the egress router from those that only change the AS

path. Second, as discussed at the end of Section 3.5.3, we plan to further explore the unexplained shifts in

traffic from one front-end server to another. We suspect that some of these shifts are caused by a relatively

small fraction of traffic shifting to a much further away front-end server. To analyze this further, we

plan to incorporate the RTT differences between front-end servers as part of our metrics for studying FE

changes. Third, our case studies in Section 3.6 required manual exploration, after automatically computing

the various metrics. We plan to conduct more case studies and automate the analysis to generate reports for

the network operators.

More accurate diagnosis: First, we plan to work with the groups that collect the measurement data

to provide the data on a smaller timescale (to enable finer-grain analysis) and in real time (to enable real-

time analysis). Second, we plan to explore better ways to track the performance data (including RTT

and RPD) separately for each ingress router and egress/AS-path. Currently, the choice of ingress and

egress routers are not visible to the front-end servers, where the performance data are collected. Third,

we will explore techniques for correlating across latency increases affecting multiple customer regions.

For example, correlating across interdomain routing changes that affect the AS paths for multiple client

prefixes may enable us to better identify the root cause [11].

Incorporating additional data sets: We plan to investigate techniques for improving the visibility of

the routing and performance changes from outside the CDN network. For example, active measurements—

such as performance probes and traceroute (including both forward and reverse traceroute [31])—would

help explain the “unknown” category for the ∆Lat events, which we could not correlate with visible routing

67

changes. In addition, measurements from the front-end servers could help estimate the performance of

alternate paths, to drive changes to the CDN’s routing decisions to avoid interdomain paths offering poor

performance.

3.8 Related Work

CDNs have been widely deployed to serve Web content. In these systems, clients are directed to different

servers to reduce latency and balance load. Our characterization reveals the main causes of high latency

between the clients and the servers.

An early work in [32] studied the effectiveness of DNS redirection and URL rewriting in improving

client performance. This work characterizes the size and the number of the web objects CDNs served, the

number of distinct IP addresses used in DNS redirection, and content download time, and compared the

performance for a number of CDN networks. Recent work in [38] evaluated the performance of two large-

scale CDNs—Akamai and LimeLight. Instead of measuring CDNs from end hosts, we design and evaluate

techniques for a CDN to diagnose wide-area latency problems, using readily-available traffic, performance,

and routing data.

WhyHigh [39] combines active measurements with routing and traffic data to identify causes of persis-

tent performance problems for some CDN clients. For example, WhyHigh identifies configuration prob-

lems and side-effects of traffic engineering that lead some clients to much higher latency than others in the

same region. In contrast, our work focuses on detecting and diagnosing large changes in performance over

time, and also considers several causes of traffic shifts from one front-end server to another. WISE [40]

predicts the effects of possible configuration and deployment changes in the CDN. Our work is complemen-

tary in that, instead of studying planned maintenance and operations, we study how to detect and diagnose

unplanned increases in latency.

PlanetSeer [21] uses passive monitoring to detect network path anomalies in the wide-area, and cor-

relates active probes to characterize these anomalies (temporal vs. persistent, loops, routing changes).

The focus of our work is different in that, instead of characterizing the end-to-end effects of performance

anomalies, we study how to classify them according to the causes.

68

3.9 Summary

The Internet is increasingly a platform for users to access online services hosted on servers distributed

throughout the world. Today, ensuring good user-perceived performance is a challenging task for the

operators of large Content Distribution Networks (CDNs). In this chapter, we presented techniques for

automatically classifying large changes in wide-area latency for CDNs, and the results from applying our

methodology to traffic, routing, and performance data from Google. Our techniques enable network oper-

ators to learn quickly about significant changes in user-perceived performance for accessing their services,

and adjust their routing and server-selection policies to alleviate the problem.

Using only measurement data readily available to the CDN, we can automatically trace latency changes

to shifts in traffic to different front-end servers (due to load-balancing policies or changes in the CDN’s

own view of the closest server) and changes in the interdomain paths (to and from the clients). Our analysis

and case studies suggest exciting avenues for future research to make the Internet a better platform for

accessing and managing online services.

69

Chapter 4

Next-Hop Routing: Routing Protocol

Designed for Better Performance

4.1 Introduction

The Border Gateway Protocol (BGP) stitches a single global Internet together out of smaller networks

with diverse policy objectives. BGP is plagued by poor network performance, as well as security vulner-

abilities, configuration errors, software bugs, and more. BGP does not react to serious performance and

reachability problems in the data plane, which are, in fact, often utterly invisible to the routing protocol.

BGP route fluctuations can lead to high packet loss, intermittent loss of connectivity, and increased path

latency [2]. Remarkably, almost half of the performance problems with VoIP are the result of BGP route

fluctuations [41].

The research and standards communities have proposed numerous ways to fix BGP. These proposals

generally fall into two categories: (1) enhancements to BGP (e.g., to improve convergence [42, 43] and se-

curity [44, 45]); and (2) alternative architectures that take a “clean-slate approach” to interdomain routing

(see [46, 47, 48, 49]). However, these proposals face serious practical obstacles. On the one hand, enhance-

ments to BGP add mechanisms to an already complex protocol, which can introduce new problems (e.g.,

configuration errors, protocol convergence issues, and new attack vectors). On the other hand, alternative

architectures are difficult, often even impossible, to deploy incrementally.

70

We present a new way to fix interdomain routing. We introduce a novel routing architecture called

“next-hop routing”, which is based on two guiding principles: (1) Rather than extending or replacing BGP,

simplifying the routing protocol by constraining how routes are selected and exported; and (2) Handling

issues such as data-plane performance and security where they belong—outside the routing protocol. We

argue that next-hop routing is sufficiently expressive to realize network operators’ goals. Our simulations

show that next-hop routing significantly improves performance, without compromising other global objec-

tives.

4.1.1 What’s Wrong with BGP?

BGP gives network operators great expressiveness in specifying routing policies. Unfortunately, this ex-

pressiveness is not free. Today’s routing system faces numerous serious problems, including:

• Slow convergence and divergence. BGP’s convergence to a “stable” routing state can be slow,

resulting in poor network performance. Route fluctuations during convergence can lead to high

packet loss, intermittent loss of connectivity, and increased path latency [2]. (Remarkably, almost

half of the performance problems of VoIP are the result of slow BGP convergence [41].) Worse yet,

BGP dynamics can even enter inescapable oscillations, never reaching stability [50, 51].

• Poor data-plane performance. BGP does not select paths based on end-to-end performance, but

rather based on routing policies and path length. In fact, BGP does not react to serious performance

and reachability problems in the data plane, since these are not visible to the routing protocol. In

addition, a BGP-speaking router selects a single best path for each destination prefix, rather than

capitalizing on the path diversity in the Internet topology.

• Vulnerability to attacks. BGP is notoriously vulnerable to malicious [52, 45] or economically-

driven [53, 54] attacks. Indeed, BGP makes it extremely easy for an AS to manipulate the routing

announcements so as to attract traffic to and through its network [55]. This weakness of BGP can

be exploited for eavesdropping, tampering, packet dropping, and also for economic reasons (e.g.,

increasing an AS’s revenue from transiting traffic). Every few years, a major incident exposes just

how incredibly vulnerable BGP is (e.g., Pakistan Telecom hijacking YouTube traffic [6]).

• Configuration errors and software bugs. Today’s routers have a bewildering array of configura-

tion options for selecting and exporting routes, making configuration errors [56, 57] and software

71

bugs [58, 59, 60] common phenomena. In addition, techniques for reducing convergence delay in-

troduce additional timers and configuration options to the router software, exacerbating an already

complex system. Over the past several years, we have seen quite a few serious Internet outages

caused by programmer and operator errors [60, 61, 62].

