
Part 3

Measurements and Models
for Traffic Engineering

Traffic Engineering

• Goal: domain-wide control & management to
– Satisfy performance goals
– Use resources efficiently

• Knobs:
– Configuration & topology: provisioning, capacity

planning
– Routing: OSPF weights, MPLS tunnels, BGP

policies,…
– Traffic classification (diffserv), admission control,…

• Measurements are key: closed control loop
– Understand current state, load, and traffic flow
– Ask what-if questions to decide on control actions
– Inherently coarse-grained

End-to-End Traffic & Demand Models

path matrix =
bytes per path

demand matrix =
bytes per source-
destination pair

Ideally, captures
all the information about
the current network state
and behavior

Ideally, captures
all the information that is
invariant with respect to
the network state

Domain-Wide Traffic & Demand Models

current state &
traffic flow fine grained:

path matrix =
bytes per path

intradomain focus:
traffic matrix =
bytes per ingress-egress

interdomain focus:
demand matrix =
bytes per ingress and
set of possible egresses

predicted
control action:
impact of intra-
domain routing

predicted
control action:
impact of inter-
domain routing

Traffic Representations

• Network-wide views
– Not directly supported by IP (stateless, decentralized)
– Combining elementary measurements: traffic, topology,

state, performance
– Other dimensions: time & time-scale, traffic class, source or

destination prefix, TCP port number
• Challenges

– Volume
– Lost & faulty measurements
– Incompatibilities across types of measurements, vendors
– Timing inconsistencies

• Goal
– Illustrate how to populate these models: data analysis and

inference
– Discuss recent proposals for new types of measurements

Outline

• Path matrix
– Trajectory sampling
– IP traceback

• Traffic matrix
– Network tomography

• Demand matrix
– Combining flow and routing data

Path Matrix: Operational Uses

• Congested link
– Problem: easy to detect, hard to diagnose
– Which traffic is responsible?
– Which customers are affected?

• Customer complaint
– Problem: customer has insufficient visibility to

diagnose
– How is the traffic of a given customer routed?
– Where does it experience loss & delay?

• Denial-of-service attack
– Problem: spoofed source address, distributed attack
– Where is it coming from?

Path Matrix

• Bytes/sec for every path P between every
ingress-egress pair

• Path matrix ⇒traffic matrix

Measuring the Path Matrix

• Path marking
– Packets carry the path they have traversed
– Drawback: excessive overhead

• Packet or flow measurement on every link
– Combine records to obtain paths
– Drawback: excessive overhead, difficulties in matching up

flows

• Combining packet/flow measurements with network
state
– Measurements over cut set (e.g., all ingress routers)
– Dump network state
– Map measurements onto current topology

Path Matrix through Indirect Measurement

• Ingress measurements + network state

Network State Uncertainty

• Hard to get an up-to-date snapshot of…
• …routing

– Large state space
– Vendor-specific implementation
– Deliberate randomness
– Multicast

• …element states
– Links, cards, protocols,…
– Difficult to infer

• …element performance
– Packet loss, delay at links

Trajectory Sampling

• Goal: direct observation
– No network model & state estimation

• Basic idea #1:
– Sample packets at each link
– Would like to either sample a packet everywhere or nowhere
– Cannot carry a « sample/don’t sample » flag with the packet
– Sampling decision based on hash over packet content
– Consistent sampling ⇒ trajectories

• x: subset of packet bits, represented as binary number
• h(x) = x mod A
• sample if h(x) < r
• r/A: thinning factor

• Exploit entropy in packet content to obtain statistically
representative set of trajectories

Fields Included in Hashes

Labeling

• Basic idea #2:
– Do not need entire packet to reconstruct

trajectory
– Packet identifier: computed through second

hash function g(x)
– Observation: small labels (20-30 bits) are

sufficient to avoid collisions

Sampling and Labeling

Inference Experiment

• Experiment:
infer from trajectory
samples
– Estimate fraction of traffic

from customer
– Source address -> customer
– Source address -> sampling + label

• Fraction of customer traffic on backbone link:

 b on labels unique #
cb, on common labels unique #=µ̂

µ̂

Estimated Fraction (c=1000bit)

Estimated Fraction (c=10kbit)

Sampling Device

Trajectory Sampling: Summary

• Advantages
– Trajectory sampling estimates path matrix

…and other metrics: loss, link delay
– Direct observation: no routing model + network

state estimation
– Can handle multicast traffic (source tree),

spoofed source addresses (denial-of-service
attacks)

