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Abstract

This article focuses on routing messages in distributed networks with efficient data structures.
After an overview of the various results of the literature, we point some interestingly open
problems.

1 Statement of the Problem

1.1 The routing problem

Delivering messages between pairs of processors is a basic and primary activity of any distributed
communication network. This task is performed using a routing scheme, which is a mechanism
working in a distributed fashion for routing messages in the network. The routing mechanism can
be invoked at any source node and be required to deliver a message to some destination node.

Unlikely to the design network problem that is considered usually early in the process of setting
up a new network, the problem of designing the management and control systems of the network,
including routing, can be designed and optimized after the network construction. The routing
problem can be stated as follows: given a graph (the underlying topology of a communication net-
work) fixed in advance, design in each node (i.e., each router of the network) a routing algorithm as
efficient as possible. It is required to explicit what we mean by “routing algorithm” and “efficient”.
A routing algorithm is a (computable) function that for each message arriving at a node determines
the link on which the message has to be transmitted, and this as function of its destination or
any other information contained in the header of the message. The term “efficient” groups a set
of desirable quality factors like: the routes generated by the algorithm are (near) shortest paths
in the graph; the time to compute the function is low; the number of routes using a same link is
low; the size of the data structures required by the algorithm is small; the routing scheme is fault
tolerant; and so on.

The way we stated the routing problem is the static version: the graph is given in advance
and the problem consists to pre-process the graph in order to find some efficient routing schemes
on the graph. The dynamic version allows addition and deletion of nodes and/or links in order to
model node/link failure and network growing. In this article we will concentrate our attention on
the static case. The dynamic case can be tackled by paying more attention on the pre-processing
algorithm in charge of the routing algorithm designing. Depending on when failures occur, one can
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run a distributed pre-processing algorithm to update the routing scheme and to make it adaptive to
dynamic networks. It is willing that this maintaining algorithm has low message or time complexity.
For more details on the dynamic case, we invite the reader to consult [1, 11], and [2, 5, 28] for end-
to-end communication problems, where the goal is to guarantee communications between a fixed
pair of nodes in spite of link failures with the minimum memory space in the nodes and minimum
communication messages.

To illustrate the (static) routing problem, let us consider the following example: the standard
routing algorithm in the Hypercube!. Let = denote the binary name of the current node (possibly
the source), and let y denote the destination forming also the header of the message currently
located in z.

ROUTE(z,y): If x = y, then the message is arrived at destination. Otherwise forward it on the
edge of dimension i if x and y differ at position i.

If every router possesses a copy of this algorithm, then we obtain a distributed algorithm. The
algorithm ROUTE is said a shortest path routing algorithm because, one can check that the route
generated by the algorithm is the shortest possible one. Let us denote R,(y) the function that
returns, for each destination y, the integer i defined by ROUTE(z,y). The function R,(-) has an
argument, y, but the algorithm defining R,(-) depends on z only. In other words the function
R;(-) can be implemented by a program? of length logn + O(1) bits in each node, n being the
number of nodes of the Hypercube. Indeed, it suffices to store the name z in the data structure
of the program implementing R, (-) and a constant number of computer basic instructions. Note
that such a routing algorithm has therefore a relatively “compact” implementation, and a constant
time complexity if basic operations like “=", XOR and integer LOG® are available on O(logn) bit
integers.

1.2 Model and terminology

The complexity results are strongly dependent of the routing model (ability to relabel and to assign
new addresses to the nodes, size of the addresses, size of the headers, ability to rewrite the headers,
etc.). So let us define more precisely all these terms.

Let G be a graph representing a communication network. For the discussion, we assume that
graphs are connected, undirected and have n nodes. However, most of the results can be naturally
extended to more general model of graphs. Each node u of G has a name, an unique identity
integer denoted ID(u). In what follows, we informally confuse between the node u and its name
ID(u). However, the routing mechanism uses a routing-label or address, unique for each node and
denoted by £(u), potentially different of ID(u).

A routing function R on G is a distributing algorithm whose role is to deliver messages between
nodes of the network. The algorithm builds a path from the source to the destination, selecting at
each intermediate node the next link onto forward the message. Specifically, R consists of a pair of
functions (P, H) where P is the port function and H is the header function. For any two distinct?
nodes uw and v, R produces a path or route u = wug,u1,...,u, = v, a sequence hg, hi,...,h, of

!The nodes of this graph are the n = 2* binary words of k bits. The node ... ...z is connected to the node
Tk...Ti...x1, for each ¢ = 1...k, forming the edge of dimension 3.

