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Software Defined Networks (SDN) - 
Centralized Control
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Software Defined Networks (SDN) - 
Centralized Control
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Program your network from  
a central logical point!



OpenFlow - Abstractions for SDN
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1 dstip = 10.0.0.1 outport ← 1
2 dstip = 10.0.0.2 drop

Prio match action

… ……

Each Rule can 
• Match on header 

fields 
• modify/forward/drop 

packets



Is OpenFlow Enough?

• OpenFlow rules are “stateless”

• Rule tables process each packet independently 
from the rest

• Algorithms almost always need “stateful” 
processing 

• i.e., decide what to do with the packet based on 
packets seen so far! 
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Option #1 - All the state on the 
controller
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new rules
   Centralized control but not efficient! 

• Switches process packets at ns scale 
• Going through the controller, each update could 

take from ms to a few seconds



Option #2 - Middleboxes (MBs)

• Use dedicated blackboxes for each functionality 
alongside with switches
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  Efficient but we lose centralized control! 

• MBs are ad-hoc blackboxes 
• They make it hard to reason about network’s 

behavior



Our Goal

Stateful packet processing 

with centralized control

without compromising on efficiency
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Insight

• New switches offer more sophisticated stateful 
packet processing functionality 

• The switch has local state 
• Rules can match on/modify local state
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Let’s push stateful processing to 
switches!
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SNAP - Language and Compiler 
Overview
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+ ;

??

• The stateful program is 
written on top of one 
big switch 

• The actual network has 
collections of switches 

• How should we realize 
the program 
collectively on the 
network of switches?
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Program

+ ;

SNAP - Language and Compiler 
Overview

Intermediate
Representation

(FDD)

Distributed 
version of 

the program’s
FDD

“Stateful” Rules
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SNAP - Language



Packets!
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…srcip dstip srcport



Programming Model

• SNAP’s expressions are functions
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Reads/Modifies state 
Reads/Duplicate/Modifies packet

current state

input packet

updated state

set of packets



Running Example - Detecting 
Malicious Domains

• Domains that change TTL frequently are suspected 
to be malicious
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CS

IP address of 
www.google.com?

domain: www.google.com 
IP: 74.125.224.72 

TTL (valid for): 1 day



TTL Change Tracking in SNAP
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TTL Change Tracking in SNAP
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TTL Change Tracking in SNAP
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State variable is a key-value dictionary



TTL Change Tracking in SNAP
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TTL Change Tracking in SNAP
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Adding Forwarding

• Operator wants to specify where packets should be 
forwarded to
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• Forwarding is composed with TTL change tracking



SNAP Compiler
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Identify State Dependencies

Translate to Intermediate 
Representation (FDD)

Identify mapping from 
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

?

?

?



SNAP Compiler
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Identify State Dependencies

Translate to Intermediate 
Representation (FDD)

Identify mapping from 
packets to state variables

Optimally distribute the FDD
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SNAP Compiler
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Identify State Dependencies

Translate to Intermediate 
Representation (FDD)

Identify mapping from 
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

?

?

ttl_change → last_ttl → seen



SNAP Compiler
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Identify State Dependencies

Translate to Intermediate 
Representation (FDD)

Identify mapping from 
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

?

?

ttl_change → last_ttl → seen



Why Forwarding Decision      
Diagrams (FDDs)?

• Efficient  

• in terms of number of generated rules 

• for extraction of mapping from packets to state 
variables (next phase)
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Forwarding Decision Diagrams (FDDs)

• Generalization of binary 
decision diagrams [1] 

• Intermediate node :     
test on header fields and 
state 

• Leaf : set of action 
sequences
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dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}

[1] Fast NetKAT Compiler, Smolka et.al, SIGPLAN 2015



Forwarding Decision Diagrams (FDDs)

• Three types of tests 

• field = value 
• field1 = field2 
• state_var[e1] = e2
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{s[dstip] ← 2} {drop}
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Forwarding Decision Diagrams (FDDs)

• Three types of tests 

• field = value 
• field1 = field2 
• state_var[e1] = e2
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dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}



SNAP Expression to FDD
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dstip = CS_ip

srcport = DNS

seen[dns.domain] = True

{outport ← EE}

{outport ← CS}

last_ttl[dns.domain]= dns.ttl

{last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain]++;

outport ← CS}

{seen[dns.domain] ← True;
last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain] ←0;

outport ← CS}

{drop}

dstip = EE_ip



SNAP Expression to FDD
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dstip = CS_ip

seen[dns.domain] = True

{outport ← EE}

{outport ← CS}

last_ttl[dns.domain]= dns.ttl

{last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain]++;

outport ← CS}

{seen[dns.domain] ← True;
last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain] ←0;

outport ← CS}

{drop}

dstip = EE_ip

srcport = DNS



SNAP Compiler
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Identify State Dependencies

Translate to Intermediate 
Representation (FDD)

Identify mapping from 
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

?

ttl_change → last_ttl → seen

✔
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Optimal Distribution of the FDD
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optimizing  
network  

congestion



Optimal Distribution of the FDD
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optimizing  
network 

 congestion



SNAP Compiler
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Identify State Dependencies

Translate to Intermediate 
Representation (FDD)

Identify mapping from 
packets to state variables

Optimally distribute the FDD

Generate rules per switch ?

ttl_change → last_ttl → seen

✔

flows to CS need all three
state variables

✔



SNAP Compiler
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Identify State Dependencies

Translate to Intermediate 
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SNAP Compiler
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Identify State Dependencies

Translate to Intermediate 
Representation (FDD)

Identify mapping from 
packets to state variables

Optimally distribute the FDD

Generate rules per switch

ttl_change → last_ttl → seen

✔

flows to CS need all three
state variables

✔

✔



Putting It All Together
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ISP1

ISP2

CS

EE

dstip = CS_ip

srcport = DNS

seen[dns.domain] 
= True

{outport ← EE}4

5

6

1

{drop}

dstip = EE_ip



Putting It All Together
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ISP1

ISP2

CS

EE

6 dstip = CS_ip

seen[dns.domain] 
= True

{outport ← EE}4

5

6

1

{drop}

dstip = EE_ip

srcport = DNS



Putting It All Together
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seen[dns.domain] 
= True

{outport ← CS}

6

7 {seen[dns.domain] ← True;
last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain] ←0;

outport ← CS}

ISP1

ISP2

CS

EE

6



Putting It All Together
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ISP1

ISP2

CS

EE

6

seen[dns.domain] 
= True

{outport ← CS}

6

7 {seen[dns.domain] ← True;
last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain] ←0;

outport ← CS}



Evaluation

• Evaluated on three campus networks and four ASs 

• 25-160 switches 
• 100-650 links 

• Cold-start compilation takes 35-600 seconds 
• most of the time goes for optimally distributing the 

FDD 

• Re-compilation time can be reduced to under one 
minute by fixing state placement 

48



Related Work
• NetKAT 

• inspired basic language constructs 

• Fast NetKAT Compiler 

• stateless FDDs 

• Stateful NetKAT (largely concurrent with SNAP) 

• simple registers (vs general dictionaries) 
• formal definition and proof of correctness for updates 
• Different optimization goal (rule space)
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Questions?
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