– Control over measurement overhead

• Disadvantages
– Requires support on linecards

IP Traceback against DDoS Attacks

spoofed IP
source addresses

• Denial-of-service attacks
– Overload victim with bogus traffic
– Distributed DoS: attack traffic from large # of sources
– Source addresses spoofed to evade detection → cannot use

traceroute, nslookup, etc.
– Rely on partial path matrix to determine attack path

IP Traceback: General Idea

• Goal:
– Find where traffic is really originating, despite spoofed

source addresses
– Interdomain, end-to-end: victim can infer entire tree

• Crude solution
– Intermediate routers attach their addresses to packets
– Infer entire sink tree from attacking sources
– Impractical:

• routers need to touch all the packets
• traffic overhead

• IP Traceback: reconstruct tree from samples of
intermediate routers
– A packet samples intermediate nodes
– Victim reconstructs attack path(s) from multiple samples

IP Traceback: Node Sampling

• Router address field reserved in packet
– Each intermediate router flips coin & records its address in

field with probability p
• Problems:

– p<0.5: spoofed router field by attacker → wrong path
– p>0.5: hard to infer long paths
– Cannot handle multiple attackers

A

B

C

A

A C

C

B

attacker

inter-
mediate
routers

victim

A: 239
B: 493
C: 734

histogram
of node
frequencies

decreasing
frequency

IP Traceback: Edge Sampling

• Sample edges instead of nodes
– Path is explicit → cannot introduce virtual nodes
– Able to distinguish multiple attack paths

A

B

C

A

A B

attacker

inter-
mediate
routers

victim

1: C→victim
2: B→C
3: A→B
...

table of
distances and
edges

• Implementation
– 3 fields: edge_start, edge_end, dist
– With probability p: edge_start:=router, dist:=0, else dist++
– If node receives packet with dist=0, writes its address into

edge_end

0

3B

A 1B

2C

B 0

B 1C

IP Traceback: Compressed Edge Sampling

• Avoid modifying packet header
– Identification field: only used for fragmentation
– Overload to contain compressed edge samples

• Three key ideas:
– Both_edges := edge_start xor edge_end

– Fragment both_edges into small pieces
– Checksum to avoid combining wrong pieces

Compressing Edge Sampling into ID Field

A

B

C

attacker

inter-
mediate
routers

victim

A xor B

B xor C

C C

B

A recursive recovery of
attack path from xor’d
addresses

A xor B
fragmentation

32 bit

3

position of fragment

error detection16bit

IP Traceback: Summary

• Interdomain and end-to-end
– Victim can infer attack sink tree from sampled topology

information contained in packets
– Elegantly exploits basic property of DoS attack: large # of

samples
• Limitations

– ISPs implicitly reveal topology
– Overloading the id field: makes fragmentation impossible,

precludes other uses of id field
• other proposed approach uses out-of-band ICMP packets to

transport samples

• Related approach: hash-based IP traceback
– “distributed trajectory sampling”, where trajectory

reconstruction occurs on demand from local information

Path Matrix: Summary

• Changing routers vs. changing IP
– Both trajectory sampling and IP traceback require router

support
– This is hard, but easier than changing IP!
– If IP could be changed:

• trajectory sampling: sample-this-packet bit, coin flip at ingress
• IP traceback: reserved field for router sampling

– Tricks to fit into existing IP standard
• trajectory sampling: consistent sampling by hashing over packet
• IP traceback: edge sampling, compression, error correction

• Direct observation
– No joining with routing information
– No router state

Outline

• Path matrix
– Trajectory sampling
– IP traceback

• Traffic matrix
– Network tomography

• Demand matrix
– Combining flow and routing data

Traffic Matrix: Operational Uses

• Short-term congestion and performance problems
– Problem: predicting link loads and performance after a

routing change
– Map traffic matrix onto new routes

• Long-term congestion and performance problems
– Problem: predicting link loads and performance after

changes in capacity and network topology
– Map traffic matrix onto new topology

• Reliability despite equipment failures
– Problem: allocating sufficient spare capacity after likely

failure scenarios
– Find set of link weights such that no failure scenario leads

to overload (e.g., for “gold” traffic)

Obtaining the Traffic Matrix

• Full MPLS mesh:
– MPLS MIB per LSP
– Establish a separate LSP for every ingress-egress point

• Packet monitoring/flow measurement with routing
– Measure at ingress, infer egress (or vice versa)
– Last section