’By “program” we mean the set of all data structures and all the control instructions. The log function we consider
in this article are in base two.

3In order to extract the position of the most significant bit in the result of z XOR y.

“Traditionally, we never consider the routing from u to it-self, this because it is assumed that the host processor
connected to the router has enough information and computational power to avoid this kind of useless communications.



headers, and a sequence pg, p1, - - -, p, of output port numbers. The length of the route, denoted
pr(u,v), is the cost of the path from u to v if G is weighted, and otherwise pgr(u,v) = r. The port
numbers identify the links connected to a node. It is a local name, so that a link connecting x to y
may have a different name in z (output port) and in y (input port). The port numbers are unique
integers taken from the set {1,...,d}, where d is the number of ports corresponding to the degree
of the current node®. A message with header h; arriving at node u; through input port g; is given
a new header h;1 = H(u;,q;, h;), and is forwarded on the output port p; = P(u;,g;, h;). Thus, we
require that for every ¢ € {0,...,7 — 1}, H(u;,¢;, hi) = hit+1, P(ui,q;,h;) = p; and that the link
(u;, ui+1) has output port number p; at u;, and input port number ¢;11 at u;11 (see Fig. 1). On each
router, there exists a special link numbered 0. It insures the communication between the router
and its host associated at the node u;. This allows us to complete the description by imposing the
constraints that go = p, = 0, as well as hy = #(v), thus fixing the initial header, which is provided
to the router from its host (see Fig. 1).

host
processor

qi+1

Figure 1: A general model of router.

This mathematical formulation allows us to compare in a precise way all the results (specially
the lower bound results) and all the routing strategies of the literature.

A routing strategy is an algorithm that computes for a graph G a routing function R on G.
Hence the strategy consists of a pre-processing during the set-up time of the graph and is responsible
of the addresses assignment, port labeling, and distributed data structures construction required
by the routing scheme. (We use the term routing scheme to deal with an implementation of a
routing function.) A routing scheme, and more generally, a routing strategy is name-independent
if “names” does not change in the pre-processing, that is, the address £(u) is simply its original
name ID(u). A strategy is universal if it provides a routing scheme for any graph. We denote R,
the restriction of R to wu, so-called local routing function.

A routing function that, in each node, does depend of the header only, and not of the input
port, is said oblivious. And, an oblivious function that depends of the destination only, i.e., such
that hg = hy = -+ = h, = £(v), is a direct routing scheme. Finally, a direct scheme that uses the
address range [1,n] is called a routing table.

All theses refinements and considerations have an impact on the implementation of the routing
schemes. The ability of header modification for instance, can be costly for optical networks that
would require electronic-optic conversions. Direct schemes are the simplest ones and have also the

Moreover, the case v = u makes troubles for the definition of the stretch factor for which the distance from u to v is
taken as the denominator of a fraction.
®In directed graphs, we have to consider the in- and out-degree.



loop-less property: the messages following the route can never cycles, since otherwise they would
loop forever contradicting the routing function definition (there must exist a path between any pair
of nodes).

1.3 Complexity measures

As we will see there are relationship between the length of the routes generated (near or far from
the shortest paths) and the size of the local data structures used by a routing scheme (i.e., the
available knowledge). Actually, the trade-off between the computational power and the size of the
knowledge is a central theme in Theory of Distributed Computing. Routing with the most compact
distributed data structures is a perfect illustration of this paradigm®.

Let R be a routing scheme on a graph G. The stretch factor of R is the value defined by
max, 4, pr(u,v)/dc(u,v), where dg(u,v) denotes the length of a shortest path from u to v in G
(the cost of a minimum path in the weighted case). A routing scheme of stretch factor 1 is termed
a shortest path routing scheme.

The memory space of R is the size (in bits) of all the data structures it uses. One can distinguish
the local memory space of R in a node u, and the total memory space of R, defined as the sum of
the local memory space of all the nodes of G. As we will see, the memory space may depend of the
size of the headers and the size of the addresses. Note that, a priori, it is not required that the size
of local memory space of u is at least as large than the size of the address of u.

The routing time (sometimes called latency) is the maximum of the worst-case time complexity
of R,, the maximum taken over all node u of G. The total routing time is the maximum of the
sum of the time complexity for the local routing decisions performed along a route, the maximum
taken over all the routes.

