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Abstract

Today’s data centers host online services on multiple servers, with a front-end load balancer 

directing each client request to a particular replica. Dedicated load balancers are expensive and 

quickly become a single point of failure and congestion. The OpenFlow standard enables an 

alternative approach where the commodity network switches divide traffic over the server 

replicas, based on packet-handling rules installed by a separate controller. However, the simple 

approach of installing a separate rule for each client connection (or “microflow”) leads to a huge 

number of rules in the switches and a heavy load on the controller. We argue that the controller 

should exploit switch support for wildcard rules for a more scalable solution that directs large 

aggregates of client traffic to server replicas. We present algorithms that compute concise 

wildcard rules that achieve a target distribution of the traffic, and automatically adjust to 

changes in load-balancing policies without disrupting existing connections. We implement 

these algorithms on top of the NOX OpenFlow controller, evaluate their effectiveness, and 

propose several avenues for further research.



3

1. Introduction

Online services—such as search engines, Web sites, and social networks—are often 

replicated on multiple servers for greater capacity and better reliability. Within a single data 

center or enterprise, a front-end load balancer [2, 4] typically directs each client request to a 

particular replica. A dedicated load balancer using consistent hashing is a popular solution 

today, but it suffers from being an expensive additional piece of hardware and has limited 

customizability. Our load-balancing solution avoids the cost and complexity of separate load-

balancer devices, and allows flexibility of network topology while working with unmodified 

server replicas. Our solution scales naturally as the number of switches and replicas grows, 

while directing client requests at line rate. 

The emerging OpenFlow [8] platform enables switches to forward traffic in the high-

speed data plane based on rules installed by a control plane program running on a separate 

controller. For example, the Plug-n-Serve [6] system (now called Aster*x [1]) uses OpenFlow to 

reactively assign client requests to replicas based on the current network and server load. Plug-

n-Serve intercepts the first packet of each client request and installs an individual forwarding 

rule that handles the remaining packets of the connection. Despite offering great flexibility in 

adapting to current load conditions, this reactive solution has scalability limitations, due to the 

overhead and delay in involving the relatively slow controller in every client connection, in 

addition to many rules installed at each switch. 

Our scalable in-network load balancer proactively installs wildcard rules in the switches 

to direct requests for large groups of clients without involving the controller. Redistributing the 
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load is a simple as installing new rules. The use of wildcard rules raises two main problems: (i) 

generating an efficient set of rules for a target distribution of load and (ii) ensuring that packets 

in the same TCP connection reach the same server across changes in the rules. The load balancer 

is a centralized controller program [9] so we can determine the globally optimal wildcard rules. 

Our solutions achieve the speed of switch forwarding, flexibility in redistributing load, and 

customizable reactions to load changes of an in-network load balancing solution, with no 

modification to clients or servers. 

In the next section, we present our load balancing architecture, including the 

“partitioning” algorithm for generating wildcard rules and our “transitioning” algorithm for 

changing from one set of rules to another. We also present a preliminary evaluation of our 

prototype, built using OpenVswitch, NOX [5], and MiniNet [7]. Then, Section 3 discusses our 

ongoing work on extensions to support a non-uniform distribution of clients and a network of 

multiple switches. These extensions build on our core ideas to form a complete in-network load 

balancing solution with better flexibility in redistributing load, customizing reactions to load 

changes, and lower cost compared to existing solutions. The paper concludes in Section 4.
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2. Into the Wild: Core Ideas

The data center consists of multiple replica servers offering the same service, and a 

network of switches connecting to clients, as shown in Figure 1. Each server replica Rj has a 

unique IP address and an integer weight aj that determines the share of requests the replica 

should handle; for example, R2 should receive 50% (i.e., 4/8) of the requests. Clients access the 

service through a single public IP address, reachable via a gateway switch. The load-balancer 

switch rewrites the destination IP address of each incoming client packet to the address of the 

assigned replica. In this section, we first describe the OpenFlow features used in our solution. 

