
232 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

The Stable Paths Problem and Interdomain Routing
Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong

Abstract—Dynamic routing protocols such as RIP and OSPF es-
sentially implement distributed algorithms for solving the shortest
paths problem. The border gateway protocol (BGP) is currently
the only interdomain routing protocol deployed in the Internet.
BGP does not solve a shortest paths problem since any interdomain
protocol is required to allow policy-based metrics to override dis-
tance-based metrics and enable autonomous systems to indepen-
dently define their routing policies with little or no global coordina-
tion. It is then natural to ask if BGP can be viewed as a distributed
algorithm for solving some fundamental problem. We introduce
the stable paths problemand show that BGP can be viewed as a
distributed algorithm for solving this problem. Unlike a shortest
path tree, such a solution does not represent aglobaloptimum, but
rather an equilibrium point in which each node is assigned itslocal
optimum.

We study the stable paths problem using a derived structure
called adispute wheel, representing conflicting routing policies at
various nodes. We show that if no dispute wheel can be constructed,
then there exists a unique solution for the stable paths problem.
We define thesimple path vector protocol(SPVP), a distributed al-
gorithm for solving the stable paths problem. SPVP is intended to
capture the dynamic behavior of BGP at an abstract level. If SPVP
converges, then the resulting state corresponds to a stable paths so-
lution. If there is no solution, then SPVP always diverges. In fact,
SPVP can even diverge when a solution exists. We show that SPVP
will converge to the unique solution of an instance of the stable
paths problem if no dispute wheel exists.

Index Terms—BGP, Border Gateway Protocol, interdomain
routing, internet routing, path vector protocols, stable routing.

I. INTRODUCTION

T HE BORDER gateway protocol (BGP) is currently the
only interdomain routing protocol employed on the In-

ternet [13], [18], [19]. BGP allows each autonomous system to
independently formulate its routing policies, and it allows these
policies to override distance metrics in favor of policy concerns.
In contrast to pure distance-vector protocols such as RIP [2],
[14], BGP is notsafein the sense that routing policies can con-
flict in a manner that causes BGP to diverge, resulting in persis-
tent route oscillations [21]. Moreover, the safety of BGP routing
policies may not berobustwith respect to network failures. Re-
cent studies have highlighted the adverse effects of interdomain
routing instability [16], [17]. Although it is not known if any
of the observed BGP instability has been caused by policy con-
flicts, in the worst case such conflicts could introduce extreme
oscillations into the global routing system.

Manuscript received May 24, 2000; revised June 16, 2000; approved by
IEEE/ACM TRANSACTIONS ONNETWORKING Editor T. V. Lakshman.

T. G. Griffin is with the Network Management and Performance Department,
AT&T Labs, Florham Park, NJ 07932 USA (e-mail: griffin@research.att.com).

F. B. Shepherd and G. Wilfong are with Bell Labs, Murray Hill, NJ 07974
USA.

Publisher Item Identifier S 1063-6692(02)03104-7.

The goal of this paper is to clarify the nature of BGP policy
inconsistencies that give rise to protocol divergence. Our main
contribution is to describe a general condition on routing poli-
cies that guarantees safety and robustness.

We introduce thestable paths problem(SPP), which captures
the underlying semantics of any path vector protocol such as
BGP. Just as routing protocols such as RIP and OSPF implement
distributed algorithms for solving the shortest paths problem,
we claim that BGP can be viewed as a distributed algorithm for
solving the stable paths problem. Informally, the stable paths
problem consists of an undirected graph with a distinguished
node called theorigin. All other nodes have a set of permitted
paths to the origin. Each node also has a ranking function on its
permitted paths that indicates an order of preference. A solution
to the stable paths problem is an assignment of permitted paths
to nodes so that each node’s assigned path is its highest ranked
path extending any of the assigned paths at its neighbors. Such
a solution does not represent aglobal maximum, but rather an
equilibrium point in which each node is assigned itslocal max-
imum.

We then study the stable paths problem using a derived struc-
ture called adispute wheel, which represents a circular set of
dependencies between routing policies that cannot be simul-
taneously satisfied. We show that if no dispute wheel can be
constructed, then the corresponding stable paths problem has
a unique solution. We define thesimple path vector protocol
(SPVP) as a distributed means of computing solutions to the
stable paths problem. We show that if there is no dispute wheel,
then SPVP is guaranteed to converge to the unique solution of
the corresponding stable paths problem.

The paper is organized as follows. Section II provides a sim-
plified picture of how BGP operates and provides motivation for
the definition of the stable paths problem. In Section III, we de-
fine the stable paths problem (SPP). This formalism provides
a simple semantics for routing policies of path vector proto-
cols such as BGP while remaining free of many nonessential
details. There is a tradeoff between the complexity of the SPP
formalism and the complexity of the translation from a set of
BGP routing policies to an instance of SPP. We opted for SPP
simplicity, since the theoretical results remain quite challenging
even for this model. Hence numerous BGP-specific details, such
as internal BGP, confederations, route servers, private AS num-
bers, and so on, are pushed into the translation.

The protocol SPVP is defined in Section IV. We analyze the
stable paths problem in Section V. We explore the computa-
tional complexity of the stable paths problem and show that the
problem of determining whether an instance of the stable paths
problem has a solution is NP-complete. We define the notion of
a dispute wheel, and show that an instance of SPP with no dis-

1063-6692/02$17.00 © 2002 IEEE

GRIFFIN et al.: STABLE PATHS PROBLEM AND INTERDOMAIN ROUTING 233

pute wheel always has a unique solution. We also show that the
protocol SPVP can only diverge when there is a dispute wheel.