2 Overview

2.1 Universal routing schemes

First, remark that every graph has a shortest path routing scheme with (local) memory space of
size O(nlogd) bits for each node of degree d: it suffices to use routing tables. (One can list in each
source the right output port for the n — 1 possible destinations. The direction of each destination
can be determined by rooting a minimum spanning tree in the source.) Thus, the use of routing
tables is an universal routing strategy.

After this remark, one may naturally ask whether there exists universal routing strategy that
are more compact? Say more compact than O(nlogd) bit per node.

There are at least two ways of designing shortest path and compact routing tables: find a
suitable address set and a suitable system of shortest paths for each source. The idea behind
naming nodes with a suitable address is to encode useful information about the network and then
to make use of this implicit information when performing the routing. Clearly, a routing strategy
that does not allow renaming of nodes of a ring cannot avoid a €(n) bit lower bound for the
memory space. (If the nodes are permuted at random, a source z needs to store Q(1) bit for each
destination y to determine whether a message has to be forwarded to its left or to its right.) Note
that the original node name can always be kept in the final address of the router, for instance setting
address(u) = (ID(u), £(u)) where £(u) is the routing-label. That is why we pay more attention on

5The “Best Student Paper Awards” of the 1996 and 2000 editions of the annal Symposium on Principles of
Distributed Computing (PODC) deal with compact routing, cf. [25, 26].



£(u), and try to minimize its size. Shortest path selection by the routing strategy is desirable as
well. A routing strategy that does not give this ability provides a (n) bit lower bound of memory
space for a K, _o (a complete bipartite graph). (Consider two nodes z,y of the largest part. If
the shortest path from z to y is fixed by a coin flip (there are two shortest paths from z to y using
distinct first edges) and is not optimized by he routing strategy,  would require to store (1) bits
for y.) Obviously, rings and complete bipartite graphs support shortest path routing schemes with
O(log n) bits of memory space if renaming and shortest path selection is allowed.

These two kinds of optimizations makes interesting the problem, in particular for specific fam-
ilies of graphs like trees [34, 35], outer-planar and bounded genus graphs [17, 23], k-trees [31], etc.
However, most of the routing strategies proposed are rather specific, and thus not universal. Unfor-
tunately, in [25], we negatively answer to the question of universal and compact routing strategies.
We showed that for every integer d, 3 < d < n/2, every shortest path universal routing strategy
requires Q(n? log d) bits of total memory space for some worst-case graph of maximum degree d, as-
suming that addresses can be optimized by the strategy and are taken in the set {1,...,n}. (Note
that port numbers and shortest paths are also selected and optimized by the routing strategy.)
Therefore, this shows, up to a constant multiplicative factor, the incompressibility of shortest path
routing tables. The result can be extended to any routing strategy generating optimal addresses
up to clogn bits, for every constant ¢ > 1, and whatever is the header size.

It turns out that memory space can be reduced only if we accept to relax at least two constraints:
the shortest paths and the size of the addresses.

2.2 Memory space vs. stretch factor

The issue of saving space in routing schemes by settling near-shortest routes was first raised in [27].
The proof of a trade-off between the memory space and the stretch factor has been given in [32, 33].
For every k, it is shown that every universal routing strategy of stretch factor ©(k) requires a total
memory space of Q(nl"'l/ @(k)). This result is completed by a universal routing strategy of stretch
factor © (k) with total memory space O(n'1t1/(k)). Though this strategy is almost optimal in terms
of its efficiency-space trade-off, it has few drawbacks.

Looking in more details the hidden constants with the © notation, we can observe that the
bounds are not tight. More precisely, the memory space lower bound is Q(n!T1/(25+4) for arbi-
trary stretch s > 1. The upper bound results of hierarchical cluster decomposition providing an
effective stretch factor s = 12k + 3 for some integer parameter k > 1, for a total memory space of
O(k3*n't1/k1og n), for addresses of size O(log?n) bits, and for headers of size” O(logn) bits. For
instance, if we would like to design routing schemes with total memory space smaller than routing
table one, i.e., smaller than O(n?logn) bits, we must choose k = 2 in order to obtain O(n'-®logn)
bits of space but we pay in this case a stretch s = 27. On the other hand, the memory space lower
bound for s = 27 is Q(n!*1/%8) only. This motivated several works for improving the trade-off
bounds.