Next, we describe how our partitioning algorithm generates wildcard rules that balance load 

over the replicas. Then, we explain how our transitioning algorithm moves from one set of 

wildcard rules to another, without disrupting ongoing connections. Finally, we present an 

evaluation of our prototype system.

Figure 1: Basic model from load balancer switch’s view



6

2.1 Relevant Openflow Features

OpenFlow defines an API for a controller program to interact with the underlying 

switches. The controller can install rules that match on certain packet-header fields (e.g., MAC 

addresses, IP addresses, and TCP/UDP ports) and perform actions (e.g., forward, drop, rewrite, 

or “send to the controller”) on the matching packets. A microflow rule matches on all fields, 

whereas a wildcard rule can have “don’t care” bits in some fields. A switch can typically 

support many more microflow than wildcard rules, because wildcard rules often rely on 

expensive TCAM memory, while microflow rules can leverage more abundant SRAM. Rules 

can be installed with a timeout that triggers the switch to delete the rule after a fixed time 

interval (a hard timeout) or a specified period of inactivity (a soft timeout). In addition, the 

switch counts the number of bytes and packets matching each rule, and the controller can poll 

these counter values.

In our load-balancing solution, the switch performs an “action” of (i) rewriting the 

server IP address and (ii) forwarding the packet to the output port associated with the chosen 

replica. We use wildcard rules to direct incoming client requests based on the client IP 

addresses, relying on microflow rules only during transitions from one set of wildcard rules to 

another; soft timeouts allow these microflow rules to “self destruct” after a client connection 

completes. We use the counters to measure load for each wildcard rule to identify imbalances in 

the traffic load, and drive changes to the rules to rebalance the traffic. 

OpenFlow has a few limitations that constrain our solution. OpenFlow does not 

currently support hash-based routing [10] as a way to spread traffic over multiple paths. 

Instead, we rely on wildcard rules that match on the client IP addresses. Ideally, we would like 
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to divide client traffic based on the low-order bits of the client IP addresses, since these bits

have greater entropy than the high-order bits. However, today’s OpenFlow switches only 

support “don’t care” bits on the lower-order bits, limiting us to IP prefix rules. In addition, 

OpenFlow does not support matching on TCP flags (e.g., SYN, FIN, and RST) that would help 

us differentiate between new and ongoing connections—important when our system transitions 

from one set of wildcard rules to another. Instead, we propose alternative ways to ensure that 

successive packets of the same connection reach the same server replica.

2.2 Partitioning the Client Traffic

The partitioning algorithm must divide client traffic in proportion to the load-balancing 

weights, while relying only on features available in the OpenFlow switches. To ensure 

successive packets from the same TCP connection are forwarded to the same replica, we install 

rules matching on client IP addresses. We initially assume that traffic volume is uniform across 

client IP addresses (an assumption we relax later in Section 3.1), so our goal is to generate a 

small set of wildcard rules that divide the entire client IP address space1. In addition, changes 

in the target distribution of load require new wildcard rules, while still attempting to minimize 

the number of changes.

2.2.1 Minimizing the Number of Wildcard Rules

A binary tree is a natural way to represent IP prefixes, as shown in Figure 2(a). Each 

node corresponds to an IP prefix, where nodes closer to the leaves represent longer prefixes. If 

the sum of the {aj} is a power of two, the algorithm can generate a tree where the number of leaf 

nodes is the same as the sum (e.g., the eight leaf nodes in Figure 2(a)). Each Rj is associated with 
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aj leaf nodes; for example, replica R2 is associated with four leaves. However, the {aj} may not 

sum to a power of 2 in practice. Instead, we determine the closest power of 2, and renormalize 

the weights accordingly. The resulting weights closely approximate the target distribution, and 

enable a simple and efficient partitioning of the IP address space. 

Figure 2: a1 = 3, a2 = 4, and a3 = 1. Assuming uniform distribution of traffic: (a) wildcard rules assigning leaf nodes
to a perfect binary tree achieving target distribution. (b) fewer wildcard rules.

