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ABSTRACT
This paper describes Trellis, a software platform for hosting
multiple virtual networks on shared commodity hardware.
Trellis allows each virtual network to define its own topol-
ogy, control protocols, and forwarding tables, which low-
ers the barrier for deploying custom services on an isolated,
reconfigurable, and programmable network, while amor-
tizing costs by sharing the physical infrastructure. Trellis
synthesizes two container-based virtualization technologies,
VServer and NetNS, as well as a new tunneling mechanism,
EGRE, into a coherent platform that enables high-speed vir-
tual networks. We describe the design and implementation,
of Trellis, including kernel-level performance optimizations,
and evaluate its supported packet-forwarding rates against
other virtualization technologies. We are in the process of
upgrading the VINI facility to use Trellis. We also plan to
release Trellis as part of MyVINI, a standalone software dis-
tribution that allows researchers and application developers
to deploy their own virtual network hosting platforms.

1. Introduction
Network services that have strikingly different require-

ments in terms of throughput, packet loss, security, or stabil-
ity must nevertheless operate over a single, common com-
munication infrastructure. Many of these services would
benefit from having their own network topologies, and direct
control over the routing, forwarding, and addressing mecha-
nisms. For example:

• Interactive applications (e.g., gaming, VoIP), which
could run anapplication-specific routing protocolthat
converges more quickly than the existing network pro-
tocols that favor scalability over fast convergence.

• Critical services, which could run on a separate net-
work with protocols tailored to defend against un-
wanted traffic (e.g., denial-of-service attacks).

• Enterprises, which could construct and “lease” a
private network connecting geographically disparate
sites, with in-network support for key applications.

• Network service providers, which could run a sepa-
rate “development” network for deploying and testing
new configurations, protocols, and designs, and sup-
porting “early-adopter” customers.

All of these needs could be addressed with the deployment
of separate physical networks, each with customized proto-
cols and topologies. Unfortunately, deploying physical in-
frastructure per service incurs tremendous space, power, and

management costs. Customizing today’s network devices is
also challenging (and often impossible) because many sup-
port only limited, proprietary interfaces. These needs could
also be addressed by deploying an overlay network that runs
customized software on a distributed collection of comput-
ers connected to the Internet. However, overlays have lim-
ited visibility into, and control over, network conditions, and
typically cannot forward traffic at high speeds.

Instead, we propose a “network hosting” platform that
can run multiple programmable virtual networks over a
shared physical network infrastructure. This hosting plat-
form should have the following properties:

• Speed: A virtual network should be able to forward
packets up to multi-Gigabit speeds.

• Isolation: To prevent virtual networks from interfer-
ing with one another, the infrastructure should support
namespace and resource isolation of system resources
(e.g., process IDs, files, CPU) as well as network re-
sources (e.g., forwarding tables, link bandwidth).

• Flexibility: A service running inside the virtual net-
work should be able to define its own routing proto-
col and application logic. The platform should provide
a powerful and familiar development environment for
network services.

• Scalability: The platform should be able to support
many such virtual networks simultaneously to amor-
tize its deployment and maintenance costs.

• Low cost: The cost for hosting a virtual network
should be very low. Our hosting system should run on
commodity hardware (i.e., server-class PCs) to reduce
costs and barriers to entry. Using commodity hardware
also allows the infrastructure to more cheaply track ad-
vances in new technology (e.g., multicore processors).

Our primary contribution is the design and implementa-
tion of Trellis, a platform for hosting virtual networks that
achieves these goals. Trellis provides the substrate on top
of which multiple fast and flexible virtual networks can run.
Trellis synthesizes existing virtualization technologies (for
virtualizing hosts and network stacks) with a new tunnel-
ing protocol and a new fast software bridge kernel module,
to provide a scalable hosting platform with good isolation
between virtual networks. The key challenge was to iden-
tify the right combination of technologies that could best
satisfy our design goals: performance, scalability, isolation,
and flexibility. We believe that the design choices and trade-
offs we have made hit a “sweet spot” along these axes for a
virtual network hosting platform.



Our experiments demonstrate that Trellis is fast and scal-
able and provides good isolation between virtual networks.
A virtual network hosted on Trellis can forward pack-
ets more than ten times faster than a similar overlay net-
work [10]. Nodes running Trellis can host more than 60
virtual networks in parallel with no noticeable degradation
in performance. The performance and jitter in any virtual
network is nearly identical to that seen on native hosts.