At the present time, the best lower bounds indicate that for every s < 1.4 the total memory
space has to be Q(n?logn) [25], and, for s < 3, the total memory space has to be Q(n?) [22].

The strategy proposed in [32] is not name-independent, assume unit cost on the link of the net-
work, and does not bound the local memory space (the local space can be as larger than O(nlogn)
bits for some nodes).

"The reader should not be surprised by headers shorter than addresses. The source node, upon reception of the
destination address, say ho, coming from the host on input port 0, has the opportunity to modify ho, and to create
the first header h; of shorter size.



Other methods that overcome these problems achieve an inferior efficiency-space tradeoff. The
hierarchical routing strategy presented in [4] uses O(k n'/klogn) bits of local memory and guaran-
tees a stretch factor O(k? 9%). The routing strategy presented in [6] retains the advantages of the
former one, while regaining the polynomial trade-off. In particular it guarantees, for every integer
k > 1, a stretch factor of O(k?), while using O(k n'/* log? n log D) bits of local memory, where D
is the weighted diameter of the network.

The major disadvantage of all the proposed hierarchical routing strategies is that they are
rather complex, and thus they might be impractical especially for high-speed networks for which the
routing time in each node must be very short. Broadly speaking, the hierarchical routing strategies
are based on techniques for generating a sparse cover of clusters for the underlying graph. In order
to implement the routing scheme, there are K = O(logn) levels of covers with increasing radii.
Intuitively, higher levels are responsible for routing to farther destinations. A message is first sent
on the lowest level, on the hope that the destination is nearby. If this is not the case, then the
transmission might fail, in which case the message will bounce back to the originator. This step
may be viewed as one “phase” of the routing process. Once receiving the message back (with a
notification of failure), the originator tries to send it on a higher level, and so on, until the routing
process succeeds in delivering the message. Clearly, the implementation of this procedure in every
router results in a complex decision function; the number of the present phase has to be coded into
the header of the message, thus a new message header must be recomputed and rewritten by the
originator upon each retransmission, i.e., in every phase of the algorithm. Moreover, intermediate
routers must also change the message header, for example, in order to notify that a failure occurred.
(Another possibility is to send only a failure notification, but in this case the message originator
must keep a copy, and an intermediate router has to generate additional messages). In addition,
those strategies treat the nodes of the network non-uniformly, in the sense that different nodes play
different roles, thus the decision function could be substantially different at different nodes. As
high-speed networks gain popularity and increase in size, these drawbacks become crucial, since
the main routing bottleneck in these networks is often the decision function in the nodes and
not the propagation delay. Therefore, simple routing schemes, like direct schemes which could be
implemented in hardware may be preferable in practice.

2.3 Direct routing schemes and low stretch factor

Subsequently to the previous discussion, considerable attention is given recently to an opposing
design philosophy, focusing on simple and direct schemes. These schemes employ a simple “transmit
and forget” type decision function in the nodes, depending only on the destination of the message,
and the destination is the only information coded in the message header (which is determined once
and for all by the originating router, and is never changed afterwards.) They are loop-free and can
be implemented by some routing tables (that are sometimes compacted, but with a relatively low
routing time). That is why, other routing strategies have been designed, in particular some routing
strategies with small stretch factor s € [2, 5].

In this framework, [10] proposed direct loop-free routing schemes for weighted graphs with
O(n?/3 10g4/ 31n) local memory space. The stretch is at most s = 3, and addresses and headers
are of size 3logn. The space bound can be reduced to O(y/n log3/ 2 n) bits if one accept a small
increasing on the stretch to s = 5 [12]. The latter routing strategy is based on routing tables (the
tables are compacted into intervals of integers, namely these are interval routing schemes, cf. [21]
for a survey of this technique). Thus they are loop-free, and use headers/addresses which are taken
from the set {1,...,n}, i.e., on logn bits exactly. It is also remarked that the stretch is, in average



on all the source-destination pairs of the graph, bounded by § = 3. Moreover, the longest route
does not exceed 2D (D being the weighted diameter of the graph), and is even bounded by [1.5D]
in the case of uniform weights. The routing time is O(logn).

Actually, the bound on the local memory space is almost optimal. It is shown in [12] that no
loop-free routing strategy with address range [1, n] can guarantee a local memory space lower than
cy/n bits® on every family of graphs including trees. The result holds for every stretch factor, since
on trees a loop-free routing scheme of stretch s is a routing scheme of stretch 1. It follows that the
trade-offs presented previously (for instance the name-independent hierarchical routing strategy
of [6]) cannot pretend to loop-free routing schemes, thus require to change and rewrite the headers
at least once.

