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State of the Art 
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Hardware Switch Software Switch 
Rule Capacity Low (~2K-10K) High 
Lookup Throughput High (>400Gbps) Low (~40Gbps) 
Port Density High  Low 
Cost Expensive Relatively cheap 
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•  Abstraction of an “infinite” switch 
Ø  Correct: realizes the policy 
Ø  Efficient: high throughput & large tables 
Ø  Transparent: unmodified applications/switches 
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 A Correct, Efficient and Transparent    
    Caching System 



1. Correct Caching 
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Caching under constraints 
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Easy: Cache rules greedily 

Rule  Match Action Priority Traffic 

R1 110 Fwd 1 3 10 

R2 100 Fwd 2 2 60 

R3 101 Fwd 3 1 30 



Caching Ternary Rules 
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Rule  Match Action Priority Traffic 

R1 11* Fwd 1 3 10 

R2 1*0 Fwd 2 2 60 

R3 10* Fwd 3 1 30 

•  Greedy strategy breaks rule-table semantics 
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Caching Ternary Rules 
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Rule  Match Action Priority Traffic 

R1 11* Fwd 1 3 10 

R2 1*0 Fwd 2 2 60 

R3 10* Fwd 3 1 30 

•  Greedy strategy breaks rule-table semantics 
•  Beware of switches that claim large rule tables 

Rules Overlap! 



Dependency Graph 
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Rule  Match Action Priority Traffic 

R1 0000 Fwd 1 6 10 

R2 000* Fwd 2 5 20 

R3 00** Fwd 3 4 90 

R4 111* Fwd 4 3 5 

R5 11** Fwd 5 2 10 

R6 1*** Fwd 6 1 120 



•  For a given rule R 
•  Find all the rules that its packets may hit if R is removed
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•  For a given rule R 
•  Find all the rules that its packets may hit if R is removed
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•  For a given rule R 
•  Find all the rules that its packets may hit if R is removed
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•  For a given rule R 
•  Find all the rules that its packets may hit if R is removed
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•  For a given rule R 
•  Find all the rules that its packets may hit if R is removed
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R 
R1 
R2 
R3 
R4 

R’’ == φ 

(End of dependencies originating from R) 

How to get the dependency graph? 
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Rule  Match Action Priority Traffic 

R1 0000 Fwd 1 6 10 

R2 000* Fwd 2 5 20 

R3 00** Fwd 3 4 90 

R4 111* Fwd 4 3 5 

R5 11** Fwd 5 2 10 

R6 1*** Fwd 6 1 120 



Multi-field ternary match -> complex DAG
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Rule  (dst_ip, dst_port) Ternary 
Match 

Action Priority 

R1 (10.10.10.10/32, 10) 000 Fwd 1 6 

R2 (10.10.10.10/32, *) 00* Fwd 2 5 

R3 (10.10.0.0/16, *) 0** Fwd 3 4 

R4 (11.11.11.11/32, *) 11* Fwd 4 3 

R5 (11.11.0.0/16, 10) 1*0 Fwd 5 2 

R6 (11.11.10.10/32, *) 10* Fwd 6 1 

R3 

R2 

R1 

R6 

R5 

R4 

(*) 

000 

00* 

0** 

110 

100 
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111 



Incremental Updates 
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Complex dependencies in the wild 
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Reanzz Network CoVisor (NSDI’15) 



Dependency-aware Caching
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Dependent-Set Caching
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•   All descendants in DAG are dependents 
•  Cache dependent rules for correctness  



2. Efficient Caching
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Dependent-Set Overhead
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Too Costly? 



Cover-Set

39 

Rule  Match Action 
R1 000 Fwd 1 

R2 00* Fwd 2 

R3 0** Fwd 3 

R4 11* Fwd 4 

R5 1*0 Fwd 5 

R5^ 1*0 To_SW 

R6 10* Fwd 6 

(*) *** To_SW 

R6 

R5 

R4 

(*) 

R5^ 

R3 

R2 

R1 

Cover rule 



Dependency Splicing reduces rule cost! 
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Dependent-Set Cover-Set 

Rule Space Cost 



Mixed Set: Best of both worlds 
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Dependency Chains – Clear Gain 
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•  CAIDA packet trace 3% rules 
85% traffic 



Incremental update is more stable
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3. Transparent Caching 
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Emulates counters, barriers, timeouts etc. 
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•  Rule caching for OpenFlow rules 

Ø  Dependency analysis for correctness 
Ø  Splicing dependency chains for efficiency 
Ø  Transparent design 

Conclusion
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•  Rule caching for OpenFlow rules 

Ø  Dependency analysis for correctness 
Ø  Splicing dependency chains for efficiency 
Ø  Transparent design 

Ø  Get ready for infinite Ca$hflow! 

Conclusion
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Thank You
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Dependency Chains – Clear Gain 
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•  Stanford Backbone Router Config 


