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The Stable Paths Problem and Interdomain Routing

Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong

Abstract—Dynamic routing protocols such as RIP and OSPF es-  The goal of this paper is to clarify the nature of BGP policy
sentially implement distributed algorithms for solving the shortest  inconsistencies that give rise to protocol divergence. Our main

paths problem The border gateway protocol (BGP) is currently  o4hwinytion is to describe a general condition on routing poli-
the only interdomain routing protocol deployed in the Internet.

BGP does not solve a shortest paths problem since any interdomain cies that guarantees safety and robustness. )
protocol is required to allow policy-based metrics to override dis- We introduce thetable paths problef&PP), which captures
tance-based metrics and enable autonomous systems to indepenthe underlying semantics of any path vector protocol such as

dently define their routing policies with little or no global coordina- ; ;
tion. Itis then natural to ask if BGP can be viewed as a distributed BGP. Just as routing protocols such as RIP and OSPFimplement

algorithm for solving some fundamental problem. We introduce diStribL_Jted algorithms for splving the short_est paths p_roblem,
the stable pa’[hs prob]enand show that BGP can be viewed as a we claim that BGP can be viewed as a distributed algo”thm for
distributed algorithm for solving this problem. Unlike a shortest  solving the stable paths problem. Informally, the stable paths
path tree, such a solution does not representglobaloptimum, but  problem consists of an undirected graph with a distinguished

rather an equilibrium point in which each node is assigned itdocal node called therigin. All other nodes have a set of permitted
optimum. o ) . . .
We study the stable paths problem using a derived structure paths_ to the origin. E_ach node also has a ranking function on its
called adispute wheelrepresenting conflicting routing policies at Permitted paths that indicates an order of preference. A solution
various nodes. We show that if no dispute wheel can be constructed, to the stable paths problem is an assignment of permitted paths
then there exists a unique solution for the stable paths problem. to nodes so that each node’s assigned path is its highest ranked

We define thesimple path vector protocdlSPVP), a distributed al- ; ; ; ;
gorithm for solving the stable paths problem. SPVP is intended to path extending any of the assigned paths at its neighbors. Such

capture the dynamic behavior of BGP at an abstract level. If SPVP a 30,'_““9” dogs n'ot represengb)bal m_ax'mgm’ bu't rather an
converges, then the resulting state corresponds to a stable paths so-€quilibrium point in which each node is assigneddisal max-
lution. If there is no solution, then SPVP always diverges. In fact, imum.

SPVP can even diverge when a solution exists. We show that SPVP \ya then study the stable paths problem using a derived struc-
will converge to the unique solution of an instance of the stable . . .
paths problem if no dispute wheel exists. ture called _adlspute wheelwr_nch reprgsents a circular set _of
dependencies between routing policies that cannot be simul-
taneously satisfied. We show that if no dispute wheel can be
constructed, then the corresponding stable paths problem has
a unigue solution. We define tr@mple path vector protocol

I. INTRODUCTION (SPVP) as a distributed means of computing solutions to the
HE BORDER gateway protocol (BGP) is currently the';table paths_ problem. We show that if there is no_dispute V\{heel,
only interdomain routing protocol employed on the In;hen SPVP is guaranteed to converge to the unique solution of

ternet [13], [18], [19]. BGP allows each autonomous system EBe correspor?dmg stgble paths problem. ) ) )
independently formulate its routing policies, and it allows these The paper is organized as follows. Section Il provides a sim-
policies to override distance metrics in favor of policy concernBlified picture of how BGP operates and provides motivation for
In contrast to pure distance-vector protocols such as RIP [Q]g definition of the stable paths problem.lln Section IIl, we .de-
[14], BGP is notsafein the sense that routing policies can confine the stable paths problem (SPP). This formalism provides
flictin a manner that causes BGP to diverge, resulting in persi-Simple semantics for routing policies of path vector proto-
tent route oscillations [21]. Moreover, the safety of BGP routin%OIS such as BGP while remaining free of many nonessential
policies may not beobustwith respect to network failures. Re-details. There is a tradeoff between the complexity of the SPP
cent studies have highlighted the adverse effects of interdomfgfmalism and the complexity of the translation from a set of
routing instability [16], [17]. Although it is not known if any BGP routing policies to an instance of SPP. We opted for SPP
of the observed BGP instability has been caused by policy caimplicity, since the theoretical results remain quite challenging
flicts, in the worst case such conflicts could introduce extrenf¥en for this model. Hence numerous BGP-specific details, such
oscillations into the global routing system. as internal BGP, confederations, route servers, private AS num-
bers, and so on, are pushed into the translation.

. . _ The protocol SPVP is defined in Section IV. We analyze the
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pute wheel always has a unique solution. We also show that firescribed set to the edges of the graph. In particular, this im-
protocol SPVP can only diverge when there is a dispute wheplies a universal ranking of how desirable each path is. They
In Section VI, we explore the relationship between the stabtbaracterize the “maximizable” metrics, i.e., those which admit
paths and shortest paths problems. SPP is different from shorgestaximal tree for any graph and any valid assignment. They
paths problem for several reasons. First, the relative rankingsbfow, in particular, that any such metric must be monotonic in
paths in SPP is not, in general, based on path lengths. Secdhé sense that iP’ is a sub-path of?, then?” cannot be less de-
each node can reject paths arbitrarily, even shortest paths. Esable thar (for the shortest path metric this means that edges
so, it seems a natural question to ask which instances of tlan only be assigned nonnegative costs).
stable paths problem are consistent with some edge cost fundsriffin and Wilfong [11] have shown that statically detecting
tion. Even in this case, one may find routing trees which are nglvability for real-world BGP is NP-hard. The translation from
shortest path trees with respect to the cost function. Howevitie “high-level” specification language used in that paper into
we show that any instance of the stable paths problem tha@isinstance of the stable paths problem (see Section Il) may take
consistent with a cost function without nonpositive cycles wikkxponential time and space (in the number of nodes). Even so,
be safe. An immediate consequence of this is that if we igndreSection V-A we show that the basic question of solvability is
internal BGP (IBGP), then BGP configurations that are simplstill NP-complete for instances of the stable paths problem.
based on “hop count” are safe, even with “padding” of AS paths.
On the other hand, we show that BGP-like systems can actually Il. BGP ROUTE SELECTION

violate “distance metrics” and remain safe. . . . .
. : : LT In order to motivate the SPP formalism, we briefly review the
Finally, Section VII discusses the implication of our results

route selection process of BGP [13], [18], [19]. BGP employs a
];)c;rotl;]lgri?ble paths problem for real-world BGP as well as Op?f':lnrge_ number of attributes to convey _information about each des-
' tination. For example, one BGP attribute records the path of all
autonomous systems that the route announcement has traversed.
A. Related Work For these reasons, BGP is often referred togath vectompro-

Bertsekaset al. [1] prove convergence for a distributed ver—tOCOI' The BGP attributes are usedibyport policiesandexport

sion of the Bellman—Ford shortest path algorithm. Becausep?“mesalt each router toimplement isuting policies In mod-

the differences between BGP and shortest path routing mén-J BGP, we make several simplifying assumptions. First, we

. . ignore all issues relating to internal BGP (IBGP), including the
tioned above, these results do not directly apply to a proto . . .