Open question

e What is the best trade-off between local memory space and stretch factor (or average stretch
factor) for universal direct routing schemes using addresses taken in {1,...,m}, with m > n?

The same question arise for universal k-phase routing strategies, namely strategies that provide
routing schemes for which the header of each message can be rewritten at most k£ times along its
route.

2.4 Almost all the graphs

We just have seen that in the worst-case a shortest path routing scheme requires ©(nlogn) bits
of local memory space (cf. the result of [25] taking d = ©(n)). But, are such worst-case networks
rare? Is the situation better for the “average case”? The answer is yes. Actually, surprisingly
enough, the networks that require a large memory space for routing along shortest paths are not
the ones that possess the maximal entropy®. Graph structures that make difficult the routing are
not completely random. As we will see, on the contrary, a graph with a fully random structure has
a shortest path routing scheme with O(n) bits of local memory space.

Certain results in graph theory are valid for “almost all the graphs”. The term “almost all”
is statistical. It means that the fraction of n-node graphs for which the property holds tends to 1
as n tends to infinity. The tools to establish such kind of results are probabilities, with the family
Gn,p of random graphs!?, or the Kolmogorov Complexity [29] with the Kolmogorov random graphs.
These two tools are very close in essence.

In [13] the ability of random graphs in G, ,, for some particular values of p, to support shortest
path routing tables that can be compacted into intervals has been considered. More generally, and
using Kolmogorov random graphs, [9] showed that a fraction of at least 1 — 1/n3 of all the graphs
has a shortest path routing table of size 3n + o(n) bits (per node) under the assumption that node
address range is [1,n] and node addresses are randomly permuted, and that each node knows its
neighborhood for free. However, if the addresses are on clog? n bits, where ¢ is a constant, then the
routing table can be reduced to clog®n bits only. Other results are mentioned for stretch factor
s > 1. Finally, in [24] the 3n 4+ o(n) bit upper bound has been slightly improved: for a fraction of
at least 1 —1/n of all the graphs support shortest path routing tables of size n 4+ O(log*n) bits for
addresses taken in the range {1,...,n}.

8Precisely, ¢ = (74/2/3)/1n2 = 3.7006565593...

9This family of graphs is quite hazy, but it can be viewed as the set of graphs whose adjacency matrix is not
compressible in the Kolmogorov Complexity sense.

071 this model, graphs have n nodes and with probability p there is an edge connecting two nodes of the graph,

cf. [7].



Open question
e Is the n + o(n) upper bound is the best possible one for a fraction of 1 — o(1) of all the graphs?

Remark. To design such a lower bound on the memory space is harder than it looks. First, a node
does not need to know its neighborhood (even if the neighborhood results of a random choice of
n/2 nodes among n — 1). We can relabel the ports according to some information of the neighbors
and it may decrease the information even bellow the degree of the node (for instance, it is shown
in [21] that trees have a O(y/n) bit local memory space routing scheme even for large degree node).
Secondly, in a random graph, node relabeling changes the probability to have a connection between
two arbitrary nodes labeled respectively z and y in {1,...,n}.

2.5 Separator, planar and bounded genus graphs

There are strategies that are not universal, but very efficient for specific class of graphs.

In [19] it is presented routing schemes for the family of graphs that are recursively decomposable
by a separator of size at most ¢. A separator is a subset of nodes whose removal disconnect a graph
in two (or more) connected components, each one of size at most 2/3 of the initial size of the
graph. More generally, the graph is said c-decomposable if for every node weight assignment of
the graph there exists a separator of size ¢ that provides connected components of weight (the sum
of the weight of the nodes in the component) at most 2/3 of the weight of the whole graph. This
definition implies a recursive decomposition of the graph with at most logs 5 (n) hierarchical levels,
cf. [19]. A separator insures that every route between two nodes of distinct components has to cross
some nodes of the separator. If the separator is small in size, this allows to concentrate the routing
information towards the nodes of the separator. Outer-planar graphs, and more generally, series-
parallel graphs are 2-decomposable, graphs of treewidth bounded by k are O(k)-decomposable,
planar graphs are O(y/n)-decomposable, and more generally, graphs of genus bounded by g are
O(,/gn)-decomposable.