4.1.2 Simplicity through Next-Hop Routing

Many of BGP’s performance problems relate to how ASes base routing decisions on the sequence of ASes

along a path. To avoid the “count-to-infinity” problems that plagued earlier distance-vector protocols, BGP

was designed as a path-vector protocol that includes the AS-PATH attribute in each route announcement.

This allows an AS to quickly detect and avoid paths that contain loops.

However, the AS-PATH is increasingly used for far more than loop detection and, in particular, network

operators apply complex regular expressions to the AS-PATH to express local preferences over routes.

Unfortunately, routing policies that consider the entire AS-PATH can lead to long convergence time, and

can even result in overall protocol divergence.

We argue that such reliance on the AS-PATH is more a hindrance than a help in achieving good network

performance. Instead, we advocate next-hop routing—that an AS rank and export paths based solely on the

next-hop AS en route to each destination prefix, and apply a simple “consistent filtering” rule [63] when

exporting routes. That is, we relegate the AS-PATH to its traditional role in loop detection. We show that

next-hop routing achieves significantly better network performance than traditional path-based routing in

two important respects:

Better convergence. We show that next-hop routing converges much more quickly to a “stable” routing

configuration than conventional BGP. In addition, the convergence process involves much fewer update

messages and forwarding changes. Our simulation results establish that next-hop routing is especially

effective at preventing the most serious BGP convergence problems.

More amenable to multipath routing. As mentioned earlier, today’s BGP-speaking routers select a single

path for each destination, rather than capitalizing on the path diversity in the Internet. We show that next-

hop routing naturally supports multipath routing, leading to many benefits, e.g., improved availability,

better recovery from failures, load balancing, customized route selection.

72

4.1.3 Path-quality Monitoring and Security

Today’s BGP provides network operators with very unsatisfactory means for handling data-plane per-

formance issues and security threats, as reflected in poor network performance and in serious security

breaches. We argue that such important objectives should be handled outside the routing protocol [64], and

propose specific solutions in two key areas:

Performance-driven routing. Today’s BGP-speaking routers prefer shorter AS-PATHs as an indirect way

to improve end-to-end performance. However, AS-PATH length only loosely correlates with end-to-end

propagation delay and does not reflect other performance metrics of interest, e.g., throughput, latency, and

loss [65]. Consequently, BGP is unable to cope with serious performance and reachability problems in the

data plane. We argue that, to achieve good network performance, route selection should be based on direct

observations of path quality, rather than the length of the AS-PATH.

We propose leveraging two mechanisms: end-to-end monitoring and multipath routing (see above).

Neither of these mechanisms is provided by today’s BGP. Instead, ASes should adapt next-hop rankings,

as well as how traffic is split between multiple “next hops,” based on path-quality monitoring in the data

plane. We describe techniques for stub ASes, online service providers, and transit ISPs to monitor path

performance.

Security. We believe that relying on BGP for data-plane security is misguided. Instead, these guarantees

should be assured in other (end-to-end) ways, such as encryption and authentication. We show that next-

hop routing significantly reduces BGP’s attack surface. Specifically, next-hop routing makes ASes immune

to virtually all AS-PATH-based attacks (e.g., path-shortening attacks [55]). Next-hop routing also removes

incentives for rational ASes to manipulate the routes.

4.1.4 Roadmap

We present the details of next-hop routing in Section 4.2. Since next-hop routing is a broad routing architec-

ture, our evaluation takes many forms, including (i) simulation experiments (to measure convergence time),

(ii) protocol design (to illustrate simple ways to support multipath routing and path-quality monitoring),

and (iii) qualitative arguments (about the reduced attack surface and techniques for traffic engineering).

Section 4.3 shows that next-hop routing significantly reduces convergence time and router overhead.

Section 4.4 shows how next-hop routing greatly simplifies support for multipath routing. Section 4.5 shows

73

that next-hop routing reduces the attack surface for BGP and provides incentives for rational ASes to partic-

ipate honestly in the protocol. We present techniques for traffic management (i.e., path-quality monitoring

and traffic engineering) in Section 4.6. We present related work in Section 4.7 and conclude in Section 4.8.

4.2 Next-Hop Routing Architecture

We now present our next-hop routing architecture, which consists of two components: (1) three simple

rules that constrain how routes are selected and exported in the BGP decision process; and (2) external

mechanisms for performance-driven routing based on end-to-end data-plane monitoring, and for security.

Our focus in this section is on the first component—the next-hop routing rules. We discuss security and

performance-driven routing in Sections 4.5 and 4.6, respectively.

In today’s Internet, the bilateral business contracts ASes sign with their immediate neighbors play

a crucial role in determining their routing policies (see [66] and Appendix 4.9.2): ASes tend to prefer

revenue-generating routes through customers over routes (for which they pay) through their providers;

ASes avoid carrying traffic through their providers. Under next-hop routing, ASes rank and export paths

solely based on the next-hop AS en route to each destination prefix, but an AS has full control over which

immediate neighbors carry its traffic and direct traffic through it. Next-hop routing thus allows ASes

sufficient expressiveness to realize their business policies. (Indeed, these common routing practices can be

realized with next-hop routing.)

4.2.1 The Existing BGP Decision Process

BGP-speaking routers typically receive multiple routes to the same destination prefix. There are three steps

a BGP router uses to process route advertisements:

1. an import policy determines which routes should be filtered (and hence eliminated from considera-

tion). After the filtering process, a “local preference” is assigned to each route based on the import

policy;

2. a decision process selects the most desirable route;

3. an export policy determines which of the neighbors learn the chosen route.

74

1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to egress router
7. Prioritize older routes
8. Lowest router ID of BGP speaker

Table 4.1: Steps in the BGP decision process

The decision process consists of an ordered list of attributes across which routes are compared. Here,

we focus on the following important steps in the BGP decision process (see Table 4.1 for more information,

and [1] for more details about the BGP decision process, including a full list of decision steps):

• Prefer higher local preference (LocalPref). The BGP LocalPref attribute enables operators to

express rich, engineering- and business-motivated preferences over routes, thus potentially choosing

a longer AS-PATH over a shorter route;

• Prefer shorter routes. Ties between routes that share the highest LocalPref are broken in favor of

routes with the lowest AS-PATH length;

• Prioritize old routes over new ones. This decision step is implemented in some routers [67] but not

always enabled by default.

4.2.2 Next-Hop Routing Rules

We now specify our three next-hop routing rules.

Rule I: Use next-hop rankings. Configure rankings of routes based only on the immediate next-hop AS

en route to each destination (e.g., to prefer customer-learned routes over provider-learned routes). Ties in

the rankings of next-hops are permitted.

Rule II: Prioritize current route. To minimize path exploration, when faced with a choice between the

“old” (current) route and an equally-good (in terms of next-hop) new one, re-select the old route.

Rule III: Consistently export [63]. If a route P is exportable to a neighboring AS i, then so must be all

routes that are more highly ranked than P . Intuitively, Consistent Export prevents undesirable phenomena

75

B

C
A

C > d > A

d > B

d

C
A

d > B

Figure 4.1: ASes A, B and C wish to send traffic to AS d. All three ASes have next-hop rankings, e.g., A prefers
sending traffic directly to d over sending traffic through B. AS B is willing to export route BAd, but not the more
preferred route Bd, to C. Hence, if B changes its route from BAd to the Bd, it will stop announcing its route to C
and thus disconnect C from the destination d.

as in Figure 4.1, where an AS disconnects a neighbor from a destination by selecting a better route for

itself.

4.2.3 Implementing the Next-Hop Routing Rules

Next-hop routing can be deployed incrementally by individual ASes, without changing the BGP protocol.