In Section VI, we explore the relationship between the stable
paths and shortest paths problems. SPP is different from shortest
paths problem for several reasons. First, the relative ranking of
paths in SPP is not, in general, based on path lengths. Second,
each node can reject paths arbitrarily, even shortest paths. Even
so, it seems a natural question to ask which instances of the
stable paths problem are consistent with some edge cost func-
tion. Even in this case, one may find routing trees which are not
shortest path trees with respect to the cost function. However,
we show that any instance of the stable paths problem that is
consistent with a cost function without nonpositive cycles will
be safe. An immediate consequence of this is that if we ignore
internal BGP (IBGP), then BGP configurations that are simply
based on “hop count” are safe, even with “padding” of AS paths.
On the other hand, we show that BGP-like systems can actually
violate “distance metrics” and remain safe.

Finally, Section VII discusses the implication of our results
for the stable paths problem for real-world BGP as well as open
problems.

A. Related Work

Bertsekaset al. [1] prove convergence for a distributed ver-
sion of the Bellman–Ford shortest path algorithm. Because of
the differences between BGP and shortest path routing men-
tioned above, these results do not directly apply to a protocol
such as BGP.

In Varadhanet al. [21], the convergence properties of an ab-
straction of BGP is studied. They describe a system (similar to
BAD GADGET of Fig. 2) as an example of policies which lead
to divergence. In their setting, a node must update each time it
receives a new route-to-origin “advertisement” from one of its
neighbors. This is in contrast to our model where an arbitrary up-
date sequence determines when nodes process their neighbor’s
path choices. They also define the notion of an auxiliary graph,
called areturn graph, to study convergence. Return graphs are
defined only for systems with a ring topology, and a restricted
set of allowable paths at each node, namely the counterclock-
wise paths. A return graph is defined as follows. For a node
and two permitted paths from to 0, they define an arc

if when storing at , and updating the nodes clockwise
around the ring, the nodeadopts when is considered again.
Thus return graphs are defined by thedynamicbehavior of the
system for a particular activation sequence whereas the dispute
wheels defined in this paper is based purely on thestaticnature
of the local preference functions of the nodes in the system. In
addition, we consider a more general evaluation model, more
general topologies, and arbitrary ranking of permitted paths.

Gouda and Schneider [7], [8] have studied metrics which al-
ways have amaximal tree, that is, a tree in which every node
has itsmost preferredpath to the origin contained in the tree.
This notion is different from the central notion of astable tree
introduced in Section III. The latter is based on reaching a local
optimum as opposed to requiring each node having its globally
preferred path. Ametric in their work corresponds to a method
for ranking paths based on a given assignment of values from a

prescribed set to the edges of the graph. In particular, this im-
plies a universal ranking of how desirable each path is. They
characterize the “maximizable” metrics, i.e., those which admit
a maximal tree for any graph and any valid assignment. They
show, in particular, that any such metric must be monotonic in
the sense that if is a sub-path of , then cannot be less de-
sirable than (for the shortest path metric this means that edges
can only be assigned nonnegative costs).

Griffin and Wilfong [11] have shown that statically detecting
solvability for real-world BGP is NP-hard. The translation from
the “high-level” specification language used in that paper into
an instance of the stable paths problem (see Section II) may take
exponential time and space (in the number of nodes). Even so,
in Section V-A we show that the basic question of solvability is
still NP-complete for instances of the stable paths problem.

II. BGP ROUTE SELECTION

In order to motivate the SPP formalism, we briefly review the
route selection process of BGP [13], [18], [19]. BGP employs a
large number of attributes to convey information about each des-
tination. For example, one BGP attribute records the path of all
autonomous systems that the route announcement has traversed.
For these reasons, BGP is often referred to as apath vectorpro-
tocol. The BGP attributes are used byimport policiesandexport
policiesat each router to implement itsrouting policies. In mod-
eling BGP, we make several simplifying assumptions. First, we
ignore all issues relating to internal BGP (IBGP), including the
MED attribute. As a corollary to this, we assume that there is at
most one link between any two autonomous systems. Second,
we ignore address aggregation.

In BGP, route announcements are passed between routers.
These announcements are records that include the following at-
tributes.

network layer reachability information

(address block for a set of destinations)

next hop (address of next hop router)

ordered list of autonomous systems traversed

local preference

set of community tags

The local preference attributelocal pref is not passed be-
tween autonomous systems, but is used internally within an
autonomous system to assign a local degree of preference.

Each record is associated with a 3-tuple, - ,
defined as

For a given destination, the records with are
ranked using lexical ordering on - . The best route
selection procedure for BGP [18] picks routes with the highest
rank. In other words, if two route records share the samenlri
value, then the record with the highest local preference is most
preferred. If local preference values are equal, then the record
with the shortestas path is preferred. Finally, ties are broken

234 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

with preference given to the record with the lowest IP address
for its next hop value. Note that this ordering is “strict” in
the sense that if two records are ranked equally, then

. Route selection based on
highest rank is deterministic since at any time there is at most
one route record learned fromnext hop with a givennlri .

A route transformation is a function on route records,
, that operates by deleting, inserting, or modifying

the attribute values of. If (the empty record), then
we say that has beenfiltered outby .

Suppose and are autonomous systems with a BGP
peering relationship. As a record moves from to , it
undergoes three transformations. First,
represents the application ofexport policies(defined by) to
. Second, is the BGP-specificpath

vector transformation that adds to the as path of , sets
next hop, and filters out the record if itsas path contains .
Finally, represents the application
of import policies (defined at) to . In particular, this is the
function that assigns alocal pref value for . We call the com-
position of these transformations thepeering transformation,

, defined as

Suppose autonomous system is originating a destination
by sending a route record with to (some of) its
peers. If is an autonomous system and
is a simple path where each pair of autonomous systems
are BGP peers, then we define , the route record received
at from along path , to be

We say that is permittedat when . We can then
define aranking function, , on AS-paths permitted at
as the lexical rank of - .

III. STABLE PATHS PROBLEM (SPP)

The SPP formalism defined below is based on the notion of
permitted paths and ranking functions on these paths. In terms
of BGP, we can think of SPVP as capturing the semantics that
translate theapparentrouting policies at autonomous system

into theactual routing policies at . Note that the actual
routing policies at are the result of the interaction between
routing policies of many, possibly distant, autonomous systems.
The SPP framework is designed to capture the underlying se-
mantics of any path vector protocol such as BGP. We seek to
study the safety of routing policies in a manner independent of
the details used to implement those policies.