More precisely, [19] proposed two routing strategies. The first one, applicable to edge-weighted
graphs, uses a total memory space of O(cnlog?n), a stretch factor s = 3, and addresses of size
rlogn bits, r > 1 being a small constant. The second one, with the same memory space, decreases
the stretch to s = 1 4 2/a, where 1 < a < 2 (thus s < 3) is the root of al(¢t1/2l — o = 2, for an
increasing of the addresses size to 3.42clogc logn bits. For ¢ € {2,3}, @ = 2, and for ¢ € {4,5},
a < 2.32. The routes are not necessary loop-free, the headers are supposed to be rewritable, and
the local memory space is not bounded.

These strategies are efficient only if ¢ is constant. For planar graphs, ¢ = ©(y/n), the same au-
thors proposed in [18] two better strategies. Still for weighted graphs, the first one has O(n4/ 3logn)
total memory space and a stretch factor of s = 3, for addresses and headers of size O(logn). The
second one, for every constant ¢, 0 < € < 1/3, provides a total memory space of O((1/¢)n'*¢logn)
bits for addresses of size O((1/€)logn), and a stretch factor s = 7. Both strategies suffer of
the previous drawbacks: they do not bound the local memory space (that can be as larger than
O(nlogn)), and use rewritable headers and addresses of size strictly longer than logn. All the
strategies presented in [18] and in [19], have routing time linear in the size of addresses, that is
O((1/e) logn).

The case of shortest path routing schemes for planar graphs (s = 1) has been studied in [23].
It is proposed a direct routing scheme (a routing table with addresses and headers are taken in
the range [1,n]) with local memory space 8n + o(n) bits and with O(log'™¢n) routing time, for
every constant € > 0. The scheme applies to weighted graphs, and to any given tree-routing



family, i.e., a family of n spanning trees, each tree being rooted in a unique node of the graph
and defining the routes to all the destinations. In this model the strategy cannot optimize the
shortest path selection, and thus the Q(n) lower bound of the complete bipartite K ,_» occurs
here (cf. Paragraph 2.1). The result extends naturally to graphs of genus at most g, increasing the
local memory space to O(nlogg) bits. All the schemes are extended, with the same performances
to graphs having at most o(nlogg/logn) edge crossing. It is interesting to note that the results
of [23] do not use combinatorial separability of bounded genus graphs, but are obtained by the use
of k-page embedding, a geometric representation of graphs.

Open questions

e What is the local memory space complexity of shortest path routing tables in planar graphs?
(The current lower bound is only Q(y/n) bits [12] for strategies optimizing shortest paths, and the
upper bound is O(n) [23]).

e More generally, what is the complexity of the local memory space for shortest path routing tables
in graphs of genus bounded by g? (Indeed, it is not clear that O(nlogg) is the best possible upper
bound. A smaller dependency in g is possible, no lower bound greater than (y/n) exists).

3 Some Key Problems

In this section we stress several problems for routing in distributed networks.

3.1 How to find the right interval?

Assume that a graph has a routing table R such that, in each source, the set of addresses destinations
using the same output port consists of a single interval of consecutive integers, i.e., R can be
implemented by an interval routing scheme. The question is to construct an efficient data structure
for this scheme. From practical point of view, the answer is important.

Let us consider a node z of degree in this graph, and let [a;, b;] denote the interval assigned to
the arc (z,v;),4 € {1,...,d}, ordered such that a; < as < --- < ayq. To answer to the routing query,

we need to compute as quick as possible, the index i such that y € [a;, b;], for every y € {1,...,n}.
Let us denote R;(y) = 4 this function.
A first solution simply consists in storing the a;’s in a table 7' such that T'[i] = a;. The

computation R;(y) consists in a binary search of y such that a; < y < ai+1, because the a;’s form a
partition of the range [1,n]. The routing time of R, is O(logd), and its memory space is O(dlogn)
bits. However, if d > n/logn, one can do smaller and faster.

The second solution guarantees a memory space of n + o(n) bits with a O(1) routing time. It
suffices to represent the set of a;’s by a binary string, B, such that Bla] = 1 if a € {a1,...,a4}
and B[a] = 0 otherwise. It turns out that R,(y) = ¢ if the number of a;’s less or equal to y is
exactly ¢. It corresponds also to the number of 1’s in B up to position y. The memory space is n
bits (the string B) and the routing time is a priori O(y), the traversal time of B up to y. In [30]
it is shown that this type of queries can be solved in constant time!l in the worst-case, thanks to
a data structure of size n + o(n) bits (moreover constructible in polynomial time).