Creating a wildcard rule for each leaf node would lead to a large number of rules. To 

reduce the number of rules, the algorithm can aggregate sibling nodes associated with the same 

server replica; in Figure 2(a), a single wildcard rule 10* could represent the two leaf nodes 100* 

and 101* associated with R2. Similarly, the rule 00* could represent the two leaf nodes 000* and 

001* associated with R1, reducing the number of wildcard rules from 8 to 6. However, the 

assignment of leaf nodes in Figure 2(a) does not lead to the minimum number of rules. Instead, 

the alternate assignment in Figure 2(b) achieves the minimum of four rules (i.e., 0*, 10*, 110*, 

and 111*).

The binary representation of the weights indicates how to best assign leaf nodes to 

replicas. The number of bits set to 1 in the binary representation of aj is the minimum number of 

wildcard rules for replica Rj, where each 1-bit i represents a merging of 2i leaves. R1 has a1 = 3 
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(i.e., 011 in binary), requiring one rule with two leaves and another with one leaf. Our algorithm 

assigns leaf nodes to replicas ordered by the highest bit set to 1 among all a values, to prevent 

fragmentation of the address space. In Figure 2(b), R2 is first assigned a set of four leaves, 

represented by 0*. Once all leaf nodes are assigned, we have a complete and minimal set of 

wildcard rules.

Figure 3: The binary representation of desired target reveals exactly the number of rules necessary for each replica 
server (R1 requires two wildcard rules while R2 requires a single wildcard rule). Starting with an empty IP tree, 
assigning groups of adjacent leaf nodes ordered based on the highest bit-i set to 1 first allows us to achieve the 
appropriate IP tree and replica assignments that we see here (right) and in Figure 2(b).

2.2.2 Minimizing Churn During Re-Partitioning

The weights {aj} may change over time to take replicas down for maintenance, save 

energy, or to alleviate congestion. Simply regenerating wildcard rules from scratch could 

change the replica selection for a large number of client IP addresses, increasing the overhead of 

transitioning to the new rules. Instead, the controller tries to minimize the fraction of the IP 

address space that changes from one replica to another. If the number of leaf nodes for a 

particular replica remains unchanged, the rule(s) for that replica may not need to change. In 

Figure 2(b), if replica R3 is taken down and its load shifted to R1 (i.e., a3 decreases to 0, and a1

increases from 3 to 4), the rule for R2 does not need to change. In this case, only the IP addresses 
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in 111* would need to transition to a new replica, resulting in just two rules (0* for R2 and 1* for 

R1). 

To minimize the number of rules, while making a “best effort” to reuse the previously-

installed rules, the algorithm creates a new binary tree for the updated {aj} and pre-allocates leaf 

nodes to the potentially re-usable wildcard rules. Re-usable rules are rules where the ith highest 

bit is set to 1 for both the new and old aj. Even if the total number of bits to represent the old aj

and new aj are different, the ith highest bit corresponds to wildcard rules with the same number 

of wildcards. However, smaller pre allocated groups of leaf nodes could prevent finding a set of 

aggregatable leaf nodes for a larger group; when this happens, our algorithm allocates leaf 

nodes for the larger group to minimize the total number of rules, rather than reusing the 

existing rules.

2.3 Transitioning with Connection Affinity

The controller cannot abruptly change the rules installed on the switch without 

disrupting ongoing TCP connections; instead, existing connections should complete at the 

original replica. Fortunately, we can distinguish between new and existing connections because 

the TCP SYN flag is set in the first packet of a new connection. While OpenFlow switches 

cannot match on TCP flags, the controller can check the SYN bit in a packet, and install new 

rules accordingly. Identifying the end of a connection is trickier. Even a FIN or RST flag does 

not clearly indicate the end of a connection, since retransmitted packets may arrive after the 

FIN; in addition, clients that fail spontaneously never send a FIN or RST. Instead, we infer a 

connection has ended after (say) 60 seconds of inactivity. 
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We have two algorithms for transitioning from one replica to another. The first solution 

directs some packets to the controller, in exchange for a faster transition; the second solution 

allows the switch to handle all packets, at the expense of a slower transition. To reduce the 

number of extra rules in the switches, we can limit the fraction of address space in transition at 

the same time. For example, transitioning 111* from R3 to R1 could proceed in stages, where first 

1110* is transitioned, and then 1111*.