Let be a simple, undirected graph where
is the set of nodes and is the set of edges. For

any node is the set ofpeers
for . We assume that node 0, called theorigin, is special in that
it is the destination to which all other nodes attempt to establish
a path.

A path in is either the empty path, denoted by, or a se-
quence of nodes, , such that for each

is in . Note that if , then

represents the trivial path consisting of the single node. Each
nonempty path has a direction from its
first node to its last node . If and are nonempty paths
such that the first node in is the same as the last node in,
then denotes the path formed by theconcatenationof these
paths. We extend this with the convention that ,
for any path . For example, (4 3 2) (2 1 0) represents the path
(4 3 2 1 0), whereas (2 1 0) represents the path (2 1 0). This
notation is most commonly used whenis a path starting with
node and is an edge in . In this case denotes
the path that starts at node, traverses the edge , and then
follows path from node .

For each denotes the set ofpermitted pathsfrom
to the origin (node 0). If is in , then the
node is called thenext hopof path . Let be the union of
all sets .

For each , there is a nonnegative, integer-valued
ranking function , defined over , which represents
how node ranks its permitted paths. If and

, then is said to bepreferred over . Let
.

An instance of the stable paths problem, , is
a graph together with the permitted paths at each node and the
ranking functions for each node. In addition, we assume that

, and for all :

(empty path is permitted) ,
(empty path is lowest ranked) for

,
(strictness) If , and

, then there is a such that and
(paths and have the same next-hop),

(simplicity) If path , then is a simple path (no
repeated nodes),

Let be an instance of the stable paths problem.
A path assignmentis a function that maps each node
to a path . (Note, this means that .) We
interpret to mean that is not assigned a path to the
origin. The set of paths is defined to be

o.w.

This set represents all possible permitted paths atthat can be
formed by extending the paths assigned to the peers of. Given
a node , suppose that is a subset of the permitted paths
such that each path in has a distinct next hop. Then thebest
path in is defined to be

with maximal
o.w.

The path assignment is stable at node if

Note that if is stable at node and , then the set
of choices at must be empty. The path assignmentis stable
if it is stable at each node. We often write a path assignment
as a vector, , where . (We omit
since it is always .) It is easy to check that if is stable, and

GRIFFIN et al.: STABLE PATHS PROBLEM AND INTERDOMAIN ROUTING 235

Fig. 1. Stable paths problems with shortest path solutions.

, then . Therefore, any stable path
assignment implicitly defines a tree rooted at the origin. Note,
however, that this is not always a spanning tree.

The stable paths problem is solvableif there
is a stable path assignment for. A stable path assignment is
also called asolutionfor . If no such assignment exists, then

is unsolvable.
Fig. 1(a) presents a stable paths problem calledSHORTEST1.

The ranking function for each nonzero node is depicted as a
vertical list next to the node, with the highest ranked path at
the top going down to the lowest ranked nonempty path at the
bottom. The stable path assignment

is illustrated in Fig. 1(b). If we reverse the ranking order of paths
at node we arrive atSHORTEST2, depicted in Fig. 1(c). The
stable path assignment

is illustrated in Fig. 1(d). In both cases, the ranking functions
prefer shorter paths to longer paths and the solutions are shortest
path trees. Note that the ranking at node 4 breaks ties between
paths of equal length. This results in one shortest path tree as
the solution forSHORTEST1, while another shortest path tree as
the solution forSHORTEST2.

The ranking of paths is not required to prefer shorter paths
to longer paths. For example, Fig. 2(a) presents a stable paths
problem calledGOOD GADGET. Note that both nodes 1 and 2
prefer longer paths to shorter paths. The stable path assignment

illustrated in Fig. 2(b) is not a shortest path tree. This is the
unique solution to this problem.

A modification ofGOOD GADGET, calledNAUGHTY GADGET,
is shown in Fig. 2(c).NAUGHTY GADGETadds one permitted path

Fig. 2. Stable paths problems that are not shortest path problems.

Fig. 3. DISAGREEand its two solutions.

(3 4 2 0) for node 3, yet it has the same unique solution asGOOD

GADGET. However, as is explained in Section IV, the protocol
SPVP can diverge for this problem. Finally, by reordering the
ranking of paths at node 4, we produce a specification called
BAD GADGET, presented in Fig. 2(d). This specification has no
solution and the SPVP protocol will always diverge.

So far, our examples each has had at most one solution. This
is not always the case. The simplest instance, calledDISAGREE,
having more than one solution is illustrated in Fig. 3(a). The
stable path assignment

is depicted in Fig. 3(b). An alternative solution

is shown in Fig. 3(c). No other path assignments are stable for
this problem.

236 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

Fig. 4. (a) BAD BACKUP, a modification ofBAD GADGET. (b) The unique
solution.

Fig. 4(a) describes a slight modification toBAD GADGET. The
path (4 0) is added and made the highest ranked path at node 4.
The unique solution to this problem is illustrated in Fig. 4(b).
Note that if the edge is deleted, then this system becomes
BAD GADGET. In terms of routing, this models the failure of
link , and illustrates the fact that a network with a stable
routing tree can be transformed into one with no solution with
the failure of a single link.

IV. SIMPLE PATH VECTORPROTOCOL(SPVP)

This section presents asimple path vector protocol(SPVP)
for solving the stable paths problem in a distributed manner.
SPVP represents an abstract version of the existing BGP
protocol. This protocol always diverges when a stable paths
problem has no solution. It can also diverge for stable path
problems that are solvable. The protocol SPVP defined below
differs from the simpler model of evaluation presented in [10],
[11]. Here, we use a message processing framework which
employs a reliable first-in-first-out (FIFO) queue of messages
for communication between peers.