D attribute. As a corollary to this, we assume that there is at
such as BGP. .
most one link between any two autonomous systems. Second,

In Varadharet al.[21], the convergence properties of an ab\ive ignore address aggregation.

ZtArgcé':SGOEfTBé?T:;; S;l;(ggda;r;rzzr?lgfecrcl)?iglii)i/s;evr\?hgzhmlltlazr toIn BGP, route announcements are pgssed between rputers.

. " . . ese announcements are records that include the following at-
to divergence. In their setting, a node must update each t'm?rl%utes
receives a new route-to-origin “advertisement” from one of its '
neighbors. Thisisin contrast to our model where an ar_bitra_ry up- nlri: network layer reachability information
date sequence determines when nodes process their neighbor’'s o
path choices. They also define the notion of an auxiliary graph, (address block for a set of destinations)
called areturn graph to study convergence. Return graphs are next_hop: next hop (address of next hop router)
defined only for systems with a ring topology, and a restricted  as_path: ordered list of autonomous systems traversed
set of allowable paths at each node, namely the counterclochoca11
wise paths. A return graph is defined as follows. For a nede
and two permitted path®, @@ from v to 0, they define an arc
P, Q) ifwhen storingP’ atv, and updating the nodes clockwise . .
g\roun)d thering, the r?gdeadoptsﬁg \F/)vhenvgis considered again. The local preference attnbutbcaljpref IS pot passed. b.e'
Thus return graphs are defined by thgamicbehavior of the tween autonomous systems, but is used internally within an
system for a particular activation sequence whereas the disp%lﬂéonomous sys_tem to assign a _Iocal degree of preference.
wheels defined in this paper is based purely orstia¢ic nature -ach record- is associated with a 3-tupleank-tuple(r),
of the local preference functions of the nodes in the system.qﬁf'ned as
addition, we consider a more general evaluation model, more 1 1
general topologies, and arbitrary ranking of permitted paths. <7’~10031—P1“ef7 |r.as_path|’ r.next_hop> :

Gouda and Schneider [7], [8] have studied metrics which al-

ways have anaximal tree that is, a tree in which every nodeFor a given destinatiod, the records: with d = r.nlri are
has itsmost preferredhath to the origin contained in the treeranked using lexical ordering aank-tuple(r). The best route
This notion is different from the central notion oftable tree selection procedure for BGP [18] picks routes with the highest
introduced in Section Ill. The latter is based on reaching a logank. In other words, if two route records share the sairie
optimum as opposed to requiring each node having its globallglue, then the record with the highest local preference is most
preferred path. Anetricin their work corresponds to a methodpreferred. If local preference values are equal, then the record
for ranking paths based on a given assignment of values frorwith the shortesas path is preferred. Finally, ties are broken

_pref: local preference
c_set: set of community tags
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with preference given to the record with the lowest IP addresspresents the trivial path consisting of the single ngd&ach
for its next_hop value. Note that this ordering is “strict” in nonempty pathP = (vjvx—1 ... v1v0) has a direction from its
the sense that if two records, . are ranked equally, thenfirst nodevy, to itslast nodevg. If P and@ are nonempty paths
riy.next_hop = rs.next_hop. Route selection based onsuch that the first node i€ is the same as the last nodefh
highest rank is deterministic since at any time there is at mabenPQ denotes the path formed by tbencatenatiorof these
one route record learned fronext_hop with a givennlri . paths. We extend this with the convention th&t= Pe = P,

A route transformationZ is a function on route records, for any pathP. For example, (4 3 2) (2 1 0) represents the path
7(r) = +, that operates by deleting, inserting, or modifying4 3 2 1 0), whereas (2 1 0) represents the path (2 1 0). This
the attribute values of. If 7() = () (the empty record), then notation is most commonly used whéhis a path starting with
we say that- has beefiiltered outby 7. nodev and{u, v} is an edge irE. In this casg v)P denotes

Supposex and w are autonomous systems with a BGPhe path that starts at nodetraverses the edde:, v}, and then
peering relationship. As a record moves fromw to «, it follows pathP from nodev.
undergoes three transformations. Firgt= export(u «— w,7) For eachv € V, PV denotes the set @ermitted pathérom v
represents the application export policies(defined byw) to to the origin (node 0). I = (v vy ... w1 0) is in P, then the
r. Secondye, = PVT(u «— w,rp) is the BGP-specifipath nodeuw;, is called thenext hopof pathP. Let P be the union of
vector transformation that adds to the as path of »,, sets all setsP".
next_hop, and filters out the record if itas path containsu. For eachv € V, there is a nonnegative, integer-valued
Finally, 3 = import(u «— w,r2) represents the applicationranking function A¥, defined overP", which represents
of import policies (defined at) to r». In particular, this is the how nodewv ranks its permitted paths. I, ¢ P and
function that assignslacal_pref value forr;. We call the com- \*(P;) < A\”(P,), thenP; is said to bepreferred overP; . Let
position of these transformations tpeering transformation A = {\“|v € V — {0}}.

pt(u «— w,r), defined as An instance of the stable paths probleth= (G,P,A), is
] a graph together with the permitted paths at each node and the
import(u — w, PVT(u « w, export(u — w,r))). ranking functions for each node. In addition, we assume that
Suppose autonomous systesm is originating a destinatiod P? = {(0)}, and for allv € V" — {0}:
by sending a route recorg with ro.nlri = d to (some of) its (empty path is permittgct € P,
peers. lfuy, is an autonomous system aRt= w1 - - . w1 o (empty path is lowest rankgd”(¢) = 0, A\"(P) > 0 for
is a simple path where each pair of autonomous systems; P # e
are BGP peers, then we defingP), the route record received (strictnesy If P, P € P*, P # P, andA\"(P) =
at U, from Ug a|ong pathP’ to be )\'U(PQ), then there is ar such thatPl = (U U,)P{ and
P, = (v w)Pj (pathsP;, and P, have the same next-hop),
p(ur — up—1, Pt{up—1 — up—2 - Pt(uy — ug,7,) - -)). (simplicity) If path P € PV, thenP is a simple path (no

repeated nodes),

LetS = (G, P, A) be aninstance of the stable paths problem.
A path assignmeris a functionr that maps each nodee V'
to a pathr(ux) € P*. (Note, this means that(0) = (0).) We
interpretr(u) = € to mean that: is not assigned a path to the
origin. The set of pathehoices(r, ) is defined to be

The SPP formalism defined below is based on the notion of .
permitted paths and ranking functions on these paths. In terghgces(r, ) = { {(u v)m(){u,v} € EyNP* (u#0)
of BGP, we can think of SPVP as capturing the semantics that {0} o.W.