Figure 4: Transitions for wildcard rule changes: Square boxes represent packets sent by client on left. Traffic during 
transitions are assigned microflow rules.

2.3.1 Transitioning Quickly With Microflow Rules

To move traffic from one replica to another, the controller temporarily intervenes to 

install a dedicated microflow rule for each connection in the affected region of client IP 

addresses. For example, suppose the client traffic matching 0* should shift from replica R1 to R2

as in Figure 3. The controller needs to see the next packet of each connection in 0*, to decide 

whether to direct the rest of that connection to the new replica R2 (for a SYN) or the old replica 

R1 (for a non-SYN). As such, the controller installs a rule directing all 0* traffic to the controller 

for further inspection; upon receiving a packet, the controller installs a high-priority microflow 
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rule for the remaining packets of that connection. In Figure 3, the controller receives a SYN 

packet from client 32.0.0.1 during the transition process, and directs that traffic to R2; however, 

the controller receives a non-SYN packet for the ongoing connection from client 1.0.0.1 and 

directs that traffic to R1.

Our algorithm installs a microflow rule with a 60-second soft timeout to direct specific 

connections to their appropriate replicas during these transitions. The controller does not need 

to intervene in the transition process for long. In fact, any ongoing connection should have at 

least one packet before sixty seconds have elapsed, at which time the controller can modify the 

0* rule to direct all future traffic to the new replica R2; in the example in Figure 3, the new flow 

from client 64.0.0.1 is directed to R2 by the new wildcard rule.

2.3.2 Transitioning With No Packets to Controller

The algorithm in the previous subsection transitions quickly to the new replica, at the 

expense of sending some packets to the controller. In our second approach, all packets are 

handled directly by the switches. In Figure 3, the controller could instead divide the address 

space for 0* into several smaller pieces, each represented by a high priority wildcard rule (e.g., 

000*, 001*, 010*, and 011*) directing traffic to the old replica R1. If one of these rules has no traffic 

for some configurable timeout of sixty seconds, no ongoing flows remain and that entire group 

of client addresses can safely transition to replica R2. A soft timeout ensures the high-priority 

wildcard rule is deleted from the switch after 60 seconds of inactivity. In addition, the controller 

installs a single lower-priority rule directing 0* to the new replica R2, that handles client 

requests that have completed their transition.
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While this solution avoids sending data packets to the controller, the transition proceeds 

more slowly because some new flows are directed to the old replica R1. For example, a new 

connection matching 000* that starts during the transition period will be directed to R1, and 

would extend the time the 000* rule must remain in the switch. By installing a larger number of 

temporary rules, the controller can make the transition proceed more quickly. As the switch 

deletes some rules, the controller can install additional rules that further subdivide the 

remaining address space. For example, if the switch deletes the 000* after the soft timeout 

expires, the controller can replace the 001* rule with two finer-grain rules 0010* and 0011*.

2.4 Implementation and Evaluation

We have built a prototype using OpenVswitch (a software OpenFlow switch) and NOX 

(an OpenFlow controller platform), running in Mininet. Our prototype runs the partitioning 

algorithm from Section 2.2 and our transitioning algorithm from Section 2.3.1. We use Mininet 

to build the topology in Figure 1 with a set of 3 replica servers, 2 switches, and a number of 

clients. The replica servers run Mongoose [3] web servers. Our NOX application installs rules in 

the two switches, using one as a gateway to (de)multiplex the client traffic and the other to split 

traffic over the replicas. Our performance evaluation illustrates how our system adapts to 

changes in the load balancing policy, as well as the overhead for transitions. 