In addition, next-hop routing greatly simplifies the protocol configuration interface and router software

implementation. We envision three main deployment scenarios that offer increasing benefits in this respect.

Configure today’s routers to obey the next-hop rules.

Network operators can switch from path-based routing to next-hop routing by locally configuring their

existing routers in accordance with the next-hop routing rules. This is achieved via the following three

actions: (i) applying only next-hop rankings when assigning LocalPref, (ii) disabling the AS-path length

step in the BGP decision process (as supported on most commercial routers), and (iii) selecting eBGP

export policies that obey consistent filtering. The advantage of this approach is that an AS can readily

deploy next-hop routing without any changes to the underlying equipment and without any support from

its neighbors1.

1Peering contracts usually requires an AS to export routes with the same AS-PATH length across all peering points with a given
neighbor, which allows the neighbor to employ hot-potato routing. However, the neighbor can take advantage of the BGP decision
process by sending routes with different lengths to influence how traffic enters the network. With next-hop routing, this is not
possible since the step of using shorter AS-PATH length is disabled in the decision process, and all routes are considered equally good

76

Create a simpler configuration interface.

The simplicity of next-hop routing enables the design of a simpler BGP configuration interface, that en-

forces next-hop routing, in which: (i) the path ranking is configured simply by specifying an order (that

need not be necessarily strict) over neighboring ASes (routers) and applied to a set of destination prefixes;

(ii) the AS-PATH length step in the BGP decision process is disabled by default, and (iii) for each neigh-

boring AS A (router), the local export policy with respect to A is configured simply by specifying a single

neighboring AS B; only routes that have B, or some more preferred neighbor, as a next hop are exportable

to A. (If an AS wishes to make all routes exportable to its neighbor it can do so by specifying a unique

symbol.)

This simple configuration interface requires less training for network operators and would lead to fewer

configuration errors. In addition, the router software would be simpler (and, hence, have fewer bugs) since

the policy configuration would be easier to parse; this is important, as many bugs in routing software lie in

the complex configuration parsing code [58].

Build router software that (only) supports next-hop routing.

Router software that only supports next-hop routing would not only have much fewer configuration op-

tions, but also much fewer execution paths (for applying routing policy) and a simpler/shorter decision pro-

cess. We later show that next-hop routing has much better convergence properties than path-based routing.

Hence, some complex mechanisms for reducing convergence time (such as the min-route-advertisement

timer and route-flap damping) may not be needed. Instead, router software could be extended in newer,

more fruitful, directions, such as support for multipath routing.

4.3 Better Routing Convergence

Intuitively, BGP can converge slowly for two main reasons: (1) small and faraway routing changes can

lead an AS to select a new next-hop, thus leading to a chain reaction of subsequent routing changes; and

(2) inconsistencies between path rankings and route export policies can lead an AS to disconnect other

ASes from a destination when selecting a better route for itself, pushing them to seek alternate routes (see

Figure 4.1).

irrespective of their AS-PATH length.

77

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
C

D
F

Number of Updates

BGP
PRR

Nexthop

Figure 4.2: Fraction of non-stub ASes experiencing more than x update messages after a link failure.

Our next-hop routing rules prevent these scenarios; next-hop rankings guarantee that remote routing

changes do not drive an AS to change its next hop; Consistent Export guarantees that when selecting

a better route, an AS never disconnects other ASes from a destination. We now present experimental

evidence that next-hop routing converges quickly to a “stable” routing configuration.

Metrics. We focus on three metrics for measuring performance during the convergence process:

• # forwarding changes, that is, the number of times ASes change their choices of next hop during

the convergence process (summed across all vantage point ASes);

• # routing changes, that is, the number of times ASes’ routes change during the convergence process

(summed across all vantage point ASes);

• # BGP updates transmitted during the convergence process (summed across all vantage point ASes).

Our experiments show that next-hop routing significantly reduces the number of update messages,

routing changes, and forwarding changes, under various network events and vantage points.

4.3.1 Simulation Setup

Topology. We use the Cyclops [68] AS-level Internet topology on Jan 1, 2010. Each AS is represented by

one router, and the links between ASes are annotated with business relationship. The topology contains a

total of 33,976 ASes, of which 4,670 are non-stubs, that is, ASes that have customers of their own, and the

rest are stubs. The topology contains 54,786 customer-provider links and 43,888 peer-peer links.

78

(a) # routing changes

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0 2 4 6 8 10 12 14

C
C

D
F

Number of Forwarding Changes

BGP
PRR

Nexthop

(b) # forwarding changes

Figure 4.3: Fraction of non-stub ASes experiencing more than x routing changes/forwarding changes after a link
failure

Protocols. We evaluate BGP (standard decision process), PRR (Prefer Recent Route) [67] where the

final tie-breaking step prefers the current best route over new routes, and next-hop routing. For all these

protocols, we follow the Gao-Rexford import and export conditions [66] (see Appendix 4.9.2), where ASes

prioritize customer-learned routes over peer-learned routes over provider-learned routes. BGP and PRR

prefer shorter routes to longer ones within each category (customer-/peer-/provider-learned). All three

protocols obey the Consistent Export requirement. Comparing the three protocols allows us to quantify

the importance of next-hop ranking (only in next-hop routing) and prioritizing the current route (in both

next-hop ranking and PRR).

79

Simulator. We use the C-BGP [69] simulator. Note that C-BGP does not support the MRAI (Minimum

Route Advertisement Interval) timer, which rate-limits the updates sent on each session. Although the BGP

RFC recommends the default MRAI of 30 seconds [1], router vendors [70] and the IETF [71] advocate

using much smaller MRAIs (e.g., a few seconds) or removing the timer entirely, due to the performance

requirements of interactive applications. Thus, our simulation results without MRAI settings should be a

reasonable estimation of forwarding changes, routing changes, and BGP update messages as the Internet

moves away from large MRAI timers. In fact, our experimental and theoretical results below suggest that

next-hop routing could allow ASes to remove the MRAI timer entirely. Since C-BGP does not produce

accurate estimates of convergence time, we do not present results for this metric.

Events. We consider three events: prefix announcement, link failure, and link recovery. We first inject a

prefix from a randomly selected multi-homed stub AS, next randomly fail a link between a stub AS and

one of its providers, and then recover the failed link. We wait for the routing protocol to converge after

each step, before moving on to the next step. For each experiment, we compute all the metrics at selected

vantage points (see below). We repeat this experiment for 500 randomly-chosen multi-homed stub ASes.

Vantage points. We observe the number of update messages, routing changes, and forwarding changes

from all 4,670 non-stub ASes and from randomly chosen 5,000 stub ASes as vantage points.

4.3.2 Convergence Results

We now present our results for the failure of a link connecting an AS to the rest of the Internet. Results for

the other events we evaluate are similar.

Comparison: BGP updates at non-stubs. Figure 4.2 plots the distribution of the number of update

messages seen at non-stub ASes. Around one-third of the ASes on the Internet see no routing changes after

a link failure. For the ASes which experience a routing changes, the average number of updates received at

each AS is 11.7 for BGP, 11.8 for PRR, and 8.0 for next-hop BGP. Since many ASes see little or no effects

after any event, we plot the complementary cumulative distribution function (CCDF) to focus on ASes that

experience many update messages.

Under BGP (upper curve in Figure 4.2), some non-stub ASes receive thousands of update messages.

Interestingly, the larger, better-connected ASes tend to receive more update messages, presumably because

they have many more neighbors exporting routes to them. The most-affected non-stub AS receives 1698

80

update messages. PRR slightly reduces this number (middle curve in Figure 4.2, which mostly overlaps

with the BGP curve, except at the tail), by avoiding unnecessary path exploration. Next-hop routing leads

to significant improvement (bottom curve). The much smaller number of update messages suggests that

next-hop routing would allow ASes to remove the MRAI timer (as is the case in our experiments) without

introducing a large number of messages.

