
SNAP: Stateful Network-Wide
Abstractions for Packet Processing

Mina Tahmasbi Arashloo1, Yaron Koral1, Michael Greenberg2,
Jennifer Rexford1, and David Walker1

1 Princeton University, 2 Pomona College

Software Defined Networks (SDN) -
Centralized Control

2

Software Defined Networks (SDN) -
Centralized Control

3

Program your network from
a central logical point!

OpenFlow - Abstractions for SDN

4

1 dstip = 10.0.0.1 outport ← 1
2 dstip = 10.0.0.2 drop

Prio match action

… ……

Each Rule can
• Match on header

fields
• modify/forward/drop

packets

Is OpenFlow Enough?

• OpenFlow rules are “stateless”

• Rule tables process each packet independently
from the rest

• Algorithms almost always need “stateful”
processing

• i.e., decide what to do with the packet based on
packets seen so far!

5

Option #1 - All the state on the
controller

6

new rules
 Centralized control but not efficient!

• Switches process packets at ns scale
• Going through the controller, each update could

take from ms to a few seconds

Option #2 - Middleboxes (MBs)

• Use dedicated blackboxes for each functionality
alongside with switches

7

 Efficient but we lose centralized control!

• MBs are ad-hoc blackboxes
• They make it hard to reason about network’s

behavior

Our Goal

Stateful packet processing

with centralized control

without compromising on efficiency

8

Insight

• New switches offer more sophisticated stateful
packet processing functionality

• The switch has local state
• Rules can match on/modify local state

9

Let’s push stateful processing to
switches!

10

SNAP - Language and Compiler
Overview

11

+ ;

??

• The stateful program is
written on top of one
big switch

• The actual network has
collections of switches

• How should we realize
the program
collectively on the
network of switches?

12

Program

+ ;

SNAP - Language and Compiler
Overview

Intermediate
Representation

(FDD)

Distributed
version of

the program’s
FDD

“Stateful” Rules

13

+ ;

SNAP - Language

Packets!

14

…srcip dstip srcport

Programming Model

• SNAP’s expressions are functions

15

Reads/Modifies state
Reads/Duplicate/Modifies packet

current state

input packet

updated state

set of packets

Running Example - Detecting
Malicious Domains

• Domains that change TTL frequently are suspected
to be malicious

16

CS

IP address of
www.google.com?

domain: www.google.com
IP: 74.125.224.72

TTL (valid for): 1 day

TTL Change Tracking in SNAP

17

TTL Change Tracking in SNAP

18

TTL Change Tracking in SNAP

19
State variable is a key-value dictionary

TTL Change Tracking in SNAP

20

TTL Change Tracking in SNAP

21

Adding Forwarding

• Operator wants to specify where packets should be
forwarded to

22

• Forwarding is composed with TTL change tracking

SNAP Compiler

23

Identify State Dependencies

Translate to Intermediate
Representation (FDD)

Identify mapping from
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

?

?

?

SNAP Compiler

24

Identify State Dependencies

Translate to Intermediate
Representation (FDD)

Identify mapping from
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

?

?

?

SNAP Compiler

25

Identify State Dependencies

Translate to Intermediate
Representation (FDD)

Identify mapping from
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

?

?

ttl_change → last_ttl → seen

SNAP Compiler

26

Identify State Dependencies

Translate to Intermediate
Representation (FDD)

Identify mapping from
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

?

?

ttl_change → last_ttl → seen

Why Forwarding Decision
Diagrams (FDDs)?

• Efficient

• in terms of number of generated rules

• for extraction of mapping from packets to state
variables (next phase)

27

Forwarding Decision Diagrams (FDDs)

• Generalization of binary
decision diagrams [1]

• Intermediate node :
test on header fields and
state

• Leaf : set of action
sequences

28

dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}

[1] Fast NetKAT Compiler, Smolka et.al, SIGPLAN 2015

Forwarding Decision Diagrams (FDDs)

• Three types of tests

• field = value
• field1 = field2
• state_var[e1] = e2

29

dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}

Forwarding Decision Diagrams (FDDs)

• Three types of tests

• field = value
• field1 = field2
• state_var[e1] = e2

30

dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}

Forwarding Decision Diagrams (FDDs)