Adapting to new load-balancing weights: Our three replica servers host the same 16MB 

file, chosen for more substantial throughput measurements. For this experiment, we have 36 

clients with randomly chosen IP addresses in the range of valid unicast addresses. Each client 

issues wget requests for the file; after downloading the file, a client randomly waits between 0 

and 10 seconds before issuing a new request. We assign a1 = 3, a2 = 4, and a3 = 1, as in Figure 2. 
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At time 75 seconds, we change a2 from 4 to 0, as if R2 were going down for maintenance. Figure 

4 plots the throughput of the three servers over time. As the clients start sending traffic, the 

throughput ramps up, with R2 serving the most traffic. The division of load is relatively close to 

the 3:4:1 target split, though the relatively small number of clients and natural variations in the 

workload lead to some understandable deviations. The workload variations also lead to 

fluctuations in replica throughput over time. After 75 seconds (indicatedby the first vertical 

bar), the load on server R2 starts to decrease, since all new connections go to replicas R1 and R3. 

Sixty seconds later (indicated by the second vertical bar), the controller installs the new 

wildcard rules. R2’s load eventually drops to 0 as the last few ongoing connections complete. 

Initially, there were 6 wildcard rules installed. 4 of these were aggregated into a single wildcard 

rule after reassigning load with only 3 requiring a transition, 2 of which were rules to R2 which 

is unavoidable. The resulting experiment concluded with only 3 wildcard rules. 

Figure 5: Throughput of experiment demonstrating ability to adapt to changes in division of load. Vertical lines 
indicate start and end of transitions.
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Overhead of transitions: To evaluate the overhead and delay on the controller during 

transitions, we have ten clients simultaneously download a 512MB file from two server replicas. 

We start with all traffic directed to R1, and then (in the middle of the ten downloads) start a 

transition to replica R2. The controller must install a microflow rule for each connection, to 

ensure they complete at the old replica R1. In our experiments, we did not see any noticeable 

degradation in throughput during the transition period; any throughput variations were 

indistinguishable from background jitter. Across multiple experimental trials, the controller 

handled a total of 18 to 24 packets and installed 10 microflow rules. Because of the large file size 

and the small round-trip time, connections often had multiple packets in flight, sometimes 

allowing multiple packets to reach the controller before the microflow rule was installed. We 

expect fewer extra packets would reach the controller in realistic settings with a smaller per-

connection throughput.
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3. Wild Ideas: Ongoing Work

Our current prototype assumes a network with just two switches and uniform traffic across 

client IP addresses. In our ongoing work, we are extending our algorithms to handle non-

uniform traffic and an arbitrary network topology. Our existing partitioning and transitioning 

algorithms are essential building blocks in our ongoing work.

3.1 Non-Uniform Client Traffic

Our initial assumption in determining the wildcard rules is that the amount of traffic 

from client requests is uniformly distributed across all IP addresses. The implication of this 

meant that all wildcard rules with the same number of wildcard rules each experience the exact 

same amount of traffic. As a result, our goal was to minimize the number of wildcard rules 

required to represent a particular matching of wildcard rules to replica servers. 

Eliminating the uniformity assumption of traffic means that our algorithm not only 

needs to discover the amount of traffic for each wildcard rule but also assign them to replica 

servers such that the desired distribution is achieved. We notice that such a scenario, the traffic 

for each currently installed set of wildcard rules achieves a particular distribution among 

replica servers. If this does not achieve the desired distribution, the load balancer must 

determine the appropriate set of wildcard rules for the next iteration. As we can see, this is a 

feedback loop where the set of wildcard rules adjust to the traffic measurements from the 

previous iterations. 

In essence, adjusting to the non-uniformity of traffic is accomplished by finding the set 

of wildcard rules that each account for a significant amount of traffic, regardless of the number 
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of wildcard bits. While we would ideally like to have an algorithm that both searches for 

significant rules while also minimizing the number of rules, this seems like it would be a 

difficult optimization. As a result, our algorithm shifts its focus away from minimizing the 

number of wildcard rules from earlier sections and to focus on finding a simple algorithm to 

discover significant rules. 

Our goal is to find a set of wildcard rules that handle traffic within a particular 

threshold. As a result, each wildcard rule handles approximately the same amount of traffic so 

dividing wildcard rules as specified by the proportion of the desired load to each replica will 

achieve a reasonable approximate distribution of traffic. A rule whose current proportion of 

traffic falls below this threshold is considered to be handling less than its fair share of traffic. A 

rule that handles a proportion of traffic above this threshold is considered to be handling more 

than its fair share of traffic. The amount of traffic handled by each wildcard rule is easy to 

gather because Openflow keeps counters for the number of packets as well as bytes that match 

any particular rule. Our algorithm simply needs to periodically send requests to the Openflow 

switches for these counter values. 