translate theapparentrouting policies at autonomous systeMrys set represents all possible permitted pathstagt can be
uy. into theactual routing policies atu. Note that the actual formed by extending the paths assigned to the peers@iven
routing policies at;. are the result of the interaction between, nodey, suppose thal” is a subset of the permitted patRg

routing policies of many, possibly distant, autonomous systenag;ch that each path #¥ has a distinct next hop. Then thest
The SPP framework is designed to capture the underlying $Rth inW is defined to be

mantics of any path vector protocol such as BGP. We seek to

study the safety of routing policies in a manner independent Ofbest(W w)
the details used to implement those policies. ’

Let G = (V, E) be a simple, undirected graph whére=

{0,1,2,...,n}isthe set of nodes anfd is the set of edges. For
any nodeu, peers(u) = {w|{u,w} € E} is the set ofpeers
for ». We assume that node 0, called th@in, is special in that
it is the destination to which all other nodes attempt to establislote that if = is stable at node, and«(u) = e, then the set

We say that” is permittedat«;, whenr(P) # (). We can then
define aranking function A*» (P), on AS-paths permitted a,
as the lexical rank ofank-tuple(r(P)).

[ll. STABLE PATHS PROBLEM (SPP)

P € W with maximal\“(P) (W # 0)
€ 0.W.

The path assignmentis stable at node: if

7(u) = best(choices(r, u), u).

a path. of choices at, must be empty. The path assignmerns stable
A pathin G is either the empty path, denoted byor a se- if it is stable at each node. We often write a path assignment
quence of nodegwyvi—1 ... v1%0), &k > 0, such that for each as a vector( P, P, ..., P,), wherer(v) = P,. (We omitF,

i,k >4 > 0,{v;,u;_1} isin E. Note that ift = 0, then(vg) since itis alwayg0).) It is easy to check that if is stable, and
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Fig. 1. Stable paths problems with shortest path solutions.

120 O Q 210
10 20
7(u) = (v w)P, thenw(w) = P. Therefore, any stable path
assignment implicitly defines a tree rooted at the origin. Note,
however, that this is not always a spanning tree.
The stable paths probles= (G, P, A) is solvableif there G
is a stable path assignment f6r A stable path assignment is
also called asolutionfor S. If no such assignment exists, then

DISAGREE
S is unsolvable (@)
Fig. 1(a) presents a stable paths problem caledRTEST.
The ranking function for each nonzero node is depicted as a c ° ° °
vertical list next to the node, with the highest ranked path at
the top going down to the lowest ranked nonempty path at the
bottom. The stable path assignment c c
(1 0),(2 0),(3 0,4 3 0)
isillustrated in Fig. 1(b). If we reverse the ranking order of paths One 5("'““°“ A“"“:e)r solution
b) c

at node4 we arrive atSHORTESTZ2, depicted in Fig. 1(c). The

stable path assignment Fig. 3. DISAGREEand its two solutions.

(@ 0),(2 0,3 0,4 2 0) (342 0) for node 3, yet it has the same unique solutior@sd

is illustrated in Fig. 1(d). In both cases, the ranking functiorfADGET. However, as is explained in Section IV, the protocol

prefer shorter paths to longer paths and the solutions are shorfdYP can diverge for this problem. Finally, by reordering the

path trees. Note that the ranking at node 4 breaks ties betw&pking of paths at node 4, we produce a specification called

paths of equal length. This results in one shortest path treeB4® GADGET, presented in Fig. 2(d). This specification has no

the solution forsSHORTESTL, while another shortest path tree agolution and the SPVP protocol will always diverge.

the solution forSHORTEST2. So far, our examples each has had at most one solution. This
The ranking of paths is not required to prefer shorter pathsnot always the case. The simplest instance, calisaGREE

to longer paths. For example, Fig. 2(a) presents a stable pdtA¥ing more than one solution is illustrated in Fig. 3(a). The

problem calledsoob GADGET Note that both nodes 1 and 2stable path assignment

prefer longer paths to shorter paths. The stable path assignment m=(1 2 0),(2 0)

(T 3 0,2 0,3 0,44 3 0) is depicted in Fig. 3(b). An alternative solution

illustrated in Fig. 2(b) is not a shortest path tree. This is the =1 0),(2 1 0)
unigue solution to this problem.

A modification of GOOD GADGET, calledNAUGHTY GADGET, is shown in Fig. 3(c). No other path assignments are stable for
is shown in Fig. 2(C)NAUGHTY GADGET adds one permitted paththis problem.
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®

(a)

Fig. 4. (a)BaD BACKuUP, a modification ofBAD GADGET. (b) The unique
solution.

Fig. 4(a) describes a slight modificationgab GADGET. The
path (4 0) is added and made the highest ranked path at node 4.
The unique solution to this problem is illustrated in Fig. 4(b)g 5.

process spvp(u)
begin
receive P from w —
begin
rib-in(u < w) := P
if rib(u) # best(u) then
begin
rib(u) := best(u)
for each v € peers(u) do
begin
send rib{u) to v
end
end
end
end

SPVP process at node

Note that if the edg€0, 4} is deleted, then this system becomes

BAD GADGET. In terms of routing, this models the failure of
link {0,4}, and illustrates the fact that a network with a stable 0
routing tree can be transformed into one with no solution with

the failure of a single link.

IV. SIMPLE PATH VECTOR PROTOCOL (SPVP)

This section presentssmple path vector protocqSPVP)
for solving the stable paths problem in a distributed manner.
SPVP represents an abstract version of the existing BGP
protocol. This protocol always diverges when a stable paths
problem has no solution. It can also diverge for stable path
problems that are solvable. The protocol SPVP defined below
differs from the simpler model of evaluation presented in [10],

step ™

(10) (20) (3420) (420)
1 [(10) (210) (3420) (420)
2 [ (10) (210) (3420) ¢
3 1 (10) (210) (30) €
1 [(10) (210) (30) (430)
5 [(130) (210) (30) (430)
6 | (130) (20) (30) (430)
7 | (130) (20) (30) (420)
8 | (130) (20) (3420) (420)
9 [(10) (20) (3420) (420)

[11]. Here, we use a message processing framework which
employs a reliable first-in-first-out (FIFO) queue of messagé®. 6. A sequence of path assignmentseab GADGET.

for communication between peers.

In SPVP, the messages exchanged between peers are sifidéntly processed message from peend thatrib(w) is al-

paths. When a node adopts a pattP € P* it informs each \yays the highest ranked path thatan adopt that is consistent
w € peers(u) by sending path” to w. There are two data with these paths.

structures at each node The pathrib(w) is ’s current path

The network stateof the system is the collection of values

to the origin. For eacly € peers(u), rib-in(u < w) stores the rip(y), rib-in(u < w), and the state of all communication
path sent fromv most recently processed @t The set of path |inks. It should be clear that any network state implicitly defines

choices available at nodeis defined to be

choices(u) = {(v w)P € P*| P =rib-in(u < w)},

and the best possible path:ats defined to be

best(u) = best(choices(u), u).

the path assignment«) = rib(«). A network state istableif
all communication links are empty. In Section V-E, it is shown
that the path assignment associated with any stable state is al-
ways a stable path assignment, and thus a solution to the stable
paths problem. Therefore, if the stable paths problem has no so-
lution, then SPVP always diverges.