We are deploying the Trellis software on our wide-area
Virtual Network Infrastructure (VINI) facility [10]. The goal
of VINI is to enable researchers to evaluate new protocols
and deploy new services in an environment that is both real-
istic (e.g., runs real routing software and carries real traffic)
and controlled. We believe Trellis’s high performance and
low jitter are a step towards achieving these goals. Because
the need for low cost, isolated, reconfigurable, and pro-
grammable networks extends beyond the applications that
will run on our modest-sized VINI facility, we also plan to
release the Trellis software as part of MyVINI, a software
distribution that allows researchers, network designers,and
application developers to deploy their own virtual network
hosting infrastructures. Beyond Trellis, MyVINI includes
software for instantiating the virtual networks, including al-
locating system resources such as CPU and bandwidth.

The rest of the paper is organized as follows. Section 2 de-
scribes Trellis’s design, its two constituent components (i.e.,
virtual hosts and virtual links), and their integration to sup-
port a virtual network. Section 3 assesses whether (and how)
existing virtualization technologies, often designed fora dif-
ferent purpose, can support virtual hosts and virtual linksin
Trellis. Section 4 describes the implementation choices we
made for Trellis to fulfill our design goals. Section 5 evalu-
ates Trellis’s performance, scalability, and isolation relative
to both native packet forwarding and other virtualization al-
ternatives. Section 6 discusses our ongoing work, and Sec-
tion 7 concludes.

2. Virtual Networks on Commodity Hardware
A virtual networkis built using two components:

1. virtual hosts, which run software and forward packets,
and

2. virtual links , which transport packets between virtual
hosts.

Virtual networks constructed using commercial routers that
support virtualization [24] currently have the limitationthat
they can only run one specific application (proprietary rout-
ing software and operating system) inside a virtual host. In
contrast, Trellis is a virtual-network substrate that can run on
commodity hardware using general-purpose operating sys-
tems. Trellis is likely to be cheaper to deploy than com-
mercial offerings and can support a wide range of network
services and applications. In this section we drive the design
of Trellis from our requirements for (1) the entire system,
and (2) the virtual hosts and virtual links that comprise it.

Figure 1: Overview of host virtualization, with virtual hos ts shaded.

2.1 Trellis Design Requirements
We identify four high-level design requirements for Trel-

lis. First and foremost, it mustconnect virtual hosts with
virtual links to construct a virtual network. Second, it must
run on commodity hardware(i.e., server-class PCs) in or-
der to keep deployment, expansion, and upgrade costs low.
Third, it runs ageneral-purpose operating systeminside the
virtual hosts that can support existing routing software (e.g.,
XORP [18] and Quagga [5]) as well as provide a convenient
and familiar platform for developing new services. Finally,
Trellis should supportpacket forwarding inside the kernel
of the general-purpose OS, since forwarding every packet in
user space introduces significant overhead and reduces the
packet forwarding rate. An application running in userspace
inside a virtual host can interact with devices representing
the end-points of virtual links, and can write forwarding
table entries (FTEs) to an in-kernel forwarding table (for-
warding information base, or FIB) to control how the ker-
nel forwards packets between the virtual links. Together, we
believe that these design requirements place Trellis in the
“sweet spot” mentioned earlier: it is the design point that
best satisfies our overall goal of hosting fast, flexible virtual
networks on a scalable and low-cost platform.

Understanding the design of Trellis first requires a better
understanding of the requirements for both virtual hosts and
virtual links. The next two sections define these components
and detail their requirements.

2.2 Virtual Hosts
A virtual host sees the illusion of a dedicated physical

host, even though multiple virtual hosts may be running on
the same physical hardware. At a high level, a virtual host
can be thought of as a “box” containing resources, as illus-
trated in Figure 1. A virtual host appears to have dedicated
physical or logical resources inside this box; examples of
physical resources are CPU, memory, and link bandwidth,
whereas logical resources are resources implemented by the
operating system such as the process table, page table, IPv4
forwarding table, memory buffers, etc. In reality, all of these
resources are only “virtual” in that they are enabled by a vir-
tualization layer that implements the virtual host abstraction.
The virtualization layer creates virtual resources from phys-
ical ones using resource allocation and scheduling mecha-
nisms, so that each virtual host receives its expected shareof
the resource in question. Likewise, the virtual host abstrac-
tion limits the scope of logical resources to inside the “box”,
so that each virtual host can safely manipulate its own log-
ical resources. The virtualization layer may not virtualize
all possible resources, and so there may be resources resid-
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ing on the physical machine but outside of the “box”; these
resources may be either inaccessible, support limited inter-
action from within a virtual host, or be shared with other
applications. Virtual hosts achieve two types of isolation:

• Resource isolationensures that no virtual host can in-
terfere with the resources (e.g., CPU, memory, network
bandwidth) that are allocated to another virtual host.
Resource allocators in the virtualization layer multi-
plex and schedule these physical resources to provide
virtualized resources inside a virtual host.