Figure 6: Wildcard rules reacting to non-uniform traffic (15% < Threshold < 40%): (a) Two rules are above the 
threshold so generate more precise rules. (b) Traffic has shifted across IP addresses and one rule is above threshold 
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while two adjacent rules are under threshold. (c) The resulting traffic measurements suggest a stable set of rules for 
this iteration. Key Concepts: Adjust rules based on traffic for currently installed rules with no assumptions about 
where traffic will arrive for the next iteration to discover set of significant rules. The threshold and iteration period 
can be adjusted so that the traffic measurements are not too short such that rules constantly oscillate and not too 
coarse grain such that rules react to shifts in traffic too slowly.

Comparing the counter values with the threshold will reveal if a particular wildcard rule 

matches too much or too little traffic. A wildcard rule that handles too much traffic is split into 

two more precise wildcard rules. A wildcard rule that handles too little traffic will be combined 

with its adjacent wildcard rule into a single rule if and only if the adjacent wildcard rule also 

handles too little traffic. While this allows for the existence of wildcard rules under the 

threshold, this is only the case if either the adjacent rules represent significant traffic. 

Unfortunately, there is not much that can be done in this scenario because of the way in which 

wildcard rules are specified. Combining all under threshold rules with their adjacent rules 

would most likely end up with a rule that would end up above the threshold and would be split 

during subsequent iterations anyway. As a result, the set of wildcard rules is able to react to any 

changes in traffic across IP addresses as well as discovering the set of rules that each represent 

approximately the same amount of traffic.

3.2 Network of Multiple Switches

Effectively taking advantage of the links connecting the network of Openflow switches 

is important to avoiding the network becoming a bottleneck so that replica servers are fully 

utilized. Given the set of wildcard rules that we wish to install and their replica assignments 

from previous sections, each Openflow switch must determine the appropriate set of 

forwarding paths to reach each of the replica servers so determing the forwarding path is 

independent of determing the wildcard rule and replica assignments. Taking Dijkstra’s 
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algorithm to determine the shortest path from each replica server to each of the Openflow 

switches, it becomes trivial to determine the appropriate next hop for each wildcard rule’s 

replica assignment.

This simple approach will ensure that each Openflow switch will have a path to each 

replica server if possible. Unfortunately, in much the same way that we do not assume client 

traffic is uniformly distributed across IP addresses, we also cannot assume that client requests 

will be uniformly distributed across the Openflow switches. Let us consider a worst-case 

scenario where all client requests initially arrive at the same Openflow switch. In such a 

scenario, we only utilize a single shortest path to reach each replica server and we can see that 

these few paths will become heavily congested. If there were any alternate paths that could help 

alleviate this congestion, they would be unused.

Figure 7: Forwarding with multiple switches on this 5 switch topology: (top) Installing wildcard rules that choose a 
single shortest forwarding path means that if all client traffic initially arrives at a single switch, they will all traverse 
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the same forwarding path to the destined replica R2. (bottom) Installing a more precise set of wildcard rules that 
utilize available forwarding paths that do not create cycles utilizes more available links for higher throughput.

Utilizing these alternate paths to alleviate congestion requires finding these alternate 

paths available and then distributing client traffic over these paths. Alternate paths are easy to 

find for each replica server from the shortest path tree. Each switch’s next hop to a replica can 

be the set of all neighboring switches that have a shorter path to the replica. Taking the shortest 

path tree we computed earlier, a switch can utilize each path that is closer to the destined path 

than itself. This simple approach prevents any forming cycles. Distributing requests over these 

paths can be accomplished by taking a similar approach to distributing load over replicas with 

wildcard rules. For each wildcard rule, we generate a set of more precise wildcard rules that 

together represents the same IP address range. We can then distribute the forwarding paths 

based on the available next hops for each switch.