Recall that next-hop routing protocol is composed of three parts: next-hop ranking, prefer old route,

and consistent export. While the step of consistent export is applied in all protocols of BGP, PRR, and

next-hop, the gap between the curves of BGP and PRR in Figure 4.2 shows the minor benefits of the PRR

step in next-hop routing. By contrast, the gap between the curves of PRR and next-hop in the figure clearly

demonstrates the improvement by using next-hop ranking.

Comparison: routing/forwarding changes at non-stubs. Next-hop routing also greatly reduces the num-

ber of routing and forwarding changes for non-stub ASes (see Figure 4.3). For the ASes which experience

changes, the average number of routing changes is 4.99 for BGP, 5.03 for PRR, and only 3.95 for next-hop

BGP. We get similar results for the average number of forwarding changes: 2.36 for BGP, 2.37 for PRR, and

2.20 for next-hop routing. In fact, none of the non-stub ASes experience more than six forwarding changes

under next-hop routing for these experiments. In contrast, ASes experience as many as ten forwarding

changes when preferring a shorter AS-PATH over staying with the same next-hop AS, as in PRR.

Comparison: stubs. Figure 4.4 plots the distribution of the number of update messages and routing

changes as seen at stub ASes. Observe that next-hop routing once again leads to significant improvement

over both BGP and PRR.

The 0.1% position. The CCDF plots, while useful for illustrating the diverse experiences of ASes dur-

ing convergence, are unwieldy for head-to-head comparisons of the protocols across different events and

convergence metrics. Yet, with such a skewed distribution, the mean and the median are not especially

meaningful. So, we focus on the experience of the AS at the 0.1% position in the CCDF plots, allowing

us to focus on the (non-stub) ASes that are affected the most link failures without allowing one outlier AS

to bias the results. We summarize the data in bar charts in Figure 4.5 and Figure 4.6. The bars for “Link

Failure” correspond to the y = 0.001 position in Figures 4.3(a) and 4.4(a), respectively. We do not plot the

number of forwarding changes since, for most experiments, the 0.1th-percentile AS experienced at most

one forwarding change. We get similar results by comparing the number of update messages and routing

81

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250

C
C

D
F

Number of Updates

BGP
PRR

Nexthop

(a) # updates

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180

C
C

D
F

Number of Routing Changes

BGP
PRR

Nexthop

(b) # routing changes

Figure 4.4: Fraction of stub ASes experiencing more than x update messages/routing changes after a link failure

changes during various events for the stub ASes.

Conclusions. Our results show that next-hop routing offers reductions in the number of update messages

and routing changes across a range of network events. These results also illustrate how next-hop routing

is especially effective at preventing the most serious convergence problems—where an AS experiences

hundreds of routing changes and tens of forwarding changes. This not only reduces the performance

degradation experienced by the data traffic, but also significantly reduces the overhead for disseminating

BGP update messages.

82

 0

 20

 40

 60

 80

 100

Prefix Up Link Failure Link Recovery

#U
pd

at
es

 (
S

tu
b

A
S

es
)

Bar #1: BGP
Bar #2: PRR
Bar #3: Nexthop

(a) # update messages

 0

 20

 40

 60

 80

 100

Prefix Up Link Failure Link Recovery

#R
ou

tin
g

C
ha

ng
es

 (
S

tu
b

A
S

es
) Bar #1: BGP

Bar #2: PRR
Bar #3: Nexthop

(b) # routing changes

Figure 4.5: Number of update messages and routing changes for stub ASes

4.4 Multipath Interdomain Routing

Recently, there has been a surge of interest in multipath interdomain routing (see, e.g., [72, 48, 42, 73,

74]). We now discuss how next-hop routing can make multipath routing more scalable and incrementally

deployable.

Naive BGP-based multipath routing schemes can be unscalable, due to the need to disseminate and

store multiple routes. For the topology in Figure 4.7, consider the naive multipath protocol where nodes

announce all available routes to neighboring nodes. Observe that ASes A and B, that each have two routes

to the destination d, will both announce two routes to AS C. AS C will then announce four routes to AS

D, and so on. This can easily result in state explosion and in excessive transmission of update messages.

83

 0

 50

 100

 150

 200

 250

 300

 350

 400

Prefix Up Link Failure Link Recovery

#U
pd

at
es

 (
N

on
-s

tu
b

A
S

es
)

Bar #1: BGP
Bar #2: PRR
Bar #3: Nexthop

(a) # update messages

 0

 20

 40

 60

 80

 100

Prefix Up Link Failure Link Recovery

#R
ou

tin
g

C
ha

ng
es

 (
N

on
-s

tu
b

A
S

es
) Bar #1: BGP

Bar #2: PRR
Bar #3: Nexthop

(b) # routing changes

Figure 4.6: Number of update messages and routing changes for non-stub ASes

We show that next-hop routing is more amenable to multipath than path-based routing. The key obser-

vation is that under next-hop routing, a node need not learn a neighboring node’s multiple paths, but merely

learn enough to avoid loops. If AS C in Figure 4.7 has a next-hop ranking of routes then, to enable C to de-

tect loops, AS A (or B) can merely send C an (unordered) list of all the ASes its (multiple) routes traverse.

BGP allows the aggregation of routes into one such AS-SET [75], that summarizes the AS-PATH attributes

of all the individual routes. Thus, BGP route aggregation, used to keep BGP routing tables manageable in

other contexts, can also be used to greatly mitigate the cost of multipath next-hop routing.

Hence, next-hop routing lowers the barrier for making multipath routing a reality. Capitalizing on

multipath routing can yield the following benefits:

84

d

A

CD d

B

CD

Figure 4.7: ASes A and B both announce two routes to AS C, and C then announces four routes to AS D, and so on.
Clearly, this can result in state explosion.

Availability. Multipath routing increases the likelihood that an AS has at least one working path.

Failure recovery. An AS with multiple next-hops can react immediately to a failure in one outgoing link

by sending traffic along another (and not wait for the protocol to re-converge).

Load balancing. An AS could have multiple next-hops (with equal local preference) and decide whether

and how much traffic to direct through each next-hop (e.g., based on data-plane monitoring). Conventional

techniques, such as hashing on fields in the IP header, can ensure that packets of the same flow traverse the

same path, to prevent out-of-order packet delivery.

4.5 Security

We now present the advantages of next-hop routing over path-based routing with BGP in terms of security:

(1) significantly reduced attack surface; and (2) incentive compatibility. We then explain how additional

security mechanisms can be used to secure the routing system from the remaining forms of attacks.

4.5.1 Reduced Attack Surface

Some of the most dangerous attacks on BGP are based on “lying” about the length of an AS’s path. Indeed,

an AS can attract much traffic by announcing a shorter route than that it really has [55], thus launching so

called blackhole or interception attacks for tampering, dropping packets, eavesdropping, etc.

Under next-hop routing, ASes do not consider the AS-PATH when making routing decisions—beyond

85

the first hop, which cannot be forged!—and so an AS no longer benefits from such attacks. Thus, next-hop

routing significantly reduces BGP’s attack surface. In fact, the only effective AS-PATH-based attacks on

next-hop routing are attacks that trigger BGP’s loop detection mechanism (that are clearly also effective

against path-based routing with BGP).

4.5.2 Incentive Compatible

BGP is not incentive compatible, in the sense that ASes might have incentive not to participate honestly

in the routing protocol [53, 76, 54]. In contrast, [53] shows that next-hop routing is incentive-compatible.