For example, consideBAD GADGET from Fig. 2(d). Using
SPVP, itis easy to construct a sequence of network states that are

This path represents the highest ranked path possible for nadsociated with the path assignments of Fig. 6. In this figure, an

u, given the messages received from its peers.

underlined path indicates that it has changed from the previous

Fig. 5 presents the procegsyp(«) that runs at each node path assignment. Notice that this sequence begins and ends with
The notation and semantics are from [6]. If there is an unprtite same path assignment and so represents one round of an

cessed message from amy< peers(u), the guardeceive P

oscillation.

from w can be activated causing the message to be deleted fronA stable paths problem is calledfeif the protocol SPVP al-

the incoming communication link and processed according Wways converges. Note that SPP solvability does notimply safety.
the program to the right of the arrof ). We assume that this For exampleNAUGHTY GADGET has a solution, but SPVP eval-
program is executed in one atomic step and that the commuution for this system can diverge. Whereas GADGET is un-
cation channels are reliable and preserve message order. Bbie to convergeNAUGHTY GADGET can oscillate for an arbi-
protocol ensures thatb-in(u < w) always contains the mosttrary amount of time before converging to a solution. In other
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Fig. 7. Variable assignment gadget f&;.

BAD GADGET(C)

CICXs0
CICX30 C3C.1C00
C1CX70 C3C.00

C1C2C00

c2cC3co00
C2C00

Fig. 8. Example of construction for clauée = X V X5 V Xs.

words,NAUGHTY GADGET can produce both persistent anan-  stable paths problerfi({) that is solvable if and only if has a
sientoscillations. satisfying assignment.

For each variabl&(; we use the structure ofSAGREE(Fig. 3)
V. A SUFFICENT CONDITION FOR SPP ®LVABILITY , SAFETY, o construct a “variable assignment gadget” shown in Fig. 7(a).

AND ROBUSTNESS The two distinct solutions of this gadget, depicted in Fig. 7(b)
In this section, we analyze the stable paths problem. Firgpd (c), represent the assignmentifto true andfalse, re-

S . g ectively.
we show that determining if a solution exists is an NP'Comple%gGiven an arbitrary clausé' = I, V I \V Is of I, the instance

problem. We then define dispute wheels and show that the | T) contains a node labeled. For each literal inC' there

of dispute wheels is a sufficient condition which guarantees tr}a an edge fromC to the corresponding node of the variable

a stable paths problem has a uniqu_e soll_Jti_on. With .r?SpeCta%sosignment gadget for the variable of that literal. The n6de

itrr;e l?égtgggtsng’rgvsu::]n%v;;hat this sufficient condition alsr?as only three permitted paths, each of length 2, corresponding
P y ' to the variable assignment that makes the litemale. (Note

A. Complexity of SPP Solvability that the ranking is not important.) See Fig. 8 for an illustration
' ] ) ) ) of this construction for three variablés;, X5, and X, and for
We now investigate the computational complexity of detegne clause> = X, v X5 v X3. For each clausé€’, a copy of

problem. For a review of complexity theory, see [5]. _as shown in Fig. 8. Itis clear th&{(I) is polynomial in the size
Theorem V.1:The problem of determining whether an in-of 5.

stance of the stable paths problem is solvable is NP-complete.\ye now show thafl is satisfiable if and only ifS(I) has

Proof: We begin by noting that this problemis in NP, sincg, sojution. Suppose that the variable assignment functian
we only need taguessa path assignment and check that it isy _, (¢rue, false} satisfies every clause ¢t We now define
indeed stable. This can clearly be done in time polynomial {staple path assignment; for S(I). First, we definer.4 on

The rest of the proof relies on a reduction frons&r, a

well-known NP-complete problem. An instance oE&F con- X —
sists of a set of Boolean variables and a formula based on these ma(Xi) =
variables and their negations where the formula has the formg{q

; 0), if A(X;) =true

» X; 0), if A(X;) = false

Sl

(
(

a conjunction of terms each of which is a disjunction of three — (X, 0), if A(X;) = false

literals (a literall is either a variableX or its negation¥). The ma(Xi) = { (X; X; 0), if A(X;) = true.

3-sAT} problem asks if there exists a satisfying assignment for

a given instance. SupposeC = [; V Iy v I3 is a clause. Sinced is a

Suppose we are given an instancef 3-sAT with variables satisfying assignment, we know that at least one lit-
X = {X1,Xs,..., X, }. We now construct an instance of theeral of C' is true. Letl; be the true literal such that
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Fig. 9. Dispute wheels.

the path(C [, 0) has the highest rank af’. Then let procedure attempts to grow a stable path assignment (a routing
74(C) = (C I; 0). Finally, for this sameC considerBaD tree) in agreedymanner.
GADGET(C). Let n4(C.1) = (C1 C I; 0),74(C2) = SupposeV’ C V, such thatd € V’. A partial path as-
(C2 C3 CO0 0),74(C3) = (C3 CO0 0), and signmentr for V' is a path assignment such that for every
74(C.0) = (C.0 0). It is easy to check that, is a « € V’, every node inr(u) is in V’. The heuristic procedure
stable path assignment. constructs a sequence of subsetsio{0} = V, ¢ Vi C

For the other direction, suppose thatis a stable path as- V5. .., together with a sequence of partial path assignments
signment forS(I). We now construct a variable assignmento, 71,72, ..., where eachr; is a partial path assignment for
A : X — {true, false} that satisfied. For each claus€, it V. Foreachr;, define#; to be the path assignment fgr, where
must be the case tha{C.1) = (C.1 C I; 0), for some literal #;(u) = w(u) foru € V;, and#;(u) = e foru € V;. The partial
l; of clauseC. If this were not the case, thencannot be stable path assignment; is stable forV; if 7; is stable for each € V;.
for at least one node iBAD GADGET(C'). Sincer is stable, we  If w € V-V, andP € P*, thenP is said to beonsistent with
know thatr(C) = (C [; 0) and thatr(l;) = (I; 0). Suppose  if it can be written as® = Py (u; ug) P>, whereP; is a path
that!; = X, for somei. Then defined(X;) = true. Other- in the digraph induced by — V;,u2 € Vi, and P, = w(us),
wise,l; = X, for somei, and we defined.(X;) = false. If and{u;, u.} € E. Such aP is called adirect path toV; if P, is
after considering each clauékthere remains some unassigneémpty. LetD; be the set of nodes € V' — V; that have a direct
variables, simply assign them the valtime. The assignment path toV;. Without loss of generality, each node has a nonempty
A, is well defined because we cannot have two cladsesxd permitted path to the origin, and hencé/if— V; is not empty,
C’ such thatr(C) = (C I; 0) andn(C’") = (C’ I; 0). Such a thenD,; is not empty. LetH; be the set of nodes € D; whose
7 could not be stable d andl;. SinceA, assigns at least onehighest ranked path consistent withis a direct path. Denote
literal for each clause the valdrue, we conclude that this is a this path asB}. If H; is not empty, let/;;; = V; U H;. Define

satisfying assignment. m the partial path assignmenf,; onV,,; as
] - B;l', u e I’IZ
B. Dispute Wheels mig1(u) = mi(u), weV.