Taking the worst-case scenario of all client requests arriving at a single Openflow switch 

in ref/multiple, we ran a simulation with 20 clients performing simultaneous requests for a 128 

MB file from a single replica server. As we can see from ref/multiple, the topology was 

specifically designed to try to isolate the effects of using multiple paths. All clients are

connected to a single switch and they are all assigned to replica R2. It is easy to see that the 

shortest single path solution neglects many available links while the multiple path solution can 

take advantage of these additional links. On average, we found that it took each client .4199 

seconds to finish downloading when using just a single shortest path versus an average of .3837 

seconds when each wildcard rule assignment is replaced with several more precise rules 

forwarding on available paths. This is about an 8% decrease in completion time. More 
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impressive is in the standard deviation of completion time, which was .132 for shortest path and 

.059 for multiple paths. In this simulation, not only were clients completing their downloads 

much faster, they are also more likely to finish around the same time.

We can see from our simulation that even a simple algorithm in using available 

forwarding paths was quite effective. While there are many options in the assignment of 

wildcard rules and next hops, this basic mechanism of using wildcard rules as a hashing 

function to utilize multiple paths allows us to avoid typical multipath issues such as packet re-

ordering and any additional hashing computation but still manage to distribute client traffic 

among available paths.

3.3 Packet Rewriting and Transitioning for Multiple Switches

Two important issues that should not be overlooked are how packet rewriting and how 

microflow rule installation should operate in a multiple switch environment. The appropriate 

approach depends on the designated role of the load balancer. Load balancers have typically 

been assigned to perform the task of assigning clients to particular replica servers, more or less 

like a proxy. An alternative is to treat the load balancer more than just a simple proxy, but also 

combine with network issues like alleviating congestion and addressing locality.

Packet rewriting for the traditional load balancer whose main task is to assign clients to 

replica servers is accomplished by performing packet rewriting for client’s packets at the first 

load balancer switch that they arrive at. Since the header for incoming clients are immediately 

rewritten to the destine replica server for both wildcard and microflow rules, subsequent load 

balancing switches simply continue forwarding the packets to the destined replica server. 

Unfortunately, the immediate packet rewriting limits us from performing implementing 
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something like the multipath solution because of the uncertainty of where these packets 

originated and what paths they have already traversed.

Figure 8: Packet rewriting of the destination IP from the virtual IP address to the IP address of the destined replica 
server: (top) Packet rewriting at the first switch a client’s request arrives at means that the network will be filled with 
lots of traffic towards various destination replicas. (bottom) Delaying packet rewriting until the switch directly 
connected to the destined replica server allows the load balancer to customize wildcard rules to cater the network
to address additional issues that can be addressed with clever path selection.

The alternative is to delay packet rewriting until the switch immediately connected to 

the destined replica server. As a result, because the load balancing switches are programmed by

a central controller that is reflected in the wildcard rules that are installed, it becomes much 

easier for the load balancer to address more issues than just the basic task of replica assignment 

by customizing wildcard rules like we did in the multipath section. These wildcard rules could 

additionally be modified to account for typically network-relevant issues like congestion and 
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locality that require a top-down understanding of the state of the load balancing switches that 

the controller is aware of.
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4. Conclusion

Online services depend on load balancing to fully utilize the replicated servers. Our 

load-balancing architecture proactively maps blocks of source IP addresses to replica servers so 

client requests are directly forwarded through the load balancer with minimal intervention by 

the controller. Our “partitioning” algorithm determines a minimal set of wildcard rules to 

install, while our “transitioning” algorithm changes these rules to adapt the new load balancing 

weights. Our evaluation shows that our system can indeed adapt to changes in target traffic 

distribution and that the few packets directed to the controller have minimal impact on 

throughput. Our algorithm also works on multiple switches in a data center where we have 

explored the initial steps for the load balancer to be integral in routing traffic within the 

network in addition to the basic client to replica server assignments. There remain many 

exciting opportunities to further extend the capabilities of a load balancer to be integrated with 

networking decisions to provide low-latency, high throughput sessions with clients.
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