
CacheFlow: Dependency-Aware Rule-Caching
for Software-Defined Networks

Naga Katta
Omid Alipourfard*, Jennifer Rexford, David Walker

Princeton University, *USC

1

Inadequate Switching Gear

2

SDN Promises Flexible Policies

3

Controller

Switch

TCAM

SDN Promises Flexible Policies

4

Controller

Switch

TCAM

Lot of fine-
grained rules

SDN Promises Flexible Policies

5

Controller

Lot of fine-
grained rules

SDN Promises Flexible Policies

6

Controller

Lot of fine-
grained rules

SDN Promises Flexible Policies

7

Controller

Lot of fine-
grained rules

SDN Promises Flexible Policies

8

Controller

Limited
rule space!

SDN Promises Flexible Policies

9

Controller

Limited
rule space!

What now?

State of the Art

10

Hardware Switch Software Switch
Rule Capacity Low (~2K-10K) High
Lookup Throughput High (>400Gbps) Low (~40Gbps)
Port Density High Low
Cost Expensive Relatively cheap

TCAM as cache

11

CacheFlow

TCAM

Controller

S2 S1

Software
Switches

TCAM as cache

12

CacheFlow

TCAM

Controller

S2 S1

<5% rules
cached

TCAM as cache

13

CacheFlow

TCAM

Controller

S2 S1

low expected
cache-misses

•  High throughput + high rule space

TCAM as cache

14

CacheFlow

TCAM

Controller

S2 S1

•  High throughput + high rule space

TCAM as cache

15

CacheFlow

TCAM

Controller

S2 S1

Flexible
Deployment

•  Abstraction of an “infinite” switch
Ø  Correct: realizes the policy
Ø  Efficient: high throughput & large tables
Ø  Transparent: unmodified applications/switches

16

 A Correct, Efficient and Transparent
 Caching System

1. Correct Caching

17

Caching under constraints

18

Easy: Cache rules greedily

Rule Match Action Priority Traffic

R1 110 Fwd 1 3 10

R2 100 Fwd 2 2 60

R3 101 Fwd 3 1 30

Caching Ternary Rules

19

Rule Match Action Priority Traffic

R1 11* Fwd 1 3 10

R2 1*0 Fwd 2 2 60

R3 10* Fwd 3 1 30

•  Greedy strategy breaks rule-table semantics

Caching Ternary Rules

20

Rule Match Action Priority Traffic

R1 11* Fwd 1 3 10

R2 1*0 Fwd 2 2 60

R3 10* Fwd 3 1 30

•  Greedy strategy breaks rule-table semantics

Rules Overlap!

Caching Ternary Rules

21

Rule Match Action Priority Traffic

R1 11* Fwd 1 3 10

R2 1*0 Fwd 2 2 60

R3 10* Fwd 3 1 30

•  Greedy strategy breaks rule-table semantics
•  Beware of switches that claim large rule tables

Rules Overlap!

Dependency Graph

22

R3

R2

R1

R6

R5

R4

(*)

Rule Match Action Priority Traffic

R1 0000 Fwd 1 6 10

R2 000* Fwd 2 5 20

R3 00** Fwd 3 4 90

R4 111* Fwd 4 3 5

R5 11** Fwd 5 2 10

R6 1*** Fwd 6 1 120

•  For a given rule R
•  Find all the rules that its packets may hit if R is removed

23

R
R1
R2
R3
R4

R ∧ R1 != φ

How to get the dependency graph?

•  For a given rule R
•  Find all the rules that its packets may hit if R is removed

24

R
R1
R2
R3
R4

R ∧ R1 != φ

How to get the dependency graph?

•  For a given rule R
•  Find all the rules that its packets may hit if R is removed

25

R
R1
R2
R3
R4

R’ = R – R1

How to get the dependency graph?

•  For a given rule R
•  Find all the rules that its packets may hit if R is removed

26

R
R1
R2
R3
R4

R’ ∧ R2 == φ

How to get the dependency graph?