Given the NP-completeness of the solvability problem foFhis process continues until for sorhgeither 1)V, = V or 2)
stable paths, we turn to developing a heuristic procedure. THe# V andH,. = §. In the first caseyy, is clearly a stable path
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assignment. In the second case, westnek and the procedure
fails to find a solution.

If we perform this sequence of operations@moD GADGET
[Fig. 2(a)], then it will arrive at the solution depicted in Fig. 2(b).
However, for bothNAUGHTY GADGET andBAD GADGET, this pro-
cedure will get stuck attempting to constrdét (that is, Hy
is empty). This is because each node that has a direct path tc
Vo = {0}, (nodes 1, 2, and 3), prefers a path that is not direct.
We now show that getting stuck implies the existence of a cir-
cular set of conflicting rankings between nodes, which we call
adispute wheel
Formally, adispute wheelll = (U, 3, R), of sizek},
is a sequence of node§ = ug, U1, ... Up_1, and se-
quences of nonempty path@ = Qo,Q1,...Q_1 and
R = Ro,Ri,...Ri_1, such that for eaclh < ¢ < k — 1
we have (1)R; is a path fromu; to w41, (2) Q; € P,
@) RiQit1 € P, and (A" (Q;) < N (R;Qit1). (Al
subscripts are to be interpreted modéi9 See Fig. 9(a) for
an illustration of a dispute wheel. Since permitted paths aFfg. 10. lllustration for Theorem V.4.
simple, it follows that the size of any dispute wheel is at least 2.
Both NAUGHTY GADGET andBAD GADGET of Fig. 2 have the
dispute wheel shown in Fig. 9(b). In additiotA\UGHTY GADGET
has the dispute wheel in Fig. 9(c). It may be the case that nocﬁ?s
of G appear multiple times i/ and multiple times in any of ~°
the paths ofd andR. For example, consider the SPP shown in In general, an instance of the stable paths problem may have
Fig. 9(d). This system has the dispute wheel in Fig. 9(e). Notore than one solution. We show that in this case the problem
that nodes 1, 2, and 3 must be duplicated in order to present th@s a dispute wheel.
dispute wheel in an “untangled” form. Theorem V.4:If the stable paths problerfi has no dispute
wheel, then it has a unique solution.
Proof: Suppose thatS has no dispute wheel, and
C. No Dispute Wheel Implies Solvability has two distinct solutionsg; = (Py,...,FP,—1) and
7wy = ((1,...,Qn_1). Let T3 andT» be the trees, rooted at
If ILis a dispute wheel, the triple resulting frasappressing node 0, that are defined by the nonempty pathsofnd,
index i is defined to bell! = (U’,Q',R’) where U’ and respectively. Letd be the grapiV, E(T}) N E(T})) which
Q' result from removingu; from U and @; from @ and is induced by the intersection of these two trees. NowZlet
R = Ro,...R; o,R' R;y1,...,Ri_1,whereR' = R, 1R;. be the component off containing the origin. Thus every
A sub-wheebf II is any dispute wheel obtained by a sequenaige of7; U T3 enteringV (') is either inE(T1) — E(1») or
of such operations. Aninimal dispute whedb one in which E(T:) — FE(73). See Fig. 10 for an illustration.
for each0 < i < k — 1, eitherR; R;+1Q;4» is not permitted  We now construct a dispute wheel. Note that£ 75 implies
at w;, or A% (R, R 11Qi12) < A% (R;Q;41). Note that any thatV — V(T') is nonempty, and that at least one of the trees has

Note thaBAD BACKUP is solvable and yet has a dispute wheel.

No Dispute Wheel Implies a Unique Solution

dispute wheel of size 2 is minimal. an edge enterinly (7°). Without loss of generality, consider any
Lemma V.2:Every dispute wheel contains a minimal sub{«, v} in 77 wherew is in T, andw is not. Note that: must
wheel. be inT5,, otherwise it would have the empty path7n, which

Proof: Suppose that dispute whdéis not minimal. Then it cannot prefer to the patfu, v)@,,. We may choose an edge
for someu; in Il we have\™: (R;Q; 1) < X (R;R;11Qiy2). {uo, vo} € 11, whereuy € V(T') andvy € V(7). On the
Create a sub-wheel by suppressing index1. Repeating this other handy, has a path to the origin ii,. This path must be
process must eventually arrive at a minimal sub-wheel. ®m  of the form Ro(u; v1)@1 where ()u, & V(I),v1 € V(T)

Theorem V.3:Let S be an instance of the stable pathand@; is the unique path ifl” from v; to the origin, (ii) Ry is
problem. IfS has no dispute wheel, thehis solvable. a path fromug to u; in T3 but entirely contained in the node

Proof: Suppose that our heuristic procedure gets stucksgtV” — V(T) and (iii) Ry has at least one edge (for otherwise
stepi. Letuo be any node irD; and let@, € P“° be a direct one of73, 7> would not be stable). We repeat this process at
path. Note that there must be a pdth, permitted atuy and except we now examine a path fram to the origin in the tree
consistent withV;, which has higher rank tha@q. SinceF, is  T;. Continuing to alternate in this fashion, we must eventually
consistent withV; it has the formP, = Ro(u; v1)@Q1 where repeat some node, which without loss of generalitygis
Roisapathfromugtow; inV -V, vy € V;,Qqis7;(v1). and To see that this is a dispute wheel, we need only show that for
{u1, v} € E. Note thatv; € D,;, and since; is empty we eachi
can repeat this process with. If we continue in this manner it
is clear that we will eventually form a dispute wheel. [ | A4 1)Q) S A (Ri(uwipr Vig1)Qit1)-
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Without loss of generality, assume that v;)@; isinTy. If sage queuemq(u < w,t) are empty, then we say that the

the inequality did not hold, then we would have system hasonvergedt timet, and writeS (o, so, t) |, wheresq
is the initial stat€ sp = s(0)). If the system does not converge
AR (i1 vir1)Qigr) < AW ((w;  v)Qy) for any timet we say the system diverges, and wiSter, so) T.
_ _ We now define the notion of a consistent network state. The
which would mean thal is not stable. _ B state at time is rib consistentf for all «, rib(u, t) is the best
Note thatNAUGHTY GADGET has a unique solution and has gath possible, given the values tib-in(v < w, t), for w €
dispute wheel. peers(u). We say thatpipe(u < w,t) is pipe consistentf
_ . pipe(u < w, t)[k] = rib(w, t), wherek is the number of mes-
E. No Dispute Wheel Implies Safety sages ipipe(u < w, t). Note that this implies that {fipe(u <

