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Today’s Networks Face New Challenges

• Networks growing rapidly in size

– Up to tens of thousands to millions of hosts

• Networking environments getting highly dynamic

– Mobility, traffic volatility, frequent re-adjustment

• Networks being increasingly deployed in non-IT 
industries and developing regions

– Limited support for management
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Networks must be scalable and yet 
easy to build and manage!



Pains In Large Dynamic Networks

• Control-plane overhead to store and
disseminate host state

– Millions of host-info entries 

 Commodity switches/routers can store only ~32K/300K entries

– Frequent state updates, each disseminated to 
thousands of switches/routers

• Status quo: Hierarchical addressing and routing

• Victimizes ease of management

– Leads to complex, high-maintenance, fragile, 
hard-to-debug, and brittle network
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More Pains …

• Limited data-plane capacity

– Tbps of traffic workload on core links

 Fastest links today are only 10 ~ 40 Gbps

– Highly volatile traffic patterns

• Status quo: Over-subscription

• Victimizes efficiency (performance)

– Lowers server utilization and end-to-end performance

– Trying to mitigate this via traffic engineering can make 
management harder
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All We Need Is Just A Huge L2 Switch,
or An Abstraction of One!
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Scalability

Self-Configuration
Efficiency

(Performance)

• Host up to millions of hosts
• Obviate manual configuration

• Ensure high capacity and small end-to-end latency



Research Strategy and Goal

• Emphasis on architectural solutions

–Redesign underlying networks

• Focus on edge networks

– Enterprise, campus, and data-center networks

–Virtual private networks (VPNs)
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[ Research Goal ]
Design, build, and deploy architectural 
solutions enabling scalable, efficient, 

self-configuring edge networks



Why Is This Particularly Difficult?

• Scalability, self-configuration, and 
efficiency can conflict!

– Self-configuration can significantly increase 
the amount of state and make traffic 
forwarding inflexible

– Examples: Ethernet, VPN routing
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Present solutions to resolve this impasse



Universal Hammers
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Self-configuration

Scalability

Efficiency

• Utilize location-independent 
names to identify hosts

• Let network self-learn hosts’ info

Flat
Addressing

Traffic 
Indirection

• Deliver traffic through 
intermediaries (chosen 
systematically or randomly)

Usage-driven 
Optimization

• Populate routing and host state 
only when and where needed



Enterprise,
Campus Network

Self-configuring 
semantics

Config-free addressing 
and routing

Data-Center
Network

Virtual
Private Network

Key technique in a 
nutshell

Main scalability 
bottleneck

Solutions For Various Edge Networks
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Config-free 
addressing, routing, 

and traffic engineering

Config-free site-level 
addressing and 

routing

Huge overhead to 
store and disseminate 
individual hosts’ info

Limited server-to-
server capacity

Expensive router 
memory to store 
customers’ info

Partition hosts’ info 
over switches

Spread traffic 
randomly over 
multiple paths

Keep routing info 
only when it’s 

needed

SEATTLE
*SIGCOMM’08+

VL2
*SIGCOMM’09+

Relaying
*SIGMETRICS’08+



Enterprise,
Campus Network

Technical Obstacles

Approach
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Strategic Approach for Practical Solutions
Clean
Slate

Backwards
Compatible

Workable solution with
sufficient improvement

Virtual
Private Network

Data-Center
Network

Clean slate on 
network

Clean slate on
end hosts

Backwards 
compatible

• Heterogeneity of 
end-host 
environments

• Lack of 
programmability at 
switches and 
routers

• Immediate 
deployment

• Transparency to 
customers

Several independent
prototypes

Real-world
Deployment

Pre-deployment
Evaluation

SEATTLE VL2 Relaying



SEATTLE: 
A Scalable Ethernet Architecture 

for Large Enterprises

Work with Matthew Caesar and Jennifer Rexford



Current Practice in Enterprises
A hybrid architecture comprised of several small 

Ethernet-based IP subnets interconnected by routers

R

R

Need a protocol that combines 
only the best of IP and Ethernet

R

R

R

• Loss of self-configuring capability
• Complexity in implementing policies
• Limited mobility support
• Inflexible route selection

IP subnet ==
Ethernet

broadcast
domain

(LAN or VLAN)
R
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Objectives and Solutions
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SolutionApproachObjective