Specifically, in the Gao-Rexford framework (see Appendix 4.9.2), an AS cannot get a “better” next-hop to

a destination by “deviating” from BGP (e.g., announcing bogus routes, reporting inconsistent information

to neighboring ASes, etc.).

To illustrate the incentive compatibility of next-hop routing, we revisit the example in Figure 4.1. Ob-

serve that in the unique stable routing state ASes A, B, and C send traffic along the routes Ad, Bd, and

CBd, respectively. Hence, BGP is guaranteed to converge to a routing state where each AS directs traffic

via its most preferred feasible next-hop AS. (Observe that, while B would prefer using C as a next-hop, no

route from C to d that does not traverse B exists, and hence B cannot hope to send traffic through C.) [53]

shows that this is true for general network topologies (see also [63]).

4.5.3 End-to-end Security Mechanisms

Today, an AS can use BGP policies to avoid paths that travel through undesirable ASes. For example, the

U.S. government may want to avoid directing their traffic through other countries. Similarly, an AS may

wish to avoid ASes known to perform censorship, conduct wiretapping, or offer poor performance. This is

achieved by applying regular expressions to the AS-PATH to assign lower preference to routes that contain

the undesirable ASes, or filtering these routes entirely. Under next-hop routing, an AS can no longer

specify BGP routing policies that avoid remote undesirable ASes or countries rendering such “AS-avoiding

policies” impossible.

While next-hop routing renders “AS-avoiding policies” impossible, we point out that these kinds of

policies come with no guarantees; the AS-PATH lists the sequence of ASes that propagated the BGP an-

nouncement, not the path the data packets necessarily traverse (and these can differ even for benign rea-

86

sons). We believe that relying on BGP for data-plane security is misguided. It is precisely when issues like

confidentiality and integrity are involved that the matter should not be left to chance, or misplaced trust.

Instead, we argue that these guarantees should be assured in other (end-to-end) ways, such as encryption

and authentication, e.g., using the mechanisms in [64].

4.5.4 Discussion

We have shown that next-hop routing renders some dangerous attacks against BGP (almost all AS-PATH-

based attacks, e.g., path-shortening attacks) ineffective, while making other attacks less harmful, or non-

beneficial for the attacker. We have also shown how end-to-end mechanisms, which can be incrementally

deployed, can be used to improve data-plane security. Combining these measures will create a routing sys-

tem that is significantly more secure than today’s BGP. However, next-hop routing alone does not provide

full protection against all attacks. Specifically, next-hop routing is still vulnerable to “prefix hijacking”

attacks, where the attacker announces an IP prefix which it does not own, as well as to attacks that trigger

BGP’s loop-detection mechanism.

Over the past decade the standards and research communities have devoted much effort to securing BGP

against prefix hijacking and more sophisticated attacks. We are finally witnessing the initial deployment

of the Resource Public Key Infrastructure (RPKI)—a cryptographic root-of-trust for Internet routing that

authoritatively maps ASes to their IP prefixes and public keys. RPKI will enable an AS to authenticate

that the origin of a route announcement indeed owns the announced prefix—a property called “origin

authentication”. In addition, there is much debate about the deployment of mechanisms for AS-level path

validation (e.g., S-BGP, soBGP, BGPsec), which will enable an AS to verify that an announced route

actually exists (and was announced to the announcer), thus also preventing attacks against BGP’s loop-

detection mechanism.

4.6 Traffic Management

Today’s routers prefer shorter AS-PATHs as an indirect way to improve end-to-end performance and avoid

selecting backup routes. In this section, we discuss how network operators can more naturally achieve their

traffic-management goals without relying on the AS-PATH. First, we discuss how to rank next-hop ASes

based on measurements of end-to-end path performance. Then, we discuss how operators can balance load

87

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16 18 20

C
C

D
F

AS path length

Comparison of AS path length: T-up

BGP
Nexthop

Figure 4.8: ASes’s path lengths after a prefix injection.

by ranking next-hop ASes on a per-prefix basis and tagging backup paths with a BGP community attribute.

4.6.1 Performance-driven Routing

Next-hop routing can lead to longer paths than conventional BGP. In practice, AS-PATH length is not a

good indicator of performance2, but using shorter paths is generally better (all other things being equal).

To understand the impact on AS-PATH length, we analyze the differences in path lengths for different

ASes across a range of events. Specifically, we evaluate next-hop routing and regular BGP, across prefix

injection (“T-up”, Figure 4.8), link failure (“T-long”, Figure 4.9), and link recovery (“T-short”, Figure 4.10).

Our experiments show that most ASes (68.7%–89.9%, depending on the event) have the same AS-PATH

length under BGP and next-hop routing, and most other ASes experience just one extra hop. Still, a non-

trivial fraction of ASes see even longer paths. While these paths may perform reasonably well, some ASes

may indeed experience worse performance. As a result, we believe that a static next-hop ranking should

not be the only factor in routing decisions.

Given AS-PATH length only loosely correlates with path performance, we argue that routers should

make decisions based on measurements of path quality. Routers could adjust (i) the ranking of the next-

hop ASes and (ii) the splitting of traffic over multiple next-hop ASes with the same rank, based on the

performance metrics (e.g., throughput, latency, or loss) of interest. Different kinds of ASes may select

2AS-PATH length is (at best) loosely correlated with end-to-end propagation delay—a route with short AS-PATH can have many
router-hops, or be long in terms of physical distance. Moreover, in practice, shorter AS path also does not necessarily mean larger
throughput.

88

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

C
C

D
F

AS path length

Comparison of AS path length: T-long

BGP
Nexthop

Figure 4.9: ASes’s path lengths after a link failure.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16 18 20

C
C

D
F

AS path length

Comparison of AS path length: T-up

BGP
Nexthop

Figure 4.10: ASes’s path lengths after a link recovery.

different techniques for monitoring path performance, such as:

Multihomed stub ASes: Multi-homed stub ASes can apply existing measurement techniques for in-

telligent route control supported in commercial routers (e.g., [77]). Round-trip performance measurements

are relatively easy to collect, since the stub AS sees traffic in both the forward and reverse directions.

Online service provider: Online service providers, such as Google and Microsoft, can easily monitor

end-to-end performance for their clients (e.g., by logging TCP-level RTT statistics at their servers [28]).

Transit providers: Performance monitoring is more difficult for transit providers, since most traffic

does not start or end in their networks, and asymmetric routing may cause them to see one direction of traffic

but not the other. Still, passive flow measurements can be used to infer performance [78]. Transit providers

89

can also measure performance directly by using hash-based sampling [79] to sample both directions of the

traffic—for the subset of flows that traverse the AS in both directions. This technique also ensures that AS

measures just the downstream portion of the path to the destination, rather the part between the source and

the ISP.

In all three cases, ASes can measure the performance of multiple paths by using “route injection” [80]

to direct a small portion of traffic on each alternate path to continuously track performance. In addition,

ASes can use active probing to monitor alternate paths, rather than directing “real” customer traffic over

these paths.

Based on the performance measurements, an AS can adapt how it directs traffic over multiple next-

hops. Designing and analyzing effective adaptive load-balancing techniques is a rich research topic in it

own right. Recent work suggests that it is indeed possible to design stable and efficient controllers for

adapting the flow of traffic over multiple paths [81,]. We plan to study this issue in greater depth as part of

future work.