• Tomography:
– Assumption: routing is known (paths between ingress-

egress points)
– Input: multiple measurements of link load (e.g., from

SNMP interface group)
– Output: statistically inferred traffic matrix

4Mbps 4Mbps

3Mbps5Mbps

Network Tomography

Origins

Destinations

From link counts to the traffic matrix

cdy




























=

111
111

1111
1

1111
111

1

A

Matrix Representation

c

a

b d

Axy =
counts link:),...,(T

ryyy 1=

counts OD:),...,(T
cxxx 1=

adx

Single Observation is Insufficient

• Linear system is underdetermined
– Number of links
– Number of OD pairs
– Dimension of solution sub-space at least

• Multiple observations are needed
– Stochastic model to bind them

)(nOr ≈
)(2nOc ≈

rc −

Network Tomography

• [Y. Vardi, Network Tomography, JASA, March
1996]

• Inspired by road traffic networks, medical
tomography

• Assumptions:
– OD counts:
– OD counts independent & identically distributed

(i.i.d.)
– K independent observations

))(
jPoisson(λ≡k

jX

)()1(,..., KYY

Vardi Model: Identifiability

• Model: parameter , observation
• Identifiability: determines

uniquely
– Theorem: If the columns of A are all

distinct and non-zero, then is
identifiable.

– This holds for all “sensible” networks
– Necessary is obvious, sufficient is not

λ
λ

λ

)(Ypλ

Y

Maximum Likelihood Estimator

• Likelihood function:

• Difficulty: determining
• Maximum likelihood estimate

– May lie on boundary of
– Iterative methods (such as EM) do not

always converge to correct estimate

∑ =
==

AXYX
XPYPL

:
)()()(λλλ

}0,:{ ≥= XYAXX

}:{ YAXX =

Estimator Based on Method of Moments

• Gaussian approximation of sample mean
• Match mean+covariance of model to

sample mean+covariance of observation
• Mean:
• Cross-covariance:

λAYAXY ≡→= ˆ

T
ji

T
jiji

AdiagAYY

AXXAYY

⋅⋅≡→

⋅⋅=

)(),v(ôc

),cov(),cov(

λ

• Linear estimating eq:

• System inconsistent + overconstrained
– Inconsistent: e.g.,
– Overconstrained:

– Massage eqn system, LININPOS problem

Linear Estimation

∑
=

==
K

k

k AY
K

Y
1

)(1ˆ λ

T
ji

k
j

K

k

k
ijiij AdiagAYYYYYYS ⋅⋅=−== ∑

=

)(ˆˆ),v(ôc)(

1

)(λ

λ







=








B
A

S
Ŷ

2
îii YS ≠

c
rr

BcrA ×
−

×
2

)1(
:;:

How Well does it Work?

• Experiment [Vardi]:
– K=100

• Limitations:
– Poisson traffic
– Small network

c

a

b d 











































=













































==

14.12
33.11

87.9
25.9
92.7
84.6
79.5
06.5
72.4
68.2
37.2
01.1

ˆ,

12
11
10
9
8
7
6
5
4
3
2
1

λλ EX

Further Papers on Tomography

• [J. Cao et al., Time-Varying Network
Tomography, JASA, Dec 2000]
– Gaussian traffic model, mean-variance scaling

• [Tebaldi & West, Bayesian Inference on
Network Traffic…, JASA, June 1998]
– Single observation, Bayesian prior

• [J. Cao et al., Scalable Method…,
submitted, 2001]
– Heuristics for efficient computation

Open Questions & Research Problems

• Precision
– Vardi: traffic generated by model, large # of samples
– Nevertheless significant error!

• Scalability to large networks
– Partial queries over subgraphs

• Realistic traffic models
– Cannot handle loss, multicast traffic
– Marginals:Poisson & Gaussian
– Dependence of OD traffic intensity
– Adaptive traffic (TCP)
– Packet loss

• How to include partial information
– Flow measurements, packet sampling

Outline

• Path matrix
– Trajectory sampling
– IP traceback

• Traffic matrix
– Network tomography

• Demand matrix
– Combining flow and routing data

Traffic Demands

Big Internet

Web Site User Site

Coupling between Inter and Intradomain

Web Site User Site

AS 1 AS 3

AS 4

U

AS 3, U

AS 3, U

AS 3, U

• IP routing: first interdomain path (BGP),
then determine intradomain path (OSPF,IS-IS)

AS 4, AS 3, U

AS 2

Intradomain Routing

Zoom in on AS1

200

110
10

110

300

25

75

50

300

IN

OUT 2

110

• Change in internal routing configuration changes flow exit point!
(hot-potato routing)