1. Avoid flooding
Resolve host info

via unicast

Bootstrap hosts
via unicast

2. Restrain 
broadcasting

3. Reduce
routing state

4. Enable 
shortest-path 
forwarding

Populate host info 
only when and where 

needed

Allow switches to 
learn topology

Network-layer
one-hop DHT

Traffic-driven 
resolution with 

caching

L2 link-state routing 
maintaining only 

switch-level topology

* Meanwhile, avoid modifying end hosts



Network-layer One-hop DHT

• Switches maintain <key, value> pairs by 
commonly using a hash function F

– F: Consistent hash mapping a key to a switch

– LS routing ensures each switch knows about all the 
other live switches, enabling one-hop DHT operations

• Unique benefits

– Fast, efficient, and accurate reaction to churns

– Reliability and capacity naturally growing with 
network size
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Location Resolution

Switches

End hosts

Control message

Data traffic

<key, val> = <MAC addr, location>

Host discovery

B

x

Hash
F(MACx) = B

Store
<MACx, A>

Hash
F(MACx ) = B

Notify
<MACx, A>

E

A

C

D

yOwner

Resolver

Publish
<MACx, A>
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payloadMACx
payloadMACxB

payloadMACxA

payloadMACxA
payloadMACx



Handling Host Dynamics

Resolver

y

Host talking
with x

< x, A >

< x, A >

< x, A >

D

< x, D >

Old
location

New 
location

< x, D >

< x, D >

< x, D >

Dealing with host mobility

MAC- or IP-address change can be handled similarly

B

x

A

C

E

F

• Host location, MAC-addr, or IP-addr can change
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Further Enhancements Implemented
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SolutionsGoals

Dealing with switch-level 
heterogeneity

Virtual switches

Ensuring highly-available 
resolution service

Replicating host information

Dividing administrative 
control

Multi-level one-hop DHT

Isolating host groups
(e.g., VLAN)

Group-aware resolution

Supporting link-local 
broadcast

Per-group multicast

Handling network dynamics
Host-info re-publication and 

purging



Prototype Implementation

Host-info publication 
and resolution msgs

User/Kernel Click

XORP

OSPF
Daemon

Ring
Manager

Host Info
Manager

SeattleSwitch

Link-state
advertisements

Data 
Frames

Data 
Frames

Switch
Table

Network
Map

Click
Interface

• Link-state routing: XORP OSPFD

• Host-info management and traffic forwarding: Click
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Amount of Routing State
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SEATTLE
w/ caching

SEATTLE
w/o caching

y = 30h

y = 2h

(h)

y ≈ 1.6h

y ≈ 2.4h

y ≈ 34.6h

SEATTLE reduces the amount of routing 
state by more than an order of magnitude

Ethernet



Cache Size vs. Stretch
Stretch = actual path length / shortest path length (in latency)
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SEATTLE offers near-optimal stretch 
with very small amount of routing state

ROFL
[SIGCOMM’06]

SEATTLE



SEATTLE Conclusion
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• Enterprises need a huge L2 switch

– Config-free addressing and routing, support for 
mobility, and efficient use of links

• Key lessons

– Coupling DHT with LS routing offers huge benefits

– Reactive resolution and caching ensures scalability

Flat Addressing

Traffic Indirection

Usage-driven Opt.

MAC-address-based routing

Forwarding through resolvers

Ingress caching, reactive cache update



Further Questions

• What other kinds of networks need SEATTLE?

• What about other configuration tasks?

• What if we were allowed to modify hosts?
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These motivate my next work 
for data centers



VL2: A Scalable and Flexible 
Data-Center Network

Work with Albert Greenberg, 
Navendu Jain, Srikanth Kandula,

Dave Maltz, Parveen Patel, 
and Sudipta Sengupta



Data Centers

• Increasingly used for non-customer-facing 
decision-support computations

• Many of them will soon be outsourced to 
cloud-service providers

• Demand for large-scale,
high-performance, 
cost-efficient DCs
growing very fast
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Tenets of Cloud-Service Data Center

• Scaling out: Use large pools of commodity resources

– Achieves reliability, performance, low cost

• Agility: Assign any resources to any services

– Increases efficiency (statistical multiplexing gain) 

• Low Management Complexity: Self-configuring

– Reduces operational expenses, avoids errors
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Self-
configuration

Scalability EfficiencyConventional DC network ensures none



Dependence on proprietary
high-cost solutions

Status Quo: Conventional DC Network

Reference – “Data Center: Load balancing 
Data Center Services”, Cisco 2004

CR CR

AR AR AR AR
...