•  For a given rule R
•  Find all the rules that its packets may hit if R is removed

27

R
R1
R2
R3
R4

R’ ∧ R3 != φ

How to get the dependency graph?

•  For a given rule R
•  Find all the rules that its packets may hit if R is removed

28

R
R1
R2
R3
R4

R’ ∧ R3 != φ

How to get the dependency graph?

•  For a given rule R
•  Find all the rules that its packets may hit if R is removed

29

R
R1
R2
R3
R4

R’’ = R’ – R3

How to get the dependency graph?

•  For a given rule R
•  Find all the rules that its packets may hit if R is removed

30

R
R1
R2
R3
R4

R’’ == φ

(End of dependencies originating from R)

How to get the dependency graph?

Dependency Graph

31

R3

R2

R1

R6

R5

R4

(*)

Rule Match Action Priority Traffic

R1 0000 Fwd 1 6 10

R2 000* Fwd 2 5 20

R3 00** Fwd 3 4 90

R4 111* Fwd 4 3 5

R5 11** Fwd 5 2 10

R6 1*** Fwd 6 1 120

Multi-field ternary match -> complex DAG

32

Rule (dst_ip, dst_port) Ternary
Match

Action Priority

R1 (10.10.10.10/32, 10) 000 Fwd 1 6

R2 (10.10.10.10/32, *) 00* Fwd 2 5

R3 (10.10.0.0/16, *) 0** Fwd 3 4

R4 (11.11.11.11/32, *) 11* Fwd 4 3

R5 (11.11.0.0/16, 10) 1*0 Fwd 5 2

R6 (11.11.10.10/32, *) 10* Fwd 6 1

R3

R2

R1

R6

R5

R4

(*)

000

00*

0**

110

100

10*

110

111

Incremental Updates

33

Complex dependencies in the wild

34

Reanzz Network CoVisor (NSDI’15)

Dependency-aware Caching

35

Dependent-Set Caching

36

R3

R2

R1

R6

R5

R4

(*)

•  All descendants in DAG are dependents
•  Cache dependent rules for correctness

2. Efficient Caching

37

Dependent-Set Overhead

38

R3

R2

R1

R6

R5

R4

(*)

Too Costly?

Cover-Set

39

Rule Match Action
R1 000 Fwd 1

R2 00* Fwd 2

R3 0** Fwd 3

R4 11* Fwd 4

R5 1*0 Fwd 5

R5^ 1*0 To_SW

R6 10* Fwd 6

(*) *** To_SW

R6

R5

R4

(*)

R5^

R3

R2

R1

Cover rule

Dependency Splicing reduces rule cost!

40

Dependent-Set Cover-Set

Rule Space Cost

Mixed Set: Best of both worlds

41

CacheFlow

R3

R2

R1

R6

R5

R4

(*)

R5^

Dependency Chains – Clear Gain

42

•  CAIDA packet trace 3% rules
85% traffic

Incremental update is more stable

43

3. Transparent Caching

44

45

CacheFlow

HW_Cache (TCAM)

Controller

S4 S1 S2 S3

OpenFlow
Datapath

3. Transparent Design

46

CacheFlow

HW_Cache (TCAM)

Controller

S4 S1 S2 S3

Virtual
switch

OpenFlow
Datapath

3. Transparent Design

47

CacheFlow

HW_Cache (TCAM)

Controller

S4 S1 S2 S3

OpenFlow
Datapath

Emulates counters, barriers, timeouts etc.

3. Transparent Design

Virtual
switch

•  Rule caching for OpenFlow rules

Ø  Dependency analysis for correctness
Ø  Splicing dependency chains for efficiency
Ø  Transparent design

Conclusion

48

•  Rule caching for OpenFlow rules

Ø  Dependency analysis for correctness
Ø  Splicing dependency chains for efficiency
Ø  Transparent design

Ø  Get ready for infinite Ca$hflow!

Conclusion

49

Thank You

50

Backup Slides

51

Dependency Chains – Clear Gain

52

•  Stanford Backbone Router Config