We now show that the protocol SPVP can never diverge for 4h ) contains only one message, then itis identicalliguw, ¢).
instance of the stable paths problem that has no dispute whdg| particular, if the communication linkswq(u < w, ) are

We model (logical) timet with discrete value®),1,2,.... €mMpty, themib-in(u < w,#) = rib(w, ). A states(t) is con-
For each node: and eachw € peers(u), mq(u < w,t) de- sistentif it is rib consistent gnd all pipes are pipe-consistent.
notes the state of the communication link from nadeo node We now show that consistency is preserved under state tran-
u at timet. This is a FIFO message queue, and the notatiSHOnS. o
mq(u < w,t)[i] refers to theth element in the queue. In par- Lemma V.5:Let ¢ be an activation sequence. Suppose that
ticular, mq(v < w,t) [1] is the first element, or the oldest un-s(t) is a consistent state as) 2 s(t+1). Thens(t+1)is
processed message in the communication linkidtthe number a consistent state.
of messages imq(u < w, t), thenmq(u < w, t)[k] denotes Proof: Obvious. [ |
the last element, or the message most recently sentdroon:. Theorem V.6 (Correctness):et sy be a consistent state and
For eachu, rib(u, t) denotes the value afb(u) at timet. For ¢ an activation sequence that is fair with respectdo Sup-
eachu and eachw € peers(u), rib-in(u < w, ) denotes the pose that for some time we haveS(o, so,t) |. Let P =

value ofrib-in(u < w) at timet. For ease of presentation, we(P,, . .., P,,) whererib(i,t) = F;. ThenP is a solution for
define thepipe from nodew to « at timet, pipe(u < w,t), to the specificationS.
be the message queue obtained by insetihgn(u < w,t) Proof: By repeated application of Lemma V.5, we know

into mq(u < w,t) before the first position. In other words,that the state at timeis consistent, and since the system has
pipe(u < w, t)[1] = rib-in(u < w, t) andpipe(u < w,t)[i+ converged we know that all communication links are empty.
1] = mq(u < w, t)[#], for1 < ¢ < k, wherek is the number of By pipe-consistency, we know thatdfand j are peers, then
messages imq(u < w,t). rib—in(¢ <= j,¢t) = rib(j,¢) = P;. Therefore, ifP is not a so-

The network state at time, denoted bys(¢), is comprised lution for S, then there is some nodé¢hat is not rib-consistent,
of all valuesrib(u, t), rib-in(u < w,t), andmq(u < w,t). which is a contradiction. [ |

Supposer = (P, I,,..., P,) is a path assignment. An initial - gyppose, is a consistent state,is a fair activation sequence

stateinducedby  is the state where each quewe(u < w)  ith respect toso, and thatS(s, so) 1. Theset of converging

contains the single messag, eachuib-in(u < w) = ¢, and podesc ¢ v, are those nodes such that for some timeand

eachrib(u) = P,. - . for all ¢ > ¢, we haverib(u,t) = rib(u,t). The oscillating
At each state transition from(t — 1) to s(¢), either (1) podesdenoted?, is the set of nodes ifr not inC.

the network state remains unchanged, or (2) some node

processes a message from somee peers(u). If node »
changes its path in this transition frof;g t0 Poew, We say
thatw adoptedpath P, at timet. We will encode an arbitrary
run in anactivation sequence, whereos(¢t) = no—op, or
o(t) = recompute(u,w). If o(t) = no-op, then the state
remained unchanged in the transition from state— 1) to

s(#). If o(t) = recompute(u, w), then nodeu processed one Particular, for allt > ¢, and allu € C,pipe(w < u,t) =
o(t) rib-in(w < u,t) = rib(w,t) for all peersw of w. Foru € C,

message fromu € peers(u). We write s(t — 1) =" s(f) |etym be the fixed message itb-in(w < w, t) for all peersw
to der;ote this transformation. hf%_ < tg, the notatlc_)r_l of u and hence the messagerib(u, t) for all ¢ > ¢.
s(t1) — s(t2) denotes the composition of one-step transitions g, everyy € O, define values(s, so, ) to be the set of
s(t1) otadh) s(t1+1) tad?) s(t1+2) sty oty s(t2). paths thatw adopts infinitely often. For everw € C define
Let s = s(0) be some initial state. An activation sequencealues(o, so, w) to be the singleton sefrib(w,t.)}. Let tr
o is fair with respect tosg if any message sent from to . be the time after which each € @ adopts only paths in
will eventually be received and processedhyassuming the values(o, s, ). For a simple patlP = (v vg_1...v1 o)
system started in statg. In other words, ifs; = s(¢1) and and for anyi, j with k& > i > j > 0, we denote byP[v;, v;]
mq(u < w,t1) is not empty, then there is a tintg > ¢, such the subpatifv, v,—1 ... v;).
thats(t,) % s(t2) ando(ty) = recompute(u, w). Lemma V.7:Forw € V, suppose thaP ¢ values(a, so, w).
Let S = (G, P, A) be an instance of the stable pathFhen there is a time after which there is no path of the form
problem. If at timef the network state(¢) is such that all mes- QP in the network state.

By the definition ofC, we can define a time. such that for
all t > ¢t. and for allu € C,rib(u, t) = rib(u, t.). If w € C and

w IS a peer ofu, then after time&. no new messages are placed
into pipe(w < u) and so by the fairness of there is a time
t; > t. such that for all times > ¢; all such messages from
nodes inC have been flushed from all communication links. In



GRIFFIN et al: STABLE PATHS PROBLEM AND INTERDOMAIN ROUTING 241

Proof: By definition, there must be a timeafter which all
nodesw € V adopt only path$” € values(o, so, w). Sinces a
fair activation sequence, we know that there is some timet
after which all communication links have been renewed. m

Lemma V.8:SupposeP € values(o, sg,u) for someu €
O.lf w # uis anode inP andw € O, thenPlw,0] €
values(o, so,w). In addition, ifv is a node inP andv € C,
then P[v, 0] = rib(v,t.). 30

Proof: Letw # « be a node inP such thatv € O. Sup-
pose thatP[w, 0] & values(o, sg, w). By Lemma V.7, there is a
time ¢ after which there is no path of the for@P in the net-
work state. Therefore; cannot adopt this path infinitely often, paths (in terms of “hop count”) over shorter ones. They stated
which is a contradiction. A similar argument holds for the cas@\Ve believe that only shortest path route selection is provably
wherev is a node inP andv € C. m safe” The results of the previous sections will be used to explore

Theorem V.9:If S has no dispute wheel, thehis safe. this statement. We interpret it to mean that any class of policies