" The computation model is the word-RAM model in which standard arithmetic and bitwise logic operations on
integers of O(logn) bits run in a unit of time.



Obviously, the ideal solution would be a compact representation of the set {ai,...,aq} by a
data structure of size'? log (7)) = ©(dlog(n/d)) allowing constant routing time. In the same spirit,
[8] proposed a quasi-optimal coding of integer sets (up to a multiplicative constant) with constant
time for membership queries. The question of computing the rank of an element is open.

Open question

e Is it possible to find a data structure of size at most O(dlog (n/d)) bits per node of degree d, and
a constant routing time for graphs supporting an interval routing scheme?

3.2 Total routing time

We saw that it is not easy to design a compact data structure for a minimal routing time, even for
the case of interval routing scheme. An alternative would be to consider the total routing time on
a route of length L.

Consider the “standard” shortest path routing in the de Bruijn graph. The nodes of this graph
are the n = 2 binary words of length k. The node zpxp_1-..ZT2x1 is connected to the nodes
Tp—1-..Tox10x, for @ € {0,1}. It consists to compute the largest prefix of the destination address
that is a suffix of the source address (addresses correspond to node names). This prefix constitutes
the first header. At each intermediate node, the first bit of the current header is extracted: if the
bit is 0 the message is forwarded to output port 1, if the bit is 1 it is forwarded to port 2 (this graph
is directed and has only two outgoing arcs). In both cases, the extracted bit is destroyed and the
new header is one bit less. The message arrives at destination when the header is empty. The total
routing time on a route of length L is O(L + logn), the logn term coming from the computation of
the first header that can be performed by the Boyer-Moore’s algorithm [3]. Note that the routing
time is constant excepted in the source. Since L < logn (the diameter is k), the total routing time
never exceeds O(logn).

The problem to design a compact data structure in order to optimized the total routing time
has been first pointed in [16]. For weighted outer-planar graphs (that all support a shortest path
interval routing), he presents a data structure of size O(dlogn), mainly based on intervals with
auxiliary tables in a way that the total routing time never exceeds O(L+logn) for messages between
nodes at distance L.

Expressed in an other complexity measure, the bit-operations model, [14] showed that every
graph of diameter D support a routing scheme with routing time O(logn) bit-operations and with
total routing time O(D + n'/*k log n) bit-operations, where k > 2 is an arbitrary constant. Note
that in this complexity measure, standard routing tables have total routing time ©(D logn) bit-
operations. Indeed, reading of £ bits in a table of size t costs O(£+logt) time, thus it costs ©(logn)
bit-operation to read the output port in a standard routing table'®. The technique to save time
is therefore to take few routing decisions (at most O(n!/¥) for some parameter k). Most of the
routers takes their own decision from few bits of the header only. Note that in the result [14] the
routes are not shortest paths, but their length are bounded by O(D).

">This is an optimal coding since there are () possible sets.

'3Tn this model, reading or writing a single bit of header costs one unit of time. However, the message and the bits
of the header that are not read can be copied and transmitted onto the outgoing link without any penalties — in the
de Bruijn example, the routing time is O(1) bit-operations though headers are non constant
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Open question

e Is there any universal routing strategy with total routing time bounded by O(D + logn) bit-
operations?

3.3 Routing in trees

Routing in trees is a basic and important problem. Indeed, most of the hierarchical routing strate-
gies are based on tree covering. Often, at the final phase of the routing protocol, the problem to
route in a small region spanned by a tree occurs. It is quite easy to design space-efficient routing
scheme for trees. For instance, interval-based routing (assuming addresses fixed by a DFS traversal
numbering, each sub-tree defines an interval of consecutive addresses) achieves a total memory
space of O(nlogn), thus O(logn) bits per node in average. This scheme is easy to implement
and the routing time is O(logn). however one can object the two following remarks: (1) the local
memory space is not bounded by O(logn) when the degree is large; (2) one could expect a constant
routing time with a better data structure.

In Paragraph 3.1, we saw that in the case of interval routing scheme, one can get a local memory
space O(dlog(n/d)). With a space n+ o(n) one can even guarantee a constant routing time. Is the
space O(dlog(n/d)) bound optimal for trees?