In SPVP, the messages exchanged between peers are simply
paths. When a node adopts a path it informs each

by sending path to . There are two data
structures at each node. The path is ’s current path
to the origin. For each - stores the
path sent from most recently processed at. The set of path
choices available at nodeis defined to be

-

and the best possible path atis defined to be

This path represents the highest ranked path possible for node
, given the messages received from its peers.
Fig. 5 presents the process that runs at each node.

The notation and semantics are from [6]. If there is an unpro-
cessed message from any , the guardreceive
from can be activated causing the message to be deleted from
the incoming communication link and processed according to
the program to the right of the arrow . We assume that this
program is executed in one atomic step and that the communi-
cation channels are reliable and preserve message order. This
protocol ensures that - always contains the most

Fig. 5. SPVP process at nodeu.

Fig. 6. A sequence of path assignments forBAD GADGET.

recently processed message from peerand that is al-
ways the highest ranked path thatcan adopt that is consistent
with these paths.

The network stateof the system is the collection of values
- , and the state of all communication

links. It should be clear that any network state implicitly defines
the path assignment . A network state isstableif
all communication links are empty. In Section V-E, it is shown
that the path assignment associated with any stable state is al-
ways a stable path assignment, and thus a solution to the stable
paths problem. Therefore, if the stable paths problem has no so-
lution, then SPVP always diverges.

For example, considerBAD GADGET from Fig. 2(d). Using
SPVP, it is easy to construct a sequence of network states that are
associated with the path assignments of Fig. 6. In this figure, an
underlined path indicates that it has changed from the previous
path assignment. Notice that this sequence begins and ends with
the same path assignment and so represents one round of an
oscillation.

A stable paths problem is calledsafeif the protocol SPVP al-
ways converges. Note that SPP solvability does not imply safety.
For example,NAUGHTY GADGET has a solution, but SPVP eval-
uation for this system can diverge. WhereasBAD GADGET is un-
able to converge,NAUGHTY GADGET can oscillate for an arbi-
trary amount of time before converging to a solution. In other

GRIFFIN et al.: STABLE PATHS PROBLEM AND INTERDOMAIN ROUTING 237

(a) (b) (c)

Fig. 7. Variable assignment gadget forX .

Fig. 8. Example of construction for clauseC = X _ X _ X .

words,NAUGHTY GADGET can produce both persistent andtran-
sientoscillations.

V. A SUFFICENT CONDITION FOR SPP SOLVABILITY , SAFETY,
AND ROBUSTNESS

In this section, we analyze the stable paths problem. First,
we show that determining if a solution exists is an NP-complete
problem. We then define dispute wheels and show that the lack
of dispute wheels is a sufficient condition which guarantees that
a stable paths problem has a unique solution. With respect to
the protocol SPVP, we show that this sufficient condition also
implies safety and robustness.

A. Complexity of SPP Solvability

We now investigate the computational complexity of deter-
mining if a solution exists for an instance of the stable paths
problem. For a review of complexity theory, see [5].

Theorem V.1:The problem of determining whether an in-
stance of the stable paths problem is solvable is NP-complete.

Proof: We begin by noting that this problem is in NP, since
we only need toguessa path assignment and check that it is
indeed stable. This can clearly be done in time polynomial in
the size of the instance of SPP.

The rest of the proof relies on a reduction from 3-SAT, a
well-known NP-complete problem. An instance of 3-SAT con-
sists of a set of Boolean variables and a formula based on these
variables and their negations where the formula has the form of
a conjunction of terms each of which is a disjunction of three
literals (a literal is either a variable or its negation). The
3-SAT} problem asks if there exists a satisfying assignment for
a given instance.

Suppose we are given an instanceof 3-SAT with variables
. We now construct an instance of the

stable paths problem that is solvable if and only if has a
satisfying assignment.

For each variable we use the structure ofDISAGREE(Fig. 3)
to construct a “variable assignment gadget” shown in Fig. 7(a).
The two distinct solutions of this gadget, depicted in Fig. 7(b)
and (c), represent the assignment of to true and false, re-
spectively.

Given an arbitrary clause of , the instance
contains a node labeled. For each literal in , there

is an edge from to the corresponding node of the variable
assignment gadget for the variable of that literal. The node
has only three permitted paths, each of length 2, corresponding
to the variable assignment that makes the literalstrue. (Note
that the ranking is not important.) See Fig. 8 for an illustration
of this construction for three variables and , and for
one clause . For each clause , a copy of
a simplifiedBAD GADGET, calledBAD GADGET , is attached,
as shown in Fig. 8. It is clear that is polynomial in the size
of .

We now show that is satisfiable if and only if has
a solution. Suppose that the variable assignment function

satisfies every clause of. We now define
a stable path assignment for . First, we define on
variable assignment gadgets as

if
if

and
if
if

Suppose is a clause. Since is a
satisfying assignment, we know that at least one lit-
eral of is true. Let be the true literal such that

238 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

(a) (b) (c)

(d) (e)

Fig. 9. Dispute wheels.

the path has the highest rank at . Then let
. Finally, for this same considerBAD

GADGET . Let
, and

. It is easy to check that is a
stable path assignment.

For the other direction, suppose thatis a stable path as-
signment for . We now construct a variable assignment

that satisfies . For each clause , it
must be the case that , for some literal

of clause . If this were not the case, thencannot be stable
for at least one node inBAD GADGET . Since is stable, we
know that and that . Suppose
that for some . Then define . Other-
wise, for some , and we define . If
after considering each clausethere remains some unassigned
variables, simply assign them the value . The assignment

is well defined because we cannot have two clausesand
such that and . Such a

could not be stable at and . Since assigns at least one
literal for each clause the valuetrue, we conclude that this is a
satisfying assignment.

B. Dispute Wheels

Given the NP-completeness of the solvability problem for
stable paths, we turn to developing a heuristic procedure. The

procedure attempts to grow a stable path assignment (a routing
tree) in agreedymanner.