4.6.2 Interdomain Traffic Engineering

In addition to selecting paths with good performance, operators rely on interdomain path selection to bal-

ance load on their network links. Operators perform traffic engineering by measuring traffic volumes and

selecting paths that optimize the flow of traffic over different links. Today, some operators use the AS-

PATH to aid in traffic engineering. We believe other approaches (that do not rely on the AS-PATH) are

more appropriate:

Outbound traffic engineering: Operators balance load on edge links to other ASes by adjusting the

policies that assign “local preference” to BGP routes. This is still possible under next-hop routing, with the

restriction that the preferences depend only the immediate neighbor rather than subsequent hops in the AS-

PATH. As such, network operators cannot use “regular expressions” on the AS-PATH to (say) direct some

traffic through an alternate egress point based on whether the second AS in the path is even or odd [82].

Policies based on regular expressions are arguably quite clumsy, and may not be widely used in practice.

Instead, network operators could select different next-hop rankings for different (groups of) destination

prefixes as a way to direct some traffic over other paths.

Inbound traffic engineering: Controlling the flow of incoming traffic is notoriously difficult, since

Internet routing is destination-based. Today, some ASes use “AS prepending”—artificially adding extra

90

hops to make the AS-PATH look longer—to make routes through them look less desirable to others. This

is often used as a (somewhat clumsy) way to signify a “backup” route. Observe that next-hop routing, by

removing AS-PATH length from the decision process, makes AS prepending ineffective. Instead, network

operators could use BGP communities to signal backup routes to neighboring ASes [83]; if these ASes

export the “signal” to their neighbors, other ASes can also give lower ranking to backup paths. Perhaps

more importantly, path-quality monitoring allows ASes to make decisions based on performance, leading

naturally to routing decisions that avoid placing excessive load on lower-bandwidth backup links. Still, just

as with today’s BGP, inbound traffic engineering remains somewhat of a “black art.”

In addition, traffic engineering greatly benefits from multipath routing—something next-hop routing

supports much more naturally than conventional BGP, as discussed earlier in Section 4.4. An AS can easily

split traffic over multiple next-hops leading to the same destination; adjusting the fraction of traffic assigned

to each next-hop is a much finer-grain approach to traffic engineering than selecting a single path for each

destination prefix.

4.7 Related Work

Interdomain routing has been an active research area, ever since early work identified thorny problems with

BGP [50, 84, 51]. Since then, many papers have characterized BGP’s behavior (both theoretically [66, 76,

53], and via measurement [2, 56]), and designed techniques for managing BGP (to detect configuration

mistakes [57] and automate traffic engineering [82]). Other research has proposed extensions to BGP

(particularly to improve security [44, 45] and convergence [42, 43], or support multipath routing [72, 48,

42, 73, 74, 64]), or designed new interdomain routing architectures [46, 47, 48, 49]. We do not attempt to

provide a comprehensive overview.

Our work is inspired by recent theoretical work [53, 54, 63] on BGP policy restrictions that lead to

desirable global properties. We explore whether we can make reality look more like those models.

4.8 Summary

BGP suffers from many serious problems. We argued that simplifying BGP is an attractive alternative to

extending or replacing BGP. We proposed next-hop routing—three simple constraints on how routes are

91

selected and exported, combined with external mechanisms for data-plane monitoring and security. Next-

hop routing allows ASes sufficient expressiveness to realize their business and engineering objectives,

while sidestepping some of BGP’s major problems (e.g., slow convergence, large attack surface, incentives

to “lie”, difficulty in supporting multipath routing, and more).

Our work leaves several interesting directions for future research. We plan to explore how to remove

the AS-PATH attribute entirely, that is, how not to rely on the AS-PATH even for loop detection purposes

(e.g., by detecting forwarding loops through data-plane monitoring). We also plan to further investigate the

stability and efficiency of adaptive interdomain routing based on measurements of data-plane performance.

4.9 Appendix

4.9.1 Modeling BGP Dynamics

We use the standard model for analyzing BGP dynamics put forth in [51]. The reader is referred to [51] for

further details.

Network and policies. The network is defined by an AS graph G = (N, L), where N represents the set

of ASes, and L represents physical communication links between ASes. N consists of n source-nodes

{1, . . . , n} and a unique destination node d. P i denotes the set of “permitted” simple (noncyclic) routes

from i to d in G. Each source-node i has a ranking function≤i, that defines an order over P i. We allow ties

between two routes in P i only if they share the same next hop. The routing policy of each node i consists

of ≤i and of i’s import and export policies.3

Protocol dynamics. Under BGP at routing tree to the destination d is built, hop-by-hop, as knowledge

about how to reach d propagates through the network. The process is initialized when d announces itself

to its neighbors by sending update messages. From this moment forth, every active node establishes a

route to d by repeatedly choosing the best route that is announced to it by its neighbors (according to <i)

and announcing this route to its neighbors (according to its export policy). The network is assumed to be

asynchronous; ASes can act at different times and BGP updates can be arbitrarily delayed.

Stable states. Informally, a stable state is a global configuration that once reached remains unchanged.

3The import and export policies can be folded into the routing policies, by modifying the preferences so that paths that are filtered
out have the lowest possible value. Thus, we do not explicitly model these.

92

Formally, a stable state is an n-tuple of routes in G, R1, ..., Rn, such that: (1) If for two nodes i 6= j it

holds that j is on Ri, then it must hold that Rj ⊂ Ri (that is, Rj is a suffix of Ri). (2) If there is a link

(i, j) ∈ L, and Ri 6= (i, j)Rj , then (i, j)Rj <i Ri. It is easy to show [51] that a stable state is always in

the form of a tree rooted in d.

4.9.2 Gao-Rexford Framework

In the Gao-Rexford framework, neighboring ASes have one of two business relationships: customer-

provider and peering. [66] presents three conditions that are naturally induced by the business relationships

between ASes and proves that these conditions imply guaranteed BGP convergence to a stable state. The

three Gao-Rexford conditions are the following:

• Topology Condition: there should be no customer-provider cycles in the AS hierarchy digraph.

• Preference Condition: an AS should prioritize customer-learned routes over peer- and provider-

learned routes.

• Export Condition: an AS should not export peer-/provider-learned routes to other peers and providers.

If the Gao-Rexford conditions hold for a network, then BGP convergence to a stable state is guaran-

teed [66].

93

Chapter 5

Conclusion

Today’s Internet routing was not designed with management and performance challenges in mind. There-

fore, the network operators and researchers face a number of major challenges in minimizing performance

disruptions in the network, including: (1) ISP’s challenge in providing good transit for IP packets, (2)

CDN’s challenge in maximizing performance for services, and (3) research community’s challenge in im-

proving the design of the routing protocol for better data-plane performance. This dissertation addresses

these challenges from three different perspectives.

In this dissertation, we identified two network troubleshooting challenges faced by ISPs and CDNs

today, and presented solutions. We then took the protocol designer’s perspective, and proposed a BGP

variant designed for performance-driven route selection.

First, we identified that many network-management tasks in large ISP networks need to track route

changes scalably and in real time. We formulated the problem as: given an IP packet which entered the

network at a particular place and time, where does it leave the network, and what is the subsequent path

to the destination. To answer this question, we need to keep track of the changes to the longest prefix

match (LPM). We explored the option to track LPM changes using the forwarding table of the IP routers

today, and pointed out the scaling challenges of this approach. Instead, we proposed the idea of grouping

IP addresses into contiguous ranges which match the same set of prefixes. The concept of the address

range not only makes the tracking of LPM changes scale, but also facilitates parallelization. We designed

and implemented the Route Oracle tool based on this idea. We presented performance evaluation of the

tool, with the following optimizations: pre-processing of address range records and parallelization of query

94

processing. We demonstrated the ability of the Route Oracle tool to handle large number of queries at scale

and in real time.