SS

DC-Layer 3

Internet

SS

…

SS

…

...

DC-Layer 2

Key
• CR = Core Router (L3)
• AR = Access Router (L3)
• S = Switch (L2)
• LB = Load Balancer
• A = Rack of app. servers          

~ 1,000 servers/pod == IP subnet
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Limited server-to-server capacityFragmentation of resourcesPoor utilization and reliability
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Status Quo: Traffic Patterns in a Cloud

• Instrumented a cluster used for data mining, 
then computed representative traffic matrices

• Traffic patterns are highly divergent

– A large number (100+) of representative TMs needed 
to cover a day’s traffic

• Traffic patterns are unpredictable

– No representative TM accounts for more than a few 
hundred seconds of traffic patterns

Optimization approaches might cause
more trouble than benefits



Objectives and Solutions
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SolutionApproachObjective

2. Offer uniform high 
capacity between 
servers

Use randomization to 
cope with volatility

Employ flat 
addressing

1. Ensure layer-2 
semantics

3. Avoid hot spots 
w/o frequent 
reconfiguration

Guarantee bandwidth 
for hose-model traffic Random traffic 

indirection (VLB) over 
a topology with huge 

aggregate capacity

Name-location 
separation & 

resolution service

* Embrace end systems!
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Addressing and Routing:
Name-Location Separation

payloadToR3

. . . . . .

y
x

Hosts use flat names

Switches run link-state routing and 
maintain only switch-level topology

Cope with host churns with very little overhead

y z
payloadToR4 z

ToR2 ToR4ToR1 ToR3

y, z
payloadToR3 z

. . .

• No LSA flooding for host info
• No broadcast msgs to update entire hosts
• No host or switch reconfiguration

Resolution 
Service

…
x  ToR2

y  ToR3

z  ToR4

…

Lookup &
Response

…
x  ToR2

y  ToR3

z  ToR3

…



Example Topology: Clos Net
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D/2  Intermediate Switches

. . .

. . .

TOR

20 
Servers

Int

. . . . . . . . .

Aggr

D/2 x 10G

D/2 x 10G

K x 10G

2 x 10G

DK/4  TOR Switches

K Aggregate Switches

20(DK/4)   Servers

. . . . . . . . . . .

Offer huge aggregate capacity at modest cost
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Traffic Forwarding: Random Indirection

x y

payloadT3 y

z

payloadT5 z

IANYIANYIANY

IANY

Cope with arbitrary TMs with very little overhead

Links used 
for up paths

Links used
for down paths

T1 T2 T3 T4 T5 T6
[ IP anycast + flow-based ECMP ]

• Harness huge bisection bandwidth
• Obviate esoteric traffic engineering or optimization
• Ensure robustness to failures
• Work with switch mechanisms available today

I3I2I1

I?



Implementation
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Switches

• Commodity Ethernet ASICs

• Custom settings for line-rate 
decapsulation

• Default buffer-size settings

• No QoS or flow control

App servers

• Custom Windows kernel

for encapsulation & 

directory-service access

Directory service

• Replicated state-machine 
(RSM) servers, and lookup 
proxies

• Various distributed-systems 
techniques



Data-Plane Evaluation
• Ensures uniform high capacity

– Offered various TCP traffic patterns, then measured
overall and per-flow goodput

• Works nicely with real traffic as well
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VL2 Conclusion
• Cloud-service DC needs a huge L2 switch

– Uniform high capacity, oblivious TE, L2 semantics

• Key lessons

– Hard to outsmart haphazardness; tame it with dice

– Recipe for success: Intelligent hosts + Rock-solid 
network built with proven technologies
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Flat Addressing

Traffic Indirection

Usage-driven Opt.

Name-location separation

Random traffic spreading (VLB + ECMP)

Utilizing ARP, reactive cache update



Relaying: A Scalable VPN 
Routing Architecture

Work with Alex Gerber, Shubho Sen,
Dan Pei, and Carsten Lund



Virtual Private Network
• Logically-isolated communication channels for 

corporate customers, overlayed over provider backbone

– Direct any-to-any reachability among sites

– Customers can avoid full-meshing via outsourcing routing

Provider Backbone
Site 3Site 2

Site 1

PE
Provider-Edge 
Router

PE

PE

PE

PE
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VPN Routing and Its Consequence