Suppose , such that . A partial path as-
signment for is a path assignment such that for every

, every node in is in . The heuristic procedure
constructs a sequence of subsets of

together with a sequence of partial path assignments
where each is a partial path assignment for

. For each , define to be the path assignment for, where
for , and for . The partial

path assignment isstable for if is stable for each .
If and , then is said to beconsistent with
if it can be written as , where is a path

in the digraph induced by , and ,
and . Such a is called adirect path to if is
empty. Let be the set of nodes that have a direct
path to . Without loss of generality, each node has a nonempty
permitted path to the origin, and hence if is not empty,
then is not empty. Let be the set of nodes whose
highest ranked path consistent withis a direct path. Denote
this path as . If is not empty, let . Define
the partial path assignment on as

This process continues until for some, either 1) or 2)
and . In the first case, is clearly a stable path

GRIFFIN et al.: STABLE PATHS PROBLEM AND INTERDOMAIN ROUTING 239

assignment. In the second case, we arestuck, and the procedure
fails to find a solution.

If we perform this sequence of operations onGOOD GADGET

[Fig. 2(a)], then it will arrive at the solution depicted in Fig. 2(b).
However, for bothNAUGHTY GADGETandBAD GADGET, this pro-
cedure will get stuck attempting to construct (that is,
is empty). This is because each node that has a direct path to

, (nodes 1, 2, and 3), prefers a path that is not direct.
We now show that getting stuck implies the existence of a cir-
cular set of conflicting rankings between nodes, which we call
a dispute wheel.

Formally, a dispute wheel, , of size },
is a sequence of nodes , and se-
quences of nonempty paths and

, such that for each
we have (1) is a path from to , (2) ,
(3) , and (4) . (All
subscripts are to be interpreted modulo.) See Fig. 9(a) for
an illustration of a dispute wheel. Since permitted paths are
simple, it follows that the size of any dispute wheel is at least 2.

Both NAUGHTY GADGET andBAD GADGET of Fig. 2 have the
dispute wheel shown in Fig. 9(b). In addition,NAUGHTY GADGET

has the dispute wheel in Fig. 9(c). It may be the case that nodes
of appear multiple times in and multiple times in any of
the paths of and . For example, consider the SPP shown in
Fig. 9(d). This system has the dispute wheel in Fig. 9(e). Note
that nodes 1, 2, and 3 must be duplicated in order to present this
dispute wheel in an “untangled” form.

C. No Dispute Wheel Implies Solvability

If is a dispute wheel, the triple resulting fromsuppressing
index is defined to be where and

result from removing from and from and
, where .

A sub-wheelof is any dispute wheel obtained by a sequence
of such operations. Aminimal dispute wheelis one in which
for each , either is not permitted
at , or . Note that any
dispute wheel of size 2 is minimal.

Lemma V.2:Every dispute wheel contains a minimal sub-
wheel.

Proof: Suppose that dispute wheelis not minimal. Then
for some in we have .
Create a sub-wheel by suppressing index . Repeating this
process must eventually arrive at a minimal sub-wheel.

Theorem V.3:Let be an instance of the stable paths
problem. If has no dispute wheel, thenis solvable.

Proof: Suppose that our heuristic procedure gets stuck at
step . Let be any node in and let be a direct
path. Note that there must be a path, permitted at and
consistent with , which has higher rank than . Since is
consistent with it has the form where

is a path from to in is . and
. Note that , and since is empty we

can repeat this process with. If we continue in this manner it
is clear that we will eventually form a dispute wheel.

Fig. 10. Illustration for Theorem V.4.

Note thatBAD BACKUP is solvable and yet has a dispute wheel.

D. No Dispute Wheel Implies a Unique Solution

In general, an instance of the stable paths problem may have
more than one solution. We show that in this case the problem
has a dispute wheel.

Theorem V.4:If the stable paths problem has no dispute
wheel, then it has a unique solution.

Proof: Suppose that has no dispute wheel, and
has two distinct solutions, and

. Let and be the trees, rooted at
node 0, that are defined by the nonempty paths ofand
respectively. Let be the graph which
is induced by the intersection of these two trees. Now let
be the component of containing the origin. Thus every
edge of entering is either in or

. See Fig. 10 for an illustration.
We now construct a dispute wheel. Note that implies

that is nonempty, and that at least one of the trees has
an edge entering . Without loss of generality, consider any

in where is in , and is not. Note that must
be in , otherwise it would have the empty path in, which
it cannot prefer to the path . We may choose an edge

, where and . On the
other hand, has a path to the origin in . This path must be
of the form where (i)
and is the unique path in from to the origin, (ii) is
a path from to in but entirely contained in the node
set and (iii) has at least one edge (for otherwise
one of would not be stable). We repeat this process at,
except we now examine a path from to the origin in the tree

. Continuing to alternate in this fashion, we must eventually
repeat some node, which without loss of generality is.

To see that this is a dispute wheel, we need only show that for
each

240 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

Without loss of generality, assume that is in . If
the inequality did not hold, then we would have

which would mean that is not stable.
Note thatNAUGHTY GADGET has a unique solution and has a

dispute wheel.

E. No Dispute Wheel Implies Safety

We now show that the protocol SPVP can never diverge for an
instance of the stable paths problem that has no dispute wheel.

We model (logical) time with discrete values .
For each node and each de-
notes the state of the communication link from nodeto node

at time . This is a FIFO message queue, and the notation
refers to the th element in the queue. In par-

ticular, is the first element, or the oldest un-
processed message in the communication link. Ifis the number
of messages in , then denotes
the last element, or the message most recently sent fromto .
For each denotes the value of at time . For
each and each - denotes the
value of - at time . For ease of presentation, we
define thepipe from node to at time , to
be the message queue obtained by inserting-
into before the first position. In other words,

- and
, for , where is the number of

messages in .
The network state at time, denoted by , is comprised

of all values - , and .
Suppose is a path assignment. An initial
stateinducedby is the state where each queue
contains the single message, each - , and
each .