In our second case study, we focused on one of the major challenges that CDN networks face today:

minimizing network latency for the clients accessing the CDN services. The problem is challenging, be-

cause latency may increase for many reasons, such as inter-domain routing changes and the CDN’s own

load-balancing policies. We first separated the many causes from the effects by using a decision tree to

classify latency changes. Another challenge is that network operators group clients according to their ISP

and geographic region to reduce measurement and control overhead, but the clients in a region may use

multiple servers and paths during a measurement interval. To solve the problem, we proposed metrics that

quantify the latency contributions across sets of servers and routers. Our analysis over a month of data from

Google’s CDN showed that nearly 1% of the daily latency changes increase delay by more than 100 msec.

More than 40% of these increases coincide with inter-domain routing changes, and more than one-third

involve a shift in traffic to different servers. Furthermore, we explored case studies involving individual

events, and identified research challenges for measuring and managing wide-area latency for CDNs.

Finally, we took a broader perspective on improving the inter-domain routing system. The BGP pro-

tocol today does not perform well, because it converges slowly, selects paths without regard for perfor-

mance, does not support multipath routing, and has numerous security vulnerabilities. Rather than adding

mechanisms to an already complex protocol, or redesigning inter-domain routing from scratch, we pro-

posed making BGP simpler, and handling issues such as data-plane performance and security where they

belong—outside the routing protocol. We proposed a transition from today’s path-based routing (where

routing decisions depend on the entire AS-PATH) to next-hop routing—a solution that selects and exports

routes based only on the neighboring domain. Based on experimental results, we showed that next-hop

routing leads to significantly better network performance than path-based routing, alongside other advan-

tages (including being more amenable to multipath routing and a reduced attack surface).

Collectively, the contributions of this dissertation provided solutions to help automate the network diag-

nosis process for ISPs and CDNs, with the proposal to revise the routing protocol for better performance.

95

Bibliography

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4).” RFC 4271, January 2006.

[2] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet routing convergence,” IEEE/ACM

Trans. on Networking, vol. 9, pp. 293–306, June 2001.

[3] Y. Zhu, J. Rexford, S. Sen, and A. Shaikh, “Impact of Prefix-Match Changes on IP Reachability,” in

Proc. Internet Measurement Conference, 2009.

[4] B. Zhang, V. Kambhampati, M. Lad, D. Massey, and L. Zhang, “Identifying BGP routing table trans-

fers,” in Proc. ACM SIGCOMM Workshop on Mining Network Data (MineNet), August 2005.

[5] J. Wu, Z. M. Mao, J. Rexford, and J. Wang, “Finding a needle in a haystack: Pinpointing significant

BGP routing changes in an IP network,” in Proc. USENIX/ACM NSDI, May 2005.

[6] Rensys Blog, “Pakistan hijacks YouTube.” http://www.renesys.com/blog/2008/02/

pakistan_hijacks_youtube_1.shtml.

[7] “Packet Design Route Explorer.” http://www.packetdesign.com.

[8] “University of Oregon Route Views Project.” http://www.routeviews.org.

[9] RIPE, “RIPE Routing Information Service (RIS).” http://www.ripe.net/ris.

[10] M. Caesar, L. Subramanian, and R. H. Katz, “Towards localizing root causes of BGP dynamics.”

Technical Report, U.C. Berkeley UCB/CSD-04-1302, 2003.

[11] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs, “Locating Internet Routing Insta-

bilities,” in Proc. ACM SIGCOMM, 2004.

96

[12] R. Teixeira and J. Rexford, “A Measurement Framework for Pin-pointing Routing Changes,” in ACM

SIGCOMM Network Troubleshooting Workshop, 2004.

[13] A. Broido and k. claffy, “Analysis of RouteViews BGP data: Policy atoms,” in Proc. Network Re-

source Data Management Workshop, 2001.

[14] Y. Afek, O. Ben-Shalom, and A. Bremler-Barr, “On the structure and application of BGP policy

atoms,” in Proc. Internet Measurement Workshop, pp. 209–214, 2002.

[15] T. Bu, L. Gao, and D. Towsley, “On characterizing BGP routing table growth,” Computer Networks,

vol. 45, pp. 45–54, May 2004.

[16] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang, “IPv4 address allocation and BGP routing

table evolution,” ACM Computer Communication Review, January 2005.

[17] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP misconfiguration,” in Proc. ACM

SIGCOMM, August 2002.

[18] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability of popular destinations,” in Proc.

Internet Measurement Workshop, November 2002.

[19] J. Karlin, S. Forrest, and J. Rexford, “Autonomous security for autonomous systems,” Computer

Networks, October 2008.

[20] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang, “PHAS: A prefix hijack alert system,” in

Proc. USENIX Security Symposium, 2006.

[21] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang, “PlanetSeer: Internet path failure monitoring

and characterization in wide-area services,” in Proc. OSDI, 2004.

[22] N. Feamster, D. Andersen, H. Balakrishnan, and M. F. Kaashoek, “Measuring the effects of Internet

path faults on reactive routing,” Proc. ACM SIGMETRICS, 2003.

[23] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “User-level path diagnosis,” in Proc. ACM

SOSP, October 2003.

[24] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz, “Towards an accurate AS-level traceroute tool,” in

Proc. ACM SIGCOMM, August 2003.

97

[25] F. Wang, L. Gao, O. Spatscheck, and J. Wang, “STRID: Scalable trigger-based route incidence diag-

nosis,” in Proc. IEEE International Conference on Computer Communications and Networks, August

2008.

[26] P. Huang, A. Feldmann, and W. Willinger, “A non-intrusive, wavelet-based approach to detecting

network performance problems,” in Proc. Internet Measurement Workshop, November 2001.

[27] V. N. Padmanabhan, L. Qiu, and H. Wang, “Server-based inference of Internet performance,” in Proc.

IEEE INFOCOM, March 2003.

[28] M. Szymaniak, D. Presotto, G. Pierre, and M. V. Steen, “Practical large-scale latency estimation,”

Computer Networks, 2008.

[29] Cisco NetFlow, http://www.cisco.com/en/US/products/ps6601/products_ios_

protocol_group_home.html.

[30] Z. M. Mao, C. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck, and J. Wang, “A precise and effi-

cient evaluation of the proximity between web clients and their local DNS servers,” in Proc. USENIX

Annual Technical Conference, 2002.

[31] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott, J. Sherry, P. van Wesep, T. Anderson,

and A. Krishnamurthy, “Reverse traceroute,” in Proc. Networked Systems Design and Implementation,

April 2010.

[32] B. Krishnamurthy, C. Wills, and Y. Zhang, “On the use and performance of Content Distribution

Networks,” in Proc. Internet Measurement Workshop, November 2001.

[33] A. Shaikh, R. Tewari, and M. Agarwal, “On the effectiveness of DNS-based server selection,” in Proc.

IEEE INFOCOM, August 2002.

[34] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and S. Seshan, “On the responsiveness of DNS-

based network control,” in Proc. Internet Measurement Conference, October 2004.

[35] B. Ager, W. Muehlbauer, G. Smaragdakis, and S. Uhlig, “Comparing DNS resolvers in the wild,” in

Proc. Internet Measurement Conference, November 2010.

98

[36] C. Contavalli, W. van der Gaast, S. Leach, and D. Rodden, “Client IP information in DNS requests,”

May 2010. Expired Internet Draft, draft-vandergaast-edns-client-ip-01.

[37] Z. Zhang, M. Zhang, A. Greenberg, Y. C. Hu, R. Mahajan, and B. Christian, “Optimizing cost and

performance in online service provider networks,” in Proc. Networked Systems Design and Imple-

mentation, April 2010.

[38] C. Huang, A. Wang, J. Li, and K. W. Ross, “Measuring and evaluating large-scale CDNs,” in Proc.