The answer is no: the right bound is O(y/n). In [21] it is shown that, thanks to a DFS
numbering according to the number of descendents of each sub-tree, the local routing function in
x can be computed from a sequences S, = (ni,...,nq), with ny < --- < ng. Here, n; is precisely
the number of descendents in the sub-tree rooted at the ith child of z. Because 1 < n; < -+ < ny
and Zgzl n; = n — 1, the sequence S; can be coded with at most O(y/n) bits, since the number
of such sequences (called partitions of n — 1) is bounded by 20(v7)  Thuys the local memory space
of z is bounded by O(y/n), and this is actually the optimal bound, cf. [12]. Roughly speaking,
the routing function in z for a destination of address y consists to compute the index i such that

i—1
y—z € (3521, 21 gl

Open question

e Design a compact data structure for partitions of n using optimal space, and allowing constant
time rank query type?

3.4 Exponential routing time and Cayley graphs

In an extension of [14], one can show that there are graphs having shortest path routing tables of
size O(logn) for each node with the following property: every shortest path routing scheme using
less than cnlogn bits of local memory space, for a suitable constant ¢ > 0, must have a routing
time greater than any constant size stack of exponentials, i.e.,

27L

92"

It is clear that if the data structure is to compact, the time to extract some piece of information
can be very large.

Cayley graphs are precisely a family of graphs supporting a theoretical low local memory space.
They have strong regularity property (based on a group structure), and thus are good candidates
for compact routing tables since they their adjacency matrix can be entirely described with a few
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number of bits. However, from such global information (say, the matrix of the graph), there is no
efficient way to extract a shortest path, or simply the first edge of a shortest path. Routing schemes
need local information.

More precisely, nodes of a Cayley graph are element of a group I' and the arcs™® are defined
by a given set of generators S C I': z is connected to y if there exists an element s € S such that
Yy=I+S.

Consider the following example: I' = Z (the additive group modulus n) and S = {£1, ¢, +co}
with ¢1,¢0 € Z\ {0,1} (we make the graph symmetric taking opposed generators). The Cayley
graph (T, S) can be described by given the two integers ¢; and co. Hence, the shortest path routing
can be solved with O(logn) bits of memory space. Indeed, one can rebuild the whole graph (in the
router memory), and apply a standard shortest path algorithm in order to extract the first edge of
a shortest path. The point is that this method would require ©(n) routing time, whereas one can
expect a poly-logarithmic routing time, the size of the input being O(logn). Unfortunately, one
need to solve the minimal decomposition of an element in sum of generators, a difficult problem.
In fact, for S = {#c;, +co} the problem can be solved in log®!) n time, but is still open for S of
larger cardinality.

14

Open question

e What is the best routing time we can achieve for shortest path routing scheme on Cayley graphs
of degree k and defined on Abelian groups, if the local memory space if bounded by O(k logn).

Remark. The allowed spaced is enough to store all the generators, and whole the graph informa-
tion: there are O(k) generators in S, each one can be described by an integer taken in [1,n], and
one can show that there are at most n°() non-isomorphic Abelian groups with n elements.

3.5 Routing and other distributed tasks

It is worth to observe that design a compact data structure for routing in a distributed network is
a difficult task. For instance, to determine the minimum number of intervals for which the graph
has a shortest path k-interval routing scheme is NP-hard (with at most &k intervals per link). The
pre-processing on the graph to optimize routing is time consuming in general. A natural question is
thus to ask if such efficient data structures, once generated by the pre-processing algorithm, could
be useful to other distributed tasks than routing, e.g., broadcasting or leader-election? or if with
a little effort one could not modify the compact data structures allowing fast multiple queries in
addition to routing.

In [15], we positively answer to this question for the case of shortest path l-interval routing
schemes. Mainly, it is shown that there are simple broadcast algorithms that allows broadcasting
message from any source in at most a total of O(n) messages, and using the routing information
only. It implies also O(n) message algorithm for leader-election improving the first contribution in
this routing and election problem, [35]. Note that with no specific information, the leader-election
problem has already Q(nlogn) message-complexity lower bound for a ring [20].

Open question

e Does the message-complexity remain in O(n) for s-stretched k-interval routing schemes for con-
stant k and constant s?

4 Cayley graphs are directed. However if —s € S for every s € S, one can considered them as undirected graphs.
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The problem is open for other representation of compact routing schemes. For instance it is not

clear if a graph having low local memory space for routing, say O(logn) bits, has also some ability
to broadcast or elect a leader with low message-complexity.
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