• Three types of tests

• field = value
• field1 = field2
• state_var[e1] = e2

31

dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}

Forwarding Decision Diagrams (FDDs)

• Three types of tests

• field = value
• field1 = field2
• state_var[e1] = e2

32

dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}

Forwarding Decision Diagrams (FDDs)

• Three types of tests

• field = value
• field1 = field2
• state_var[e1] = e2

33

dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}

SNAP Expression to FDD

34

dstip = CS_ip

srcport = DNS

seen[dns.domain] = True

{outport ← EE}

{outport ← CS}

last_ttl[dns.domain]= dns.ttl

{last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain]++;

outport ← CS}

{seen[dns.domain] ← True;
last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain] ←0;

outport ← CS}

{drop}

dstip = EE_ip

SNAP Expression to FDD

35

dstip = CS_ip

seen[dns.domain] = True

{outport ← EE}

{outport ← CS}

last_ttl[dns.domain]= dns.ttl

{last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain]++;

outport ← CS}

{seen[dns.domain] ← True;
last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain] ←0;

outport ← CS}

{drop}

dstip = EE_ip

srcport = DNS

SNAP Compiler

36

Identify State Dependencies

Translate to Intermediate
Representation (FDD)

Identify mapping from
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

?

ttl_change → last_ttl → seen

✔

SNAP Compiler

37

Identify State Dependencies

Translate to Intermediate
Representation (FDD)

Identify mapping from
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

ttl_change → last_ttl → seen

✔

flows to CS need all three
state variables

SNAP Compiler

38

Identify State Dependencies

Translate to Intermediate
Representation (FDD)

Identify mapping from
packets to state variables

Optimally distribute the FDD

Generate rules per switch

?

?

ttl_change → last_ttl → seen

✔

flows to CS need all three
state variables

Optimal Distribution of the FDD

39

optimizing
network

congestion

Optimal Distribution of the FDD

40

optimizing
network

 congestion

SNAP Compiler

41

Identify State Dependencies

Translate to Intermediate
Representation (FDD)

Identify mapping from
packets to state variables

Optimally distribute the FDD

Generate rules per switch ?

ttl_change → last_ttl → seen

✔

flows to CS need all three
state variables

✔

SNAP Compiler

42

Identify State Dependencies

Translate to Intermediate
Representation (FDD)

Identify mapping from
packets to state variables

Optimally distribute the FDD

Generate rules per switch ?

ttl_change → last_ttl → seen

✔

flows to CS need all three
state variables

✔

SNAP Compiler

43

Identify State Dependencies

Translate to Intermediate
Representation (FDD)

Identify mapping from
packets to state variables

Optimally distribute the FDD

Generate rules per switch

ttl_change → last_ttl → seen

✔

flows to CS need all three
state variables

✔

✔

Putting It All Together

44

ISP1

ISP2

CS

EE

dstip = CS_ip

srcport = DNS

seen[dns.domain]
= True

{outport ← EE}4

5

6

1

{drop}

dstip = EE_ip

Putting It All Together

45

ISP1

ISP2

CS

EE

6 dstip = CS_ip

seen[dns.domain]
= True

{outport ← EE}4

5

6

1

{drop}

dstip = EE_ip

srcport = DNS

Putting It All Together

46

seen[dns.domain]
= True

{outport ← CS}

6

7 {seen[dns.domain] ← True;
last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain] ←0;

outport ← CS}

ISP1

ISP2

CS

EE

6

Putting It All Together

47

ISP1

ISP2

CS

EE

6

seen[dns.domain]
= True

{outport ← CS}

6

7 {seen[dns.domain] ← True;
last_ttl[dns.domain] ← dns.ttl;
ttl_change[dns.domain] ←0;

outport ← CS}

Evaluation

• Evaluated on three campus networks and four ASs

• 25-160 switches
• 100-650 links

• Cold-start compilation takes 35-600 seconds
• most of the time goes for optimally distributing the

FDD

• Re-compilation time can be reduced to under one
minute by fixing state placement

48

Related Work
• NetKAT

• inspired basic language constructs

• Fast NetKAT Compiler

• stateless FDDs

• Stateful NetKAT (largely concurrent with SNAP)

• simple registers (vs general dictionaries)
• formal definition and proof of correctness for updates
• Different optimization goal (rule space)

49

Questions?

50