At each state transition from to , either (1)
the network state remains unchanged, or (2) some node
processes a message from some . If node
changes its path in this transition from to , we say
that adoptedpath at time . We will encode an arbitrary
run in anactivation sequence , where , or

. If - , then the state
remained unchanged in the transition from state to

. If , then node processed one

message from . We write
to denote this transformation. If , the notation

denotes the composition of one-step transitions

.
Let be some initial state. An activation sequence
is fair with respect to if any message sent from to

will eventually be received and processed by, assuming the
system started in state . In other words, if and

is not empty, then there is a time such
that and .

Let be an instance of the stable paths
problem. If at time the network state is such that all mes-

sage queues are empty, then we say that the
system hasconvergedat time , and write where
is the initial state . If the system does not converge
for any time we say the system diverges, and write .

We now define the notion of a consistent network state. The
state at time is rib consistentif for all is the best
path possible, given the values of - , for

. We say that is pipe consistentif
, where is the number of mes-

sages in . Note that this implies that if
contains only one message, then it is identical to .

In particular, if the communication links are
empty, then - . A state is con-
sistentif it is rib consistent and all pipes are pipe-consistent.

We now show that consistency is preserved under state tran-
sitions.

Lemma V.5:Let be an activation sequence. Suppose that

is a consistent state and . Then is
a consistent state.

Proof: Obvious.
Theorem V.6 (Correctness):Let be a consistent state and
an activation sequence that is fair with respect to. Sup-

pose that for some time we have . Let
where . Then is a solution for

the specification .
Proof: By repeated application of Lemma V.5, we know

that the state at time is consistent, and since the system has
converged we know that all communication links are empty.
By pipe-consistency, we know that ifand are peers, then

. Therefore, if is not a so-
lution for , then there is some nodethat is not rib-consistent,
which is a contradiction.

Suppose is a consistent state,is a fair activation sequence
with respect to , and that . Theset of converging
nodes, , are those nodessuch that for some timeand
for all , we have . Theoscillating
nodes, denoted , is the set of nodes in not in .

By the definition of , we can define a time such that for
all and for all . If and

is a peer of , then after time no new messages are placed
into and so by the fairness of there is a time

such that for all times all such messages from
nodes in have been flushed from all communication links. In
particular, for all and all

- for all peers of . For ,
let be the fixed message in - for all peers
of and hence the message in for all .

For every , define to be the set of
paths that adopts infinitely often. For every define

to be the singleton set . Let
be the time after which each adopts only paths in

. For a simple path
and for any with , we denote by
the subpath .

Lemma V.7:For , suppose that .
Then there is a time after which there is no path of the form

in the network state.

GRIFFIN et al.: STABLE PATHS PROBLEM AND INTERDOMAIN ROUTING 241

Proof: By definition, there must be a timeafter which all
nodes adopt only paths . Since a
fair activation sequence, we know that there is some time
after which all communication links have been renewed.

Lemma V.8:Suppose for some
. If is a node in and , then

. In addition, if is a node in and ,
then .

Proof: Let be a node in such that . Sup-
pose that . By Lemma V.7, there is a
time after which there is no path of the form in the net-
work state. Therefore, cannot adopt this path infinitely often,
which is a contradiction. A similar argument holds for the case
where is a node in and .

Theorem V.9:If has no dispute wheel, thenis safe.
Proof: Suppose that diverges, . We show that

contains a dispute wheel. Let , and be defined as above.
Let be any time . Let be the subset of nodes
such that there is a path where

. That is, each in adopts a path that leads directly
to a fixed node. By Lemma V.8, cannot be empty.

We now construct a dispute wheel. Let be a node in .
Let be ’s direct path to . It is easy to check
that is unique, and that of all paths in the
path is of lowest rank. Let be the
adopted path of highest rank at. Lemma V.8 tells us that we
can write this path as , where is a path from

to of changing nodes, , and
for some . We can now perform the same construction
for . Repeating this process in the obvious way results in a
dispute wheel.

F. No Dispute Wheel Implies Robustness

We model the failure of an arbitrary number of links as fol-
lows. Let be an instance of the stable paths
problem where . Suppose . We define

to be the stable paths problem obtained by 1) deleting the
edges from the graph ; 2) removing all permitted paths that
traverse an edge in ; and 3) amending the ranking functions
accordingly. The problem is fragile if is solvable but there
exists some such that is not solvable. The problem

is robustif is safe and for each the problem
is also safe. The systemGOOD GADGETof Fig. 2(a) is robust,
while BAD BACKUP of Fig. 4 is fragile.

Theorem V.10:Let be an instance of the stable paths
problem. If has no dispute wheel, thenis robust.

Proof: Suppose that has no dispute wheel. From The-
orem V.9, we know that is safe. Suppose that . If

is not safe, then by Theorem V.9 there must be a dispute
wheel for . But any dispute wheel for is also a dis-
pute wheel for , which is a contradiction. Hence,is robust.

VI. STABLE PATHS AND SHORTESTPATHS

Varadhanet al. [21] first observed that BGP policies could
interact in a way that results in protocol divergence. Their ex-
amples always include autonomous systems that choose longer

Fig. 11. NAUGHTY GADGET with negative link costs.

paths (in terms of “hop count”) over shorter ones. They stated
“We believe that only shortest path route selection is provably
safe.” The results of the previous sections will be used to explore
this statement. We interpret it to mean that any class of policies
not based on shortest path route selection will not be provably
safe. Notice that implicitly, the conjecture is suggesting that sys-
tems whose policies are based on shortest path route selection
will, in fact, be safe.

We begin by formalizing a fairly liberal notion of “shortest
path route selection” that seems appropriate for a protocol such
as BGP. We then show that any instance of the stable paths
problem that is consistent with shortest path route selection will
indeed be safe. However, we show BGP-like systems can actu-
ally violate distance metrics and remain still safe.

As is standard for undirected graphs, we work with anasso-
ciated digraph, where each undirected edge is re-
placed by two arcs, and . We are also
given costs and associated with traversing the edge

in the two directions. Thusinduces a cost function on any di-
rected path in the resulting digraph: .
The cost function is positiveif for each arc .

