
Hitting	the	Nail	on	the	Head

Jennifer	Rexford
Princeton	University



The	Internet:	An	Exciting	Time

• One	of	the	most	influential	inventions	of	all	time
– A	research	experiment	that	escaped	from	the	lab
– …	to	become	a	global	communications	infrastructure

1



Near-Constant	Innovation

2

Applications

Media

Internet

Hosts



A	Grand	Challenge

• Computer	networks	we	can	depend	on
– Performance,	reliability,	security,	privacy,	fairness,	
efficiency,	autonomy,	cost-effectiveness,	…

• Build strong	intellectual	foundations
– Better	real-world	networks
– ...	even	as	technology	changes

• We	cannot	do	it	alone!
3



Hammers	and	Nails

4

Rich	set	of	hairy	
research	problems

Effective	solution	
techniques

meet



My	Upbringing	at

5

networking
research

Albert	Greenberg

Algorithms,	
Optimization,	
Statistics

Network	
operations

measure

model

control

Taking	existing	network	as	a	given…



Three	Example	Projects
• High-level	policies

– Programming	languages

• Distributed	protocols
–Optimization	theory

• Traffic	monitoring
– Compact	data	structures

6



Protocols	as	Distributed	Optimizers
(optimization	theory)

Mung	Chiang

Jiayue He,	Rui Zhang-Shen,	Ying	Li,	Cheng-Yen	Lee,	Jennifer	Rexford,	and	Mung	Chiang,
"DaVinci:	Dynamically	Adaptive	Virtual	Networks	for	a	Customized	Internet,” in	ACM	
SIGCOMM	CoNext Conference,	December	2008.



Routers:
Routing Protocol
(compute short paths)

Traditional	Traffic	Management
• How	much	traffic	should	traverse	each	path?

End hosts:
Congestion Control
(maximize utility, ensure fairness)

Operator: 
Traffic Engineering
(minimize congestion)



Architectural	Limitations

• Protocol	interactions

• Slow	adaptation
– Traffic	engineering	on	longer	timescale

• One-size-fits-all	performance	metrics
– Throughput	vs.	delay-sensitive	traffic

9

Congestion	
control

Traffic	
engineering

Change	traffic

Change	routes

max	utility min	congestion



TCP	as	Network	Utility	Maximization

• Reverse	engineering	the	
problem	TCP	solves
–Utility	U(xi) as	function	
of	sending	rate	xi

–Objective max ∑iU(xi)
subject	to	link	capacities	cl

10

Utility	
U(xi)

Sending	rate xi

x1

x2

cl



Designing	Traffic	Management

• Forward	engineering	of	traffic	management
–Maximize	total	utility:	max ∑iU(xi)
–Routing	as	a	variable:	traffic	zij on	path	j

11

Source	i
zi1

zi2
xi = zi1 + zi2



p

Distributed	Protocol

• Decompose	to	generate	a	distributed	solution
– Each	link	computes	congestion	“price”	pl

– Each	source	computes	path	rates	zij to	maximize	
utility	(U(∑j zij))	subject	to	path	cost	(sum	over	pl)

12

Sources: 
Update path rates z
Rate limit incoming traffic

p
p

Routers:
Set up multiple paths
Measure link load
Update link prices p



Multiple	Traffic	Classes

• Utility	functions
– Max	throughput	(U1())	
– Min	latency	(U2())

• Bandwidth	shares
– Share	y1l and	y2l on	link	l
– Where	y1l + y2l = cl

13

max w1 ∑i U1() + w2 ∑i U2() 

1

3

2

two	virtual	
networksy1l

y2l



Two-Stage	Decomposition

14

max w1 ∑i U1() + w2 ∑i U2() 

max ∑i U1()
subject to y1l

max ∑i U2()
subject to y2l

Link bandwidth cl reallocated between y1l and y2l

periodically based on congestion prices of VNs



Lesson:	Protocols	as	Optimizers

• Start	with	a	well-stated	(optimization)	problem
– Then	decompose	into	a	distributed	solution

• Benefits
– Deeper	understanding	of	how	protocols	work
– Guarantees	on	optimality,	convergence,	etc.

• In	reality,	the	process	is	iterative

15



Lesson:	Research	as	Decomposition	J

• Make	per-class	convergence	faster
– Change	objective	to	include	link	utilization	ul

– …	include	both	TCP	utility	and	TE	congestion!

16

The	network	needs	to	solve	this	problem.

Too	hard,	please	change	the	network.

Okay,	how	about	this?

max (∑i U(xi) - ∑l f(ul /cl))



Lesson:	Research	as	Decomposition	J

• Make	the	multi-class	problem	tractable
– Separate	queue	for	each	traffic	class	per	link
– ...	to	decouple	the	per-class	utility	functions!

17

The	network	needs	to	solve	this	problem.

Too	hard,	please	change	the	network.

Okay,	how	about	this?

cl
y1l
y2l



Lesson:	People	and	Timing

• The	right	graduate	students
– Comfortable	with	both	topics
– Able	to	wrangle	two	busy	advisors

• The	right	timing	(eventually?)
– Programmable	switch	hardware

18



Composition	of	Network	Policies
(programming	languages)

David	Walker Nate	Foster

Nate	Foster,	Michael	J.	Freedman,	Arjun	Guha,	Rob	Harrison,	Naga	Praveen	Katta,	Christopher	
Monsanto,	Joshua	Reich,	Mark	Reitblatt,	Jennifer	Rexford,	Cole	Schlesinger,	Alec	Story,	and	David	
Walker,	"Languages	for	software-defined	networks," IEEE	Communications	Magazine,	Feb	2013.



Software-Defined	Networking	(SDN)

20

Controller	Platform

Controller	Application
Network-wide	
visibility	and	
control

Direct	control	via	
open	interface

From	distributed	protocols	to	(centralized)	controller	applications	



Simple, Open Data-Plane API

• Prioritized list of rules
– Pattern: match packet header bits
– Actions: drop, forward, modify, send to controller 
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

21

1. srcip=1.2.*.*,	dstip=3.4.5.*	à drop																								
2. srcip =	*.*.*.*,	dstip=3.4.*.*	à forward(2)
3.		 srcip=10.1.2.3,	dstip=*.*.*.*	à send	to	controller



Writing	SDN	Controller	Applications

22

Controller	Platform

Controller	Application

OpenFlow protocol

Programming	
abstractions

OpenFlow is	a	mechanism,	not	a	linguistic	formalism.



Combining	Many	Networking	Tasks

23

Controller	Platform

Route	+	Monitor	+	FW	+	LB

Monolithic	
application

Hard	to	program,	test,	debug,	reuse,	port,	…



Modular	Controller	Applications

24

Controller	Platform

LBRouteMonitor FW

Each	module	
partially specifies	
the	handling	of	
the	traffic



Abstract	OpenFlow:	Policy	as	a	Function

• Located	packet
–Packet	header	fields
–Packet	location	(e.g.,	switch	and	port)

• Function	of	a	located	packet
–To	a	set of	located	packets

• Drop,	forward,	multicast
–Packet	modifications

• Change	in	header	fields	and/or	location

dstip ==	1.2.3.4	&	srcport ==	80	à port	=	3,	dstip =	10.0.0.1

0

1

2

3



Parallel	Composition	(+)

26

Controller	Platform

Route	on	
dest prefix

Monitor	on	
source	IP +

dstip ==	1.2/16	à fwd(1)
dstip ==	3.4.5/24	à fwd(2)

srcip ==	5.6.7.8	à count
srcip ==	5.6.7.9	à count

srcip ==	5.6.7.8,	dstip ==	1.2/16	à fwd(1),	count
srcip ==	5.6.7.8,	dstip ==	3.4.5/24	à fwd(2),	count
srcip ==	5.6.7.9,	dstip ==	1.2/16	à fwd(1),	count
srcip ==	5.6.7.9,	dstip ==	3.4.5/24	à fwd(2),	count



• Spread	client	traffic	over	server	replicas
– Public	IP	address	for	the	service
– Split	traffic	based	on	client	IP
– Rewrite	the	server	IP	address

• Then,	route	to	the	replica

Example:	Server	Load	Balancer

clients

1.2.3.4

load	balancer

server	replicas

10.0.0.1

10.0.0.2

10.0.0.3



Sequential	Composition	(>>)

28

Controller	Platform

RoutingLoad	
Balancer >>

dstip==10.0.0.1	à fwd(1)
dstip==10.0.0.2	à fwd(2)

srcip==0*,	dstip==1.2.3.4	à dstip=10.0.0.1
srcip==1*,	dstip==1.2.3.4	à dstip=10.0.0.2

srcip==0*,	dstip==1.2.3.4	à dstip =	10.0.0.1,	fwd(1)
srcip==1*,	dstip==1.2.3.4	à dstip =	10.0.0.2,	fwd(2)



Lessons:	Abstraction	and	Composition

• OpenFlow was	an	important	first	step
– Generalizes	many	networking	devices
– Easy	to	explain	to	non-experts

• Thinking	compositionally
– Precisely	defining	the	meaning	of	programs
– Creating	simple,	reusable	building	blocks
– NetKAT:	Network	Kleene	Algebra	with	Test

• Abstractions	for	the	“control	loop”
– Measure,	decide,	and	update

measure

decide

update



Lessons:	Embedded	People	(and	Code)
• Nate	Foster’s	postdoc	at	Princeton

– Embedded	in	the	networking	group

• Learning	by	doing
– Writing	SDN	apps	in	NOX
– …	and	then	the	abstractions	followed

• Recruiting	others
– Open-source	software	and	tutorials
– Presentations,	summer	school,	collaborations
– Publishing	in	both	PL	and	networking	venues

• Thinking	ahead:	P4	language	for	new	hardware
30



Traffic	Monitoring	in	the	Data	Plane
(compact	data	structures)

31

S.	Muthukrishnan

Vibhaalakshmi Sivaraman,	Srinivas	Narayana,	Ori	Rottenstreich,	S.	Muthukrishnan,	and	
Jennifer	Rexford, "Heavy-hitter	detection	entirely	in	the	data	plane," in	ACM	Symposium	
on	SDN	Research,	April	2017.



Programmable	Packet	Processing	Hardware

32

Packet
parser

Match Action

m1 a1

Registers

Match-action	tables

Match Action

m1 a1

Registers

Match-action	tables

.	.	.

metadata



Traffic	Analysis	in	the	Data	Plane
• Streaming	algorithms

–Analyze	traffic	data
–…	directly	as	packets	go	by
–A	rich	theory	literature!

• A	great	opportunity
–Heavy-hitter	flows
–Denial-of-service	attacks
–Performance	problems
– ... 33



A	Constrained	Computational	Model

34

Packet
parser

Match Action

m1 a1

Registers

Match-action	tables

Match Action

m1 a1

Registers

Match-action	tables

.	.	.

metadata

Small	amount	
of	memory

Pipelined	
computation

Limited	
computation



Example:	Heavy-Hitter	Detection

• Heavy	hitters
–The	k largest	trafic flows
– Flows	exceeding	threshold	T

• Space-saving	algorithm
–Table	of	(key,	value)	pairs
–Evict	the	key	with	the	
minimum	value

Id Count
K1 4
K2 2
K3 7
K4 10
K5 1
K6 5

New	
Key	K7 Table	

scan



Approximating	the	Approximation

• Evict	minimum	of	d entries
– Rather	than	minimum	of	all	entries
– E.g.,	with	d	=	2	hash	functions

36

Id Count
K1 4
K2 2
K3 7
K4 10
K5 1
K6 5

New	
Key	K7

Multiple	
memory	
accesses



Approximating	the	Approximation

• Divide	the	table	over	d stages
– One	memory	access	per	stage
– Two	different	hash	functions

37

Id Count
K1 4
K2 2
K3 7

New	
Key	K7

Id Count
K4 10
K5 1
K6 5

Going	back	to	
the	first	table



Approximating	the	Approximation

• Rolling	min	across	stages
– Avoid	recirculating	the	packet
– …	by	carrying	the	minimum	along	the	pipeline

38

Id Count
K1 4
K2 10
K3 7

New	
Key	K7

Id Count
K4 2
K5 1
K6 5

Id Count
K1 4
K7 1
K3 7

Id Count
K2 10
K5 1
K6 5

(K2,	10)



P4	Prototype	and	Evaluation

39

Id Count
K1 4
K2 10
K3 7

Id Count
K4 2
K5 1
K6 5

New	
Key	K7 (K2,	10)

Hash	on	
packet	header

Packet	
metadata

Conditional	updates	to	
compute	minimum

Register	
arrays

High	accuracy	with	overhead	
proportional	to	#	of	heavy	hitters



Lessons:	Concrete	vs.	Abstract		

• Getting	concrete
– Computational	model	
– Example	problem	(e.g.,	heavy	hitters)
– Strawman	solution	(e.g.,	space	saving)

• Iteratively	designing
– Relaxing	the	strawman	solution

• Striving	for	general	understanding
– Provable	bounds	on	accuracy	vs.	overhead
– Ways	to	approach	other	analysis	questions

40



“If	I	Had	a	Hammer…”

Should	we	all	do	
interdisciplinary	research?

41



Interdisciplinary	Fun
• Intellectually	exciting

– Learn	about	other	areas
– Learn	to	think	in	new	ways
– Articulate	your	own	field	to	others

• Striving	for	big	impact
– Create	novel	solutions	in	your	field
– Bring	new	problems	to	another	field
– Real	problems	are	often	interdisciplinary

• Socially	fun
– In-depth	conversations
– Not	always	about	work	J

42



Managing	Risks

• One	vs.	many	hammers
– I’ve	been	an	opportunistic	collaborator
– But,	mastering	one hammer	is	sometimes	better

43

• Honing	one	hammer
– Controlling	your	fate
– Great	grad	school	or	
postdoc	adventure

– Pick	hammer wisely!

• Work	by	collaboration
– Riskier	for	junior	folks
– Okay	if	you	dig	deep	
in	your	own	field

– Pick	nails wisely!	



Managing	Risks
• Steep	learning	curve

– Learning	both	the	hammer	and	the	nail
– Learning	the	culture	of	both	research	fields

• Start	with	the	hammer
– Easier	for	a	PL	person	to	learn	(part	of)	networking
– …	than for	a	networking	person	to	learn	PL

• Join	an	emerging	community
– Technical	foundations	and	collaborators
– Example	projects	and	publications
– But,	don’t	join	too	late	in	the	game

44



Managing	Risk

• Credit	for	the	work
– Publications	in	different	field’s	venues
– Multiple	authors

• Favoring	publication	venues	for	junior	author
• Understanding	institution’s	evaluation	process
• Can	be	easier to	tell	who’s	“fingerprints”	are	
on	which	parts	of	the	work

45



Managing	Risks

• Healthy	interdisciplinary	collaborations
– Collaborators	who	stay	engaged
– …	and	truly	“dig	in”	to	the	work

• Work	that	is	exciting	in	both	fields
• Similar	value	structures	(e.g.,	proofs,	code)
• Engaging	students	and	postdocs
• Physical	proximity

46



Conclusion

• Computer	networking
– Important	real-world	challenges
– Intellectually	rich	space	of	problems

• Networks	worthy	of	society’s	trust
–Grand	challenge	across	a	range	of	fields
–…	if	we	can	reach	across	the	divide

47