Proof: Suppose that divergesS(o, s¢) 1. We show that not based on shortest path route selection will not be provably
S contains a dispute wheel. L&t C, andt ; be defined as above. safe. Notice that implicitly, the conjecture is suggesting that sys-
Let¢ be any timef > t;. Let U be the subset of nodesc @ tems whose policies are based on shortest path route selection
such that there is a pathy w)Q € values(o, s, w)t where will, in fact, be safe.

w € C. That is, eachs in U adopts a path that leads directly We begin by formalizing a fairly liberal notion of “shortest
to a fixed node. By Lemma V.&/] cannot be empty. path route selection” that seems appropriate for a protocol such

We now construct a dispute wheel. L&t be a node /. as BGP. We then show that any instance of the stable paths
Let Qo bewug’s direct path taC, (1o wo)@y. Itis easy to check problem that is consistent with shortest path route selection will
that Qo is unique, and that of all paths imlues(o, so)uot the indeed be safe. However, we show BGP-like systems can actu-
path() is of lowest rank. LetH, € values(o, so, ug )t be the ally violate distance metrics and remain still safe.
adopted path of highest ranka. Lemma V.8 tells us that we  As is standard for undirected graphs, we work witheaso-
can write this path a#l, = RyQ1, whereR, is a path from ciated digraph where each undirected edge= {a,b} is re-
ug t0 u; of changing nodesy; € U, andQ; = (u; w1)Q] placed by two arcs;~ = (a,b) ande™ = (b,a). We are also
for somew; € C. We can now perform the same constructiogiven costs:(e¢*) andc(e™) associated with traversing the edge
for u;. Repeating this process in the obvious way results incdn the two directions. Thusinduces a cost function on any di-

Fig. 11. NAUGHTY GADGET with negative link costs.

dispute wheel. B rected path? in the resulting digraphe(P) = 3_, 4 (py c(a).
The cost functiorr is positiveif for each arca, c¢(a) > 0.
F. No Dispute Wheel Implies Robustness There are several possible ways to formalize the notion of

We model the failure of an arbitrary number of links as folshortest path route selection for a cost functio8ince a node
_ 1 IS not requir r Il ibl h he origin r-
lows. LetS = (G, P, A) be an instance of the stable pathu s not required to treat all possible paths to the origin as pe

problem wheres = (E, V). Suppose’ ¢ E. We define Thitted paths, we cannot insist thatake the shortest path. How-

. . er, it seems reasonable to insist that ffas a choice between
S/ E’ to be the stable paths problem obtained by 1) deleting t ueh! s !

does f th G- 2 . I itted paths that 0 permitted paths and these paths have different costs, then
edge romthe gra}p ' )removmg all permited paths that, .ot prefer the higher cost path over the lower cost path.
traverse an edge iB’; and 3) amending the ranking function

accordingly. The problerf is fragile if S is solvable but there ﬁzormally, we say that an instance of the stable paths problem,

exists som&’ C E suchthatS/E’ is notsolvable. The problem 5= (dG}’,P},A)’ s consistin)t\ "‘”}T the C;St;mdir?hf fo;)each
. w w w <
S is robustif 5 is safe and for each’ C E the problems/E/ " ano b2 € P (AP < AY(P), thene(F,) <

is also safe. The systemooD GADGET of Fig. 2(a) is robust, o(lr), and (2) TA“(Py) = A“(P,), thenc(l) = o(11).
: ) . . If a cost functionc has negative directed cycles, th€rcan
while BAD BACKUP of Fig. 4 is fragile.

) . be consistent witle and yet not be safe. For example, consider
Theorem V.10:Let S be an mstance_ of the stable pathfhe costs attached to the edgesafiGHTY GADGET in Fig. 11,
problem. If S has no dispute wheel, thehis robust. . . . .
where the cost of traversing an edge is the same in each direc-

Proof: Suppose thaf has no dispute wheel. From The-. ; . : . :
orem V.9, we know thas is safe. Suppose tha®' C E. If tion. NAUGHTY GADGET is consistent with this cost function, but

. . itis not safe. Note that this graph contains a cycle of eaks.
5/ is not sa/fe, then by Theorem V-9 there ,“?“St be a q'Spu,i?so, notice that anys will be consistent with the cost function
wheel forS/E’. But any dispute wheel faf/E” is also a dis-

L o . ¢ that has cost 0 for every arc and so, in particlWN&yYGHTY
pute wheel forS’, which is a contradiction. Hencéis robustm GADGET will be consistent with such a cost function. Thus, we

restrict ourselves to SPVP specifications consistent with cost
functions that do not realize any directed cycles of cost at most
0.

Varadhanret al. [21] first observed that BGP policies could Define a cost functior: to be coherentif it does not result
interact in a way that results in protocol divergence. Their ek any nonpositive directed cycles. Note that any positive cost
amples always include autonomous systems that choose lorfgection is coherent.

VI. STABLE PATHS AND SHORTESTPATHS
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collection of rules will indeed guarantee safe BGP policies. For
example, using the results of Section VI, it is easy to see that
any set of BGP policies that can be implemented using route
filtering alone will be safe. This includes standard policies that
determine which routes should be imported from and exported
to customers, peers, and upstream providers [15]. A more elab-
orate set of guidelines, together with correctness proofs, can be
found in [4]. One difficulty with this approach is that many In-
ternet service providers (ISPs) are in fact composed of multiple
Fig. 12. The SySteMCOHERENT. autonomous systems. Restrictions that make economic sense
when we think of autonomous systems as independent ISPs may
) ] ] no longer hold when they are all owned by the same company.
Theorem VI.1:1f S is consistent with a coherent cost funcThe member autonomous systeafBGP confederations [20]
tion, then$ has no dispute wheel. can be considered as a special case of this kind of multi-AS ser-
Proof: Suppose thatis a coherent cost functiof,is con- ice provider.
sistent withe, and.S contains a dispute wheel of sikeFor any A solution based ostatic analysisvould rely on programs
0 << k-1, wehaved" (Q;) < A*(RiQiy1), and SO (4 analyze routing policies to verify that they did not contain
(RiQiv1) = o(Ri) + (Qiv1) < ¢(Q:). Summing these in- yolicy conflicts that could lead to protocol divergence. This is

equalities, we obtain essentially the approach advocated in Govinelzad.[9]. How-
1 1 ever, there are two practical challenges facing this approach.
First, autonomous systems currently do not widely share their
D e(Ri) +e(Qiga) <D Q). Y Y Y

routing policies, or only publish incomplete specifications.
Second, even if there were complete knowledge of routing
< 0. Thus the rim  Policies, Griffin and Wilfong [11] have shown that checking for

of the dispute wheel is a cycle of cost at most zero, which igvarious global convergence conditions is either NP-complete or
contradiction. NP-hard. Therefore, a static approach would most likely require