There are several possible ways to formalize the notion of
shortest path route selection for a cost function. Since a node

is not required to treat all possible paths to the origin as per-
mitted paths, we cannot insist thattake the shortest path. How-
ever, it seems reasonable to insist that ifhas a choice between
two permitted paths and these paths have different costs, then

cannot prefer the higher cost path over the lower cost path.
Formally, we say that an instance of the stable paths problem,

, is consistent with the cost functionif for each
and , (1) if , then

, and (2) if , then .
If a cost function has negative directed cycles, thencan

be consistent with and yet not be safe. For example, consider
the costs attached to the edges ofNAUGHTY GADGET in Fig. 11,
where the cost of traversing an edge is the same in each direc-
tion.NAUGHTY GADGET is consistent with this cost function, but
it is not safe. Note that this graph contains a cycle of cost16.
Also, notice that any will be consistent with the cost function

that has cost 0 for every arc and so, in particular,NAUGHTY

GADGET will be consistent with such a cost function. Thus, we
restrict ourselves to SPVP specifications consistent with cost
functions that do not realize any directed cycles of cost at most
0.

Define a cost function to becoherentif it does not result
in any nonpositive directed cycles. Note that any positive cost
function is coherent.

242 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

Fig. 12. The systemINCOHERENT.

Theorem VI.1: If is consistent with a coherent cost func-
tion, then has no dispute wheel.

Proof: Suppose thatis a coherent cost function,is con-
sistent with , and contains a dispute wheel of size. For any

, we have , and so
. Summing these in-

equalities, we obtain

After cancellation, this implies . Thus the rim
of the dispute wheel is a cycle of cost at most zero, which is a
contradiction.

From Theorem V.9, we can conclude that anyconsistent
with a positive cost function is safe. In particular, routing poli-
cies based on hop count (even with AS padding) are always safe.
In addition, it can be shown that if all paths are permitted, then
this results in a shortest path routing tree.

Note that the systemINCOHERENTof Fig. 12 has no dispute
wheel, and hence is safe, yet it is not consistent with any co-
herent cost function. To see this, suppose that we are given
arc costs

and . The cost for any other arc is
arbitrary. SupposeINCOHERENT is consistent with these costs,
then the fact that node prefers path (1 2 3 0) over path (1 0)
means that . Also, the fact that node 4 prefers
path (4 3 1 0) over path (4 3 0) means that .
Adding these inequalities together, we obtain

. By cancellation, we arrive at
, so there is a nonpositive cycle (1 2 3 1). That is,

INCOHERENTis not consistent with any coherent cost function.
In summary, the class of stable path problems having no dis-

pute wheels is provably safe, yet it is strictly larger than those
based on shortest paths.

VII. D ISCUSSION ANDOPEN PROBLEMS

Is it possible to guarantee that BGP will not diverge?
Broadly speaking, there are three complementary approaches
to addressing this problem: 1)operational guidelines; 2) static
analysis of routing policies; and 3) dynamic detection. We
briefly discuss each of these techniques.

A set of operational guidelinesis a collection of rules that
should be followed by every autonomous system. One use of
the framework presented in this paper is to prove that a given

collection of rules will indeed guarantee safe BGP policies. For
example, using the results of Section VI, it is easy to see that
any set of BGP policies that can be implemented using route
filtering alone will be safe. This includes standard policies that
determine which routes should be imported from and exported
to customers, peers, and upstream providers [15]. A more elab-
orate set of guidelines, together with correctness proofs, can be
found in [4]. One difficulty with this approach is that many In-
ternet service providers (ISPs) are in fact composed of multiple
autonomous systems. Restrictions that make economic sense
when we think of autonomous systems as independent ISPs may
no longer hold when they are all owned by the same company.
Themember autonomous systemsof BGP confederations [20]
can be considered as a special case of this kind of multi-AS ser-
vice provider.

A solution based onstatic analysiswould rely on programs
to analyze routing policies to verify that they did not contain
policy conflicts that could lead to protocol divergence. This is
essentially the approach advocated in Govindanet al.[9]. How-
ever, there are two practical challenges facing this approach.
First, autonomous systems currently do not widely share their
routing policies, or only publish incomplete specifications.
Second, even if there were complete knowledge of routing
policies, Griffin and Wilfong [11] have shown that checking for
various global convergence conditions is either NP-complete or
NP-hard. Therefore, a static approach would most likely require
the development of new heuristic algorithms for detecting this
class of policy conflict.

A dynamicsolution to the BGP divergence problem would
be some mechanism to suppress or completely prevent at “run
time” those BGP oscillations that arise from policy conflicts.
Using route flap dampening [22] as a dynamic mechanism to
address this problem has two distinct drawbacks. First, route
flap dampening cannot eliminate BGP protocol oscillations; it
will only make these oscillations run in “slow motion.” Second,
route flap dampening events do not provide network administra-
tors with enough information to identify the source of the route
flapping. In other words, route flapping caused by policy con-
flicts will look the same as route flapping caused by unstable
routers or defective network interfaces. So it seems that any dy-
namic solution would require anextensionto the BGP protocol
to carry additional information that would allow policy disputes
to be detected and identified at run time.

Such an extension is presented in [12]. This is done by adding
a dynamically computed attribute to SPVP called thepath his-
tory. Protocol oscillations caused by policy conflicts produce
paths whose histories contain cycles. These cycles correspond
to dispute wheels, and identify the policy conflicts and the nodes
systems involved. This protocol can be further extended to au-
tomatically suppress those paths whose histories contain cycles.
This guarantees that the resulting protocol can never diverge.

There are several open problems that need to be addressed.
The computational complexity of deciding safety or robustness
for an SPP specification remains open. Our treatment has ig-
nored the complexities of interior BGP (IBGP), such as route
reflectors and confederations. We have also ignored address ag-
gregation. These issues need to be addressed in a more complete
model of BGP.

GRIFFIN et al.: STABLE PATHS PROBLEM AND INTERDOMAIN ROUTING 243

In this paper, we have studied the stable paths as a compu-
tational problem. However, the stable paths problem could be
studied in the context of a multipersonrepeated gamewhere
each node corresponds to a player and each subgame requires
every node to choose a path from the set of permitted paths at

. We do not define this game in its most formal terms (see
[3] for an introduction to game theory), but rather give a slight
simplification of the strategy sets for the players. Apure strategy
for node is a function where

, then we must have . The
interpretation is that if at time, each node has chosen the path

, then determines the path which node
will adopt at time . A playof the game corresponds to each
node fixing some pure strategy and then playing each subgame

(we may assume that each path stores the empty
path at time 0) and updating the paths stored at each node ac-
cordingly. Thepayofffor node after game is simply the rank
of the path it stores at that time. A(pure) Nash equilibriumfor
the game corresponds to a play of the game where for some,
we have that for each node and

. We note that a mixed strategy for a player corresponds
to some collection of pure strategies for that player and an as-
signment such that ; thus the player
will use the strategy with probability . Finally, we remark
that BGP defines a unique pure strategy for each player which
it must then use always. Namely, a node must always choose
its best path amongst those available. Thus a player’s strategy is
time independent, and so it can only alter its strategy (and hence
any equilibrium adopted) by changing the ranking of its paths.

REFERENCES

[1] D. Bertsekas and R. Gallagher,Data Networks. Englewood Cliffs, NJ:
Prentice Hall, 1992.

[2] K. Bhargavan, D. Obradovic, and C. Gunter, “Formal verification of
standards for distance vector routing protocols,” Univ. of Pennsylvania,
Philadelphia, PA, Tech. Rep., 1999.

[3] K. Binmore,Fun and Games. Lexington, MA: Heath, 1992.
[4] L. Gao and J. Rexford, “Stable internet routing without global coordi-

nation,” inProc. ACM SIGMETRICS, 2000, pp. 307–317.
[5] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide

to the Theory of NP-Completeness. San Francisco, CA: Freeman,
1979.

[6] M. G. Gouda,Elements of Network Protocol Design. New York:
Wiley, 1998.

[7] M. G. Gouda and M. Schneider, “Maximizable routing metrics,” inProc.
6th Int. Conf. Network Protocols (ICNP’98), 1998, pp. 71–78.

[8] , “Stabilization of maximal metric trees,” presented at the Work-
shop on Self-Stabilizing Systems, 1999.

[9] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens, S. Kumar, and W.
S. Lee, “An architecture for stable, analyzable internet routing,”IEEE
Network, vol. 13, pp. 29–35, Jan. 1999.

[10] T. Griffin, F. B. Shepherd, and G. Wilfong, “Policy disputes in path-
vector protocols,” inProc. 7th Int. Conf. Network Protocols (ICNP’99),
1999, pp. 21–30.

[11] T. Griffin and G. Wilfong, “An analysis of BGP convergence properties,”
in Proc. ACM SIGCOMM’99, 1999, pp. 277–288.

[12] , “A safe path vector protocol,” inProc. IEEE INFOCOM, vol. 2,
2000, pp. 490–499.

[13] B. Halabi, Internet Routing Architectures. Indianapolis, IN: Cisco
Press, 1997.

[14] C. Hendrick, “Routing Information Protocol,”, RFC 1058, 1988.
[15] G. Huston,ISP Survival Guide. New York: Wiley, 1999.
[16] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”

IEEE/ACM Trans. Networking, vol. 6, pp. 515–528, Oct. 1998.
[17] , “Origins of internet routing instability,” inProc. IEEE INFOCOM,

vol. 1, 1999, pp. 218–226.
[18] Y. Rekhter and T. Li, “A border gateway protocol,”, RFC 1771 (BGP

version 4), 1995.
[19] J. W. Stewart,BGP4, Inter-Domain Routing in The Internet. Reading,

MA: Addison-Wesley, 1998.
[20] P. Traina, “Autonomous systems confederations for BGP,”, RFC 1965,

1996.
[21] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations

in inter-domain routing,” Univ. of Southern California Information Sci-
ences Institute, Marina del Rey, CA, ISI Tech. Rep. 96-631, 1996.

[22] C. Villamizar, R. Chandra, and R. Govindan, “BGP route flap
damping,”, RFC 2439, 1998.

Timothy G. Griffin received the B.S. degree in mathematics from the Univer-
sity of Wisconsin, Madison, in 1979, and the M.S. and Ph.D. degrees in com-
puter science from Cornell University, Ithaca, NY, in 1985 and 1988, respec-
tively.

He is currently a Member of the IP Network Management and Performance
Department at AT&T Research, Florham Park, NJ. His current research interests
include network simulation and the design and analysis of routing protocols.

Dr. Griffin is a member of the Association for Computing Machinery.

F. Bruce Shepherdreceived the B.Sc. (first-class honors) in mathematics and
computer science from the University of Victoria, Victoria, Canada, in 1985,
and the M.S. and Ph.D. degrees in mathematics from the University of Waterloo,
Waterloo, Canada, in 1987 and 1990, respectively.

He is currently a Member of Technical Staff at Bell Laboratories, Murray
Hill, NJ. Prior to joining Bell Laboratories, he was a Reader in Combinatorial
and Optimization at the London School of Economics and Political Science,
London, U.K. His research interests include the design of solution techniques for
combinatorial problems, especially those arising in network routing and design.

Gordon Wilfong received the B.Sc. (first-class honors) in mathematics from
Carleton University, Ottawa, Canada, in 1980 and the M.S. and Ph.D. degrees
in computer science from Cornell University, Ithaca, NY, in 1982 and 1984,
respectively.

He is currently a Distinguished Member of Technical Staff at Bell Labora-
tories, Murray Hill, NJ. His current research interests include routing protocols
and optimal WDM cross-connect design.

Dr. Wilfong is a member of the Association for Computing Machinery.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