110

OUT 3

OUT 1

Demand Model: Operational Uses

• Coupling problem with traffic matrix-based approach:

– traffic matrix changes after changing intradomain routing!
• Definition of demand matrix: # bytes for every

(in, {out_1,...,out_m})
– ingress link (in)
– set of possible egress links ({out_1,...,out_m})

Traffic matrix

Traffic Engineering

Improved Routing

Traffic matrix

Traffic Engineering

Improved Routing

Demand matrix

Traffic Engineering

Improved Routing

Ideal Measurement Methodology

• Measure traffic where it enters the network
– Input link, destination address, # bytes, and time
– Flow-level measurement (Cisco NetFlow)

• Determine where traffic can leave the network
– Set of egress links associated with each destination

address (forwarding tables)

• Compute traffic demands
– Associate each measurement with a set of egress links

Identifying Where the Traffic Can Leave

• Traffic flows
– Each flow has a dest IP address (e.g., 12.34.156.5)
– Each address belongs to a prefix (e.g., 12.34.156.0/24)

• Forwarding tables
– Each router has a table to forward a packet to “next

hop”
– Forwarding table maps a prefix to a “next hop” link

• Process
– Dump the forwarding table from each edge router
– Identify entries where the “next hop” is an egress link
– Identify set of all egress links associated with a prefix

Identifying Egress Links

Flow->12.34.156.5

A

Forwarding entry: 12.34.156.5/24→x

Case Study: Interdomain Focus

• Not all links are created equal: access vs. peering
– Access links:

• large number, diverse
• frequent changes
• burdened with other functions: access control, packet marking,

SLAs and billing...

– Peering links:
• small number
• stable

• Practical solution: measure at peering links only
– Flow level measurements at peering links

• need both directions!

– A large fraction of the traffic is interdomain
– Combine with reachability information from all routers

Inbound & Outbound Flows on Peering Links

Peers Customers

Inbound

Outbound

Note: Ideal methodology applies for inbound flows.

Flows Leaving at Peer Links

• Transit traffic
– Problem: avoid double-counting
– Either in and out at same or at different routers
– Idea: use source address to check if flow originates at

customer
• trustworthy because of ingress filtering of customer traffic

• Outbound traffic
– Flow measured only as it leaves the network
– Keep flow record if source address matches a customer
– Identify ingress link(s) that could have sent the traffic

Challenge: Ingress Links for Outbound

Use routing simulation to trace back to the ingress
links -> egress links partition set of ingress links

? input

? input

Outbound traffic flow
measured at peering link

Customers
destination

output

Experience with Populating the Model

• Largely successful
– 98% of all traffic (bytes) associated with a set of egress

links
– 95-99% of traffic consistent with an OSPF simulator

• Disambiguating outbound traffic
– 67% of traffic associated with a single ingress link
– 33% of traffic split across multiple ingress (typically, same

city!)

• Inbound and transit traffic (uses input measurement)
– Results are good

• Outbound traffic (uses input disambiguation)
– Results are pretty good, for traffic engineering applications,

but there are limitations
– To improve results, may want to measure at selected or

sampled customer links

Open Questions & Research Problem

• Online collection of topology, reachability,
& traffic data
– Distributed collection for scalability

• Modeling the selection of the ingress link
(e.g., use of multi-exit descriminator in
BGP)
– Multipoint-to-multipoint demand model

• Tuning BGP policies to the prevailing traffic
demands

Traffic Engineering: Summary

• Traffic engineering requires domain-wide
measurements + models
– Path matrix (per-path): detection, diagnosis of

performance problems; denial-of-service attacks
– Traffic matrix (point-to-point): predict impact of

changes in intra-domain routing & resource
allocation; what-if analysis

– Demand matrix (point-to-multipoint): coupling
between interdomain and intradomain routing:
multiple potential egress points

Conclusion

• IP networks are hard to measure by design
– Stateless and distributed
– Multiple, competing feedback loops: users, TCP, caching,

content distribution networks, adaptive routing... → difficult
to predict impact of control actions

– Measurement support often an afterthought → insufficient,
immature, not standardized

• Network operations critically rely on measurements
– Short time-scale: detect, diagnose, fix problems in

configuration, state, performance
– Long time-scale: capacity & topology planning, customer

acquisition, ...
• There is much left to be done!

– Instrumentation support; systems for collection & analysis;
procedures