• Namespace isolationensures that each virtual host can
name and reference resources (e.g., processes, files,
memory, network interfaces, network addresses, for-
warding tables) and cannot reference resources in other
contexts. For example, an application in one virtual
host is not able to add routes to the FIB of another vir-
tual host, and two or more virtual hosts can use the
same IP address to name different virtual interfaces.

In addition, Trellis’s virtual host technology must befastand
scalable. Our goal is to scale to approximately 50 active
virtual hosts per node, in order to appropriately amortize the
cost of the hosting platform (in our case, the VINI facility).

2.3 Virtual Links
A virtual link has the appearance of a physical link, but

many virtual links may share a single physical link, and a vir-
tual link may span many hops through the underlying physi-
cal network. In our design for Trellis, virtual links transport
traffic between two virtual hosts. A virtual host transmits
a packet on a virtual network interface to send it on a vir-
tual link. After a packet exits the virtual host via the virtual
interface, it is optionally rate-controlled by a traffic shaper
(to enforce a maximum bitrate) before being tunneled to the
other endpoints of the virtual link.

In Trellis, virtual links should support:

• The appearance of a virtual ethernet.We choose eth-
ernet as the basis of Trellis’s virtual link abstraction
because it is a ubiquitous and familiar layer-2 technol-
ogy. A virtual link should provide ethernet semantics
(e.g., broadcast domains, point-to-multipoint topolo-
gies) and support the ethernet frame format.

• Lightweight encapsulation and demultiplexing.Be-
cause multiple virtual ethernet devices (and multiple
virtual hosts) may share a single physical device, the
substrate must ensure that packets are demultiplexed
to the correct virtual interface (and virtual host).

• Bandwidth enforcement outside the virtual host.Each
virtual link can have a bandwidth cap, to ensure iso-
lation between virtual networks. The substrate should
not permit the virtual link to send traffic in excess of
this specified rate.

2.4 Trellis Design
Given these requirements, we now present the Trellis de-

sign. Figure 2 illustrates this design by showing a virtual
network as hosted on Trellis. The functionality of the virtual
network is spread across three layers: user space inside the

Figure 2: Overview of Trellis design, showing virtual hostsconnected
by a virtual link

virtual host; in the kernel inside the virtual host; and outside
the virtual host in a substrate layer that is shared by all vir-
tual networks residing on a single host. The elements inside
a virtual host can be accessed and controlled by an applica-
tion running on that virtual host. Elements in the substrate
cannot be directly manipulated, but are configured by the
Trellis management software on behalf of an individual vir-
tual network. Of course, multiple virtual hosts can run on the
same physical hardware, but this is not shown in the picture.
Physical network interfaces are also not shown because they
are hidden behind the tunnel abstraction.

The virtual links that connect virtual hosts in Trellis con-
sist of four components, as outlined by the dotted U-shaped
box in Figure 2: (1) two or morevirtual interfaces, each with
a unique MAC address; (2) atunnelbetween the interfaces,
incorporating both an underlying transport mechanism and
a method for encapsulating and demultiplexing the packet;
(3) a bridge that connects each virtual interface to a tunnel
interface; and (4) atraffic shaperbetween each virtual in-
terface and its corresponding tunnel interface. A virtual in-
terface sends and receives packets for the virtual host. Once
on a virtual link, the packet travels through a traffic shaper,
and via a tunnel to the host on the other side of the virtual
link. The remote host receives the packet, decapsulates it,
and delivers it to the corresponding virtual interface, where
it is received by the network stack in a virtual host. This
virtual link presents to the host the appearance of a virtual
point-to-multipoint ethernet link (i.e., it is a link that will
transport ethernet frames), although in practice this virtual
link may span multiple hops in the underlying network.

We note several salient features of this design:

• Per-virtual host virtual interfaces and tunnels.Each
virtual host is a node in a larger virtual network topol-
ogy; thus, Trellis must be able to define interfaces and
associated tunnels specific to that virtual network.
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(a) Full virtualization (b) OS-level virtualization

Figure 3: Two approaches for implementing virtual hosts.

• In-kernel, per-virtual-host forwarding tables.Each
virtual host must be able to define how traffic is for-
warded by writing its own forwarding-table entries. A
virtual host’s forwarding table must be independent of
other forwarding tables, and processes running on one
virtual host must not be able to affect or control for-
warding table entries on a different virtual host.

• Separating virtual interfaces from tunnel interfaces.
Separating the virtual interface from the tunnel end-
point enables the creation of point-to-multipoint links
(i.e., the emulation of a broadcast medium). In addi-
tion, this separation allows the substrate to enforce a
rate limit on each virtual link, to ensure resource isola-
tion between the virtual networks.

The Trellis design incorporates virtualization, tunneling,
packