
USENIX’23 Artifact Appendix: How Effective is Multiple-Vantage-Point
Domain Control Validation?

Grace H. Cimaszewski† Henry Birge-Lee† Liang Wang† Jennifer Rexford†

Prateek Mittal†
† Princeton University

A Artifact Appendix

A.1 Abstract

We model the security of multiple-vantage-point domain con-
trol validation (more briefly, multiVA) by performing quanti-
tative Internet-level simulations of the full-graph DNS resolu-
tion of domain names included in Let’s Encrypt certificates.
At a high level, the submitted artifact consists of 3 parts:

1. the Internet topology simulator, which calculates the
effects of equally-specific prefix length BGP hijacks by
selected attacker ASes;

2. the DNS resolver, which performs full-graph DNS
lookups of domain names to record all IP addresses vul-
nerable to BGP hijacks (i.e., not DNSSEC-signed);

3. the resilience processor, which combines the output of
(1) and (2) to compute a resilience value in the range
of 0-1.0 to describe how likely a domain name may be
attacked by a random attacker AS using BGP hijacks
during the domain control validation process to gain a
fraudulent certificate.

This artifact aims to reproduce the results in sections 7 and 8
of our paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

We extract only the domain names listed in the subjects of
Let’s Encrypt-issued certificates, which are publicly avail-
able in certificate transparency logs. The DNS lookup tool
performs a default number of 10 lookups per domain name,
which is assumed to be a manageable request volume for the
domains’ nameservers. BGP simulations do not entail any
real hijacks or announcement of prefixes, and do not leak in-
formation about private routing policies. Running our code
does not require any admin/sudo privileges or elevated access.

A.2.2 How to access

The artifact can be accessed by downloading our tagged public
Github project Github project. All the requisite data, contain-
ers, and code are contained within the Git repository. Git clone
the artifact access URL provided in HotCRP submission.

A.2.3 Hardware dependencies

For Experiment E1, simulation load is CPU-intensive: to be
able to run the end-to-end experiments in a practicable amount
of time, access to a many-cored (e.g., 64+) computing system
with ample memory (approximately 2GB per core). Perform-
ing DNS lookups will require Internet access and correspond-
ing firewall rules to allow inbound/outbound traffic.

A.2.4 Software dependencies

The main software dependency needed to run the artifact is
Docker (available for install at https://www.docker.com/).
Other required dependencies (Python 3.8, libraries, etc.) are
packaged within the containerized environment.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Git clone the artifact access URL: https://github.
com/inspire-group/routing-aware-dns/commit/
23194fc824633122cbfb79206a62ac662389f63c.
cd into the cloned repository directory. From here, build the
Docker container:

docker build --tag full-graph-dns-resolver .

After image build successfully completes, begin running con-
tainer in the background:

docker run --name dns-resolver -d
full-graph-dns-resolver

https://www.docker.com/
https://github.com/inspire-group/routing-aware-dns/commit/23194fc824633122cbfb79206a62ac662389f63c
https://github.com/inspire-group/routing-aware-dns/commit/23194fc824633122cbfb79206a62ac662389f63c
https://github.com/inspire-group/routing-aware-dns/commit/23194fc824633122cbfb79206a62ac662389f63c


From here, enter the container with interactive shell to exe-
cute the subsequent commands for the artifact:

docker exec -it dns-resolver bash

More detailed instructions for setup are included in the
README of the artifact repository.

A.3.2 Basic Test

Validate that the DNS full-graph resolver tool properly ex-
ecutes (can send/receive DNS queries, local Unbound stub
resolver is live):

python3 log_processor_artifact.py -d
data/domains_random_samp_small.txt

This runs lookups for a sample of 1397 domains (0.1% of
our dataset) for validation purposes.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Resilience of domain names takes a noticeable hit
when including the DNS nameserver in the BGP hijack
attack surface. Considering the current level of RPKI de-
ployment in the Internet counterbalances some of this re-
silience hit. This is illustrated by experiment (E3), which
reproduces results described in Section 7 of the paper.

(C1): multiVA deployments with only one or two additional
vantage points in diverse public cloud providers can
strengthen resilience values to above 90%. This is repro-
duced by experiments (E3,4) (corresponding to Section
8 of the paper).

A.4.2 Experiments

(E1): [Full Internet-scale topology simulations]
How to: Please see the README of the
pki-topology-simulator submodule for instructions.
Approximate runtime: 192 CPU hours.

(E2): [DNS full-graph resolution of Let’s Encrypt domain
names]
How to: Please see the README of the
routing-aware-dns repo for instructions and
commands.
Approximate runtime: 1.5 hours

(E3): [Calculation of domain name-level resilience]
How to: See instructions for resilience.py in
princeton-letsencrypt/resilience-computation.
lease see documentation for the resilience.py script
in the pki-resilience-processing submodule.
Approximate runtime: 2 hours

(E4): [Results analysis]
How to: Please see documentation for
the interpret_results.py script in the
pki-resilience-processing submodule.

Figure 1: Integration of the artifact submodules.

Approximate runtime: <5 minutes.
A diagram showing the interconnection between the above

listed experiments/submodules is given in Figure A.4.2.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://github.com/inspire-group/pki-topology-simulator/tree/5cfded5d8fcde496137aae43c91250b18190b904
https://github.com/inspire-group/routing-aware-dns/tree/23194fc824633122cbfb79206a62ac662389f63c
https://github.com/inspire-group/pki-resilience-processing/blob/71880bd978759940553392196b199965f3e6db86/resilience-computation/code/resilience.py
https://github.com/inspire-group/pki-resilience-processing/tree/71880bd978759940553392196b199965f3e6db86
https://github.com/inspire-group/pki-resilience-processing/blob/71880bd978759940553392196b199965f3e6db86/resilience-computation/code/interpret_results.py
https://github.com/inspire-group/pki-resilience-processing/tree/71880bd978759940553392196b199965f3e6db86
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