PE1 PE2 PE3 PE4

VPEX VPEX VPEX VPEX

VPEY VPEY VPEY

VPEZ VPEZ VPEZ

PE memory

Memory footprint of a VPE
(forwarding table size)

Site-level Flat Addressing: 
Virtual PEs (VPEs) self-learn and maintain full routing state in the 

VPN  (i.e., routes to every address block used in each site)
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PE

VPEX

VPEY

VPEZ

Mismatch in Usage of Router Resources

• Memory is full, whereas lots of ports still unused

• Revenue is proportional to provisioned bandwidth

• Large VPN with a thin connection per site is the worst case

• Unfortunately, there are many such worst cases

• Providers are seriously pinched
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Unused port
(network interface)

Used port



Key Questions
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• What can we do better with existing 
resources and capabilities only, while 
maintaining complete transparency to 
customers?

• Do we really need to provide direct 
reachability for every pair of sites?

– Even when most (84%) PEs communicate only 
with a small number (~10%) or popular PEs …



Relaying Saves Memory 
• Each VPN has two different types of PEs

– Hubs: Keep full routing state of a VPN

– Spokes: Keep local routes and a single default route to a hub

• A spoke uses a hub consistently for all non-local traffic

PE1

HubX

PE2

SpokeX

PE3

SpokeX

SpokeY

SpokeZ SpokeZ HubZ

HubY SpokeY

Indirect forwarding
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Real-World Deployment Requires 
A Mgmt-Support Tool

• Two operational problems to solve
– Hub selection: Which PEs should be hubs?

– Hub assignment: Which hub should a given spoke use?

• Constraint
– Stretch penalty must be bounded to keep SLAs

• Solve the problems individually for each VPN
– Hub selection and assignment decision for a VPN

is totally independent of that of other VPNs

– Ensures both simplicity and flexibility
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Latency-Constrained Relaying (LCR)
• Notation

– PE set:

– Hub set:

– The hub of PEi:

– Usage-based conversation matrix:  

– Latency matrix:

• Formulation

– Choose as few hubs as possible, while limiting additional 
distance due to Relaying

Hihub )(





dsdshubshubs

ds

lll

cwhosePdsts

H

,),()(,

,

         

,1    ,    ..

min   

 jicC ,

 jilL ,


H  P

},,2,1{ nP 

Parameter
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Memory Saving and Cost of LCR
Based on entire traffic in 100+ VPNs for a week in May, 2007

~ 2.5 msec

Pe
rc

en
ta

ge
 (

%
)

Fraction of routes removed

Fraction of traffic relayed
Increase of backbone load

100

80 

60

40

20

LCR can save ~90% memory with 
very small path inflation

Gain

Cost

Cost

0 msec
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~ 11.5 
msec



Deployment and Operation

• Oblivious optimization also leads to significant benefits

• Can implement this via minor routing protocol 
configuration change at PEs

• Performance degrades very little over time

– Cost curves are fairly robust

– Weekly/monthly adjustment: 94/91% of hubs remain as hubs

• Can ensure high availability

– Need more than one hub located at different cities

– 98.3% of VPNs spanning 10+ PEs have at least 2 hubs anyway

– Enforcing “|H| > 1” reduces memory saving by only 0.5%
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Relaying Conclusion
• VPN providers need a huge L2-like switch

– Site-level PNP networking, any-to-any reachability, 
and scalability

• Key lessons

– Traffic locality is our good friend

– Presenting an immediately-deployable solution 
requires more than just designing an architecture
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Flat Addressing

Traffic Indirection

Usage-driven Opt.

Hierarchy-free site addressing

Forwarding through a hub

Popularity-driven hub selection



Goals Attained
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VL2SEATTLE

Eliminates addressing 
and routing 

configuration

Allows a DC to host 
over 100K servers w/o 

oversubscription

Boosts DC-server
utilization by enabling 

agility

Improves link 
utilization and 
convergence

Significantly reduces 
control overhead and 
memory consumption

Additionally eliminates 
configuration for 

traffic engineering

Self-config Scalability Efficiency

Relaying

Allows existing routers 
to serve an order of 

mag. more VPNs

Only slightly increases 
end-to-end latency 

and traffic workload

Retains self-
configuring semantics 

for VPN customers



Summary and Future Work

• Designed, built, and deployed huge L2-like 
switches for various networks

• The universal hammers are applicable for 
various situations

• Future work

– Other universal hammers?

– Self-configuration on the Internet scale?

– Architecture for distributed mini data centers?
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