Internet Measurement Conference, 2008.

[39] R. Krishnan, H. V. Madhyastha, S. Srinivasan, and S. Jain, “Moving beyond end-to-end path infor-

mation to optimize CDN performance,” Proc. Internet Measurement Conference, 2009.

[40] M. B. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar, “Answering ‘what-if’ deployment

and configuration questions with WISE,” Proc. ACM SIGCOMM, 2008.

[41] N. Kushman, S. Kandula, and D. Katabi, “Can you hear me now?! it must be BGP,” ACM SIGCOMM

Computer Communications Review, April 2007.

[42] N. Kushman, S. Kandula, D. Katabi, and B. Maggs, “R-BGP: Staying connected in a connected

world,” in Proc. USENIX NSDI, 2007.

[43] P. B. Godfrey, M. Caesar, I. Haken, Y. Singer, S. Shenker, and I. Stoica, “Stabilizing route selection

in BGP,” tech. rep., University of Illinois at Urbana-Champaign, January 2010. http://hdl.

handle.net/2142/14841.

[44] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol (S-BGP),” Journal on Selected Areas

in Communications, no. 18(4), pp. 582–592, 2000.

[45] K. Butler, T. Farley, P. McDaniel, and J. Rexford, “A survey of BGP security issues and solutions,”

Proceedings of the IEEE, January 2010.

[46] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao, S. Shenker, and I. Stoica, “HLP: A next

generation inter-domain routing protocol,” in Proc. ACM SIGCOMM, pp. 13–24, ACM, 2005.

[47] X. Yang, D. Clark, and A. W. Berger, “NIRA: A New Inter-domain Routing Architecture,” IEEE/ACM

Trans. Networking, vol. 15, no. 4, pp. 775–788, 2007.

99

[48] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,” in Proc. ACM SIGCOMM,

2009.

[49] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and A. Venkatarmani, “Consensus rout-

ing: The Internet as a distributed system,” in Proc. Networked Systems Design and Implementation,

April 2008.

[50] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations in inter-domain routing,”

Computer Networks, vol. 32, pp. 1–16, March 2000.

[51] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem and interdomain routing,”

IEEE/ACM Trans. Netw., vol. 10, no. 2, pp. 232–243, 2002.

[52] O. Nordstrom and C. Dovrolis, “Beware of BGP attacks,” ACM SIGCOMM Computer Communica-

tion Review, vol. 34, no. 2, pp. 1–8, 2004.

[53] J. Feigenbaum, M. Schapira, and S. Shenker, “Distributed algorithmic mechanism design,” in Algo-

rithmic Game Theory (N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, eds.), ch. 14, Cambridge

University Press, 2007.

[54] S. Goldberg, S. Halevi, A. D. Jaggard, V. Ramachandran, and R. N. Wright, “Rationality and traffic

attraction: Incentives for honest path announcements in BGP,” in Proc. ACM SIGCOMM, pp. 267–

278, 2008.

[55] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford, “How secure are secure interdomain routing

protocols?,” in Proc. ACM SIGCOMM, 2010.

[56] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP misconfiguration,” in Proc. ACM

SIGCOMM, 2002.

[57] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults with static analysis,” in Proc.

Networked Systems Design and Implementation, 2005.

[58] Z. Yin, M. Caesar, and Y. Zhou, “Towards understanding bugs in open source router software,” ACM

SIGCOMM CCR, 2010.

100

[59] Renesys, “Longer is not always better.” http://www.renesys.com/blog/2009/02/

longer-is-not-better.shtml.

[60] Renesys, “AfNOG takes byte out of Internet.” http://www.renesys.com/blog/2009/05/

byte-me.shtml.

[61] “Research experiment disrupts Internet, for some,” http://www.computerworld.com/s/

article/9182558/Research_experiment_disruptsInternet_for_some.

[62] “Reckless Driving on the Internet,” http://www.renesys.com/blog/2009/02/

the-flap-heard-around-the-worl.shtml.

[63] J. Feigenbaum, V. Ramachandran, and M. Schapira, “Incentive-compatible interdomain routing,” in

Proc. ACM Electronic Commerce, pp. 130–139, 2006.

[64] D. Wendlandt, I. Avramopoulos, D. Andersen, and J. Rexford, “Don’t secure routing protocols, secure

data delivery,” in Proc. Hotnets V, 2006.

[65] P. R. McManus, “A passive system for server selection within mirrored resource environments

using AS path length heuristics,” April 1999. http://www.ducksong.com/patrick/

proximate.pdf.

[66] L. Gao and J. Rexford, “Stable Internet routing without global coordination,” IEEE/ACM Trans. on

Networking, vol. 9, no. 6, pp. 681–692, 2001.

[67] “BGP best path selection algorithm.” http://www.cisco.com/en/US/tech/tk365/

technologies_tech_note09186a0080094431.shtml.

[68] B. Zhang, R. Liu, D. Massey, and L. Zhang, “Collecting the internet AS-level topology,” ACM SIG-

COMM CCR, special issue on Internet Vital Statistics, 2005.

[69] B. Quoitin and S. Uhlig, “Modeling the routing of an autonomous system with C-BGP,” IEEE Net-

work, vol. 19, no. 6, 2005.

[70] Juniper, “Out-delay.” https://www.juniper.net/techpubs/software/junos/

junos57/swconfig57-routing/html/bgp-summary32.html.

101

[71] P. Jakma, “Revisions to the BGP ’Minimum Route Advertisement Interval’.” Internet Draft draft-ietf-

idr-mrai-dep-03, October 2010.

[72] W. Xu and J. Rexford, “MIRO: Multi-path interdomain routing,” in Proc. ACM SIGCOMM, pp. 171–

182, 2006.

[73] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path Splicing,” in Proc. ACM SIGCOMM,

August 2008.

[74] Y. Wang, M. Schapira, and J. Rexford, “Neighbor-Specific BGP: More flexible routing policies while

improving global stability,” in Proc. ACM SIGMETRICS, 2009.

[75] “Understanding route aggregation in BGP.” http://www.cisco.com/en/US/tech/tk365/

technologies_tech_note09186a0080094826.shtml.

[76] H. Levin, M. Schapira, and A. Zohar, “Interdomain routing and games,” in Proc. ACM STOC, pp. 57–

66, 2008.

[77] Cisco, “Cisco IOS Optimized Edge Routing Overview.” http://www.cisco.com/en/US/

docs/ios/oer/configuration/guide/oer-overview.html, 2007.

[78] A. Gerber, J. Pang, O. Spatscheck, and S. Venkataraman, “Representative speed tests for free: Es-

timating achievable download speed from passive measurements,” in Proc. Internet Measurement

Conference, November 2010.

[79] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct traffic observation,” in Proc.

ACM SIGCOMM, 2000.

[80] Z. Zhang, M. Zhang, A. Greenberg, Y. C. Hu, R. Mahajan, and B. Christian, “Optimizing cost and

performance in online service provider networks,” in Proc. NSDI, 2010.

[81] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope: Responsive yet stable traffic

engineering,” in Proc. ACM SIGCOMM, pp. 253–264, 2005.

[82] N. Feamster, J. Borkenhagen, and J. Rexford, “Guidelines for interdomain traffic engineering,” ACM

SIGCOMM Computer Communication Review, vol. 33, no. 5, pp. 19–30, 2003.

102

[83] E. Chen and T. Bates, “RFC 1998: An application of the BGP community attribute in multi-home

routing,” August 1996.

[84] C. Labovitz, R. Malan, and F. Jahanian, “Internet Routing Instability,” IEEE/ACM Trans. Networking,

vol. 6, no. 5, pp. 515–526, 1998.

103