From Theorem V.9, we can conclude that afyonsistent the development of new heuristic algorithms for detecting this

with a positive cost function is safe. In particular, routing polic/ass of policy conflict. _

cies based on hop count (even with AS padding) are always safef> dynamicsolution to the BGP divergence problem would

In addition, it can be shown that if all paths are permitted, thélf SOMe mechanism to suppress or completely prevent at “run

this results in a shortest path routing tree. time” those BGP oscillations that arise from policy conflicts.
Note that the systemICOHERENT of Fig. 12 has no dispute USing route flap dampening [22] as a dynamic mechanism to

wheel, and hence is safe, yet it is not consistent with any Qddress this problem has two distinct drawbacks. First, route

herent cost function. To see this, suppose that we are gi dampening cannot eliminate BGP protocol oscillations; it

arc costse(1,2) = A,¢(2,3) = B,e(3,1) = C,e(1,0) = will only make these oscillations run in “slow motion.” Second,

D, ¢(3,0) = E, andc(4,3) = F. The cost for any other arc is route flap dampening events do not provide network administra-

arbitrary. SUDPOS@VCOHERENT s consistent with these costs,tors with enough information to identify the source of the route

then the fact that node prefers path (1 2 3 0) over path (1 0)1aPPIng. In other words, route flapping caused by policy con-
means thatl + B + E < D. Also, the fact that node 4 prefersﬂ'CtS will look th(_a same as route flapping (_:aused by unstable
path (4 31 0) over path (4 30) means that C+ D < F+E. outersor dgfecnve network mterface_s. So it seems that any dy-
Adding these inequalities together, we obtaint- B + ¢ + Nnamic solut|.o_n wogld require aextensiorto the BGP proltocol
D+ E+F < D+ E + F. By cancellation, we arrive at © cary additional information that would allow policy disputes
A+B+C < 0, sothere is a nonpositive cycle (1 2 3 1). That id0 b€ detected and identified at run time. _
INCOHERENTIS not consistent with any coherent cost function, SUCh an extensionis presentedin[12]. This is done by adding
In summary, the class of stable path problems having no disdynamically computed attribute to SPVP called fiah his-

pute wheels is provably safe, yet it is strictly larger than thod@"Y- Protocol oscillations caused by policy conflicts produce
based on shortest paths. paths whose histories contain cycles. These cycles correspond

to dispute wheels, and identify the policy conflicts and the nodes
systems involved. This protocol can be further extended to au-
tomatically suppress those paths whose histories contain cycles.

Is it possible to guarantee that BGP will not divergeThis guarantees that the resulting protocol can never diverge.
Broadly speaking, there are three complementary approache$here are several open problems that need to be addressed.
to addressing this problem: dperational guidelines?) static The computational complexity of deciding safety or robustness
analysis of routing policiesand 3) dynamic detectionWe for an SPP specification remains open. Our treatment has ig-
briefly discuss each of these techniques. nored the complexities of interior BGP (IBGP), such as route

A set of operational guideliness a collection of rules that reflectors and confederations. We have also ignored address ag-
should be followed by every autonomous system. One usegrégation. These issues need to be addressed in a more complete
the framework presented in this paper is to prove that a giverodel of BGP.

=0
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After cancellation, this implie§ ¥~} ¢(R;)

VII. DiscussioN ANDOPEN PROBLEMS
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In this paper, we have studied the stable paths as a compp] T. Griffin and G. Wilfong, “An analysis of BGP convergence properties,”

tational problem. However, the stable paths problem could be __ in Proc. ACM SIGCOMM'991999, pp. 277288
. . . [12] ——, “A safe path vector protocol,” ifroc. IEEE INFOCOM vol. 2,

studied in the context of a multipersoepeated gamevhere 2000, pp. 490—499.
each node corresponds to a player and each subgame requifes B. Halabi, Internet Routing Architectures Indianapolis, IN: Cisco
every node to choose a path from the set of permitted paths a _ Press, 1997. .
i Pi We d defi hi L f | 14] C. Hendrick, “Routing Information Protocol,”, RFC 1058, 1988.
1, P*. We do not define this game in its most formal terms (Se 15] G. Huston ISP Survival Guide New York: Wiley, 1999.

[3] for an introduction to game theory), but rather give a slight[16] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”

simplification of the strategy sets for the playersure strategy IEEE/ACM Trans. Networkingrol. 8, pp. 515-528, Oct. 1998.
L. . i 1 2 n i [17] ——, “Origins of internet routing instability,” ifProc. IEEE INFOCOM
for nodei is afunctiond® : NxP+xP=x...xP"* — P*where vol. 1, 1999, pp. 218-226.
(¢, p1,p02, ..., 0n) = (4. J,p), thenwe musthave; = p. The  [18] Y. Rekhter and T. Li, “A border gateway protocol,”, RFC 1771 (BGP
interpretation is that if at timg each nodg has chosen the path version 4), 1995. , o _
i . . ) [19] J. W. StewartBGP4, Inter-Domain Routing in The InternetReading,
pj, thenW'(t, py, p, . .., p,) determines the path which node MA: Addison-Wesley, 1998.

will adopt at timet + 1. A play of the game corresponds to each [20] P. Traina, “Autonomous systems confederations for BGP,”, RFC 1965,
node; fixing some pure strategy and then playing each subgame = 1996.

— 19 that h path st th t[);ll K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations
t =1,2,... (we may assume that each path stores the emp in inter-domain routing,” Univ. of Southern California Information Sci-

path at time 0) and updating the paths stored at each node ac- ences Institute, Marina del Rey, CA, ISI Tech. Rep. 96-631, 1996.
cordingly. Thepayofffor node: after gamet is simply the rank [22] C. \ﬁ!lan”!’izar, R. Chandra, and R. Govindan, “BGP route flap
of the path it stores at that time. fyure) Nash equilibriundor damping,”, RFC 2439, 1998.

the game corresponds to a play of the game where for $gme

we have thatl(t, p;, p2,...,p,) = p; for each node and

t > to. We note that a mixed strategy for a player corresponds

t(.) some collectio of pure strategies for tha_t player and an asr-imothy G. Griffin received the B.S. degree in mathematics from the Univer-
signmenth : S — R such thab | A(S) = 1; thus the player sity of Wisconsin, Madison, in 1979, and the M.S. and Ph.D. degrees in com-
willuse the strategy with probability)\(s)_ Finally, we remark puter science from Cornell University, Ithaca, NY, in 1985 and 1988, respec-

. . siyely.
that BGP defines a unique pure strategy for each pIayer Whltﬂlile is currently a Member of the IP Network Management and Performance

it must then use always. Namely, a node must always cho@sgartment at AT&T Research, Florham Park, NJ. His current research interests
its best path amongst those available. Thus a player’s strategipdkide network simulation and the design and analysis of routing protocols.

time independent, and so it can only alterits strategy (and hencB“ Griffin is a member of the Association for Computing Machinery.
any equilibrium adopted) by changing the ranking of its paths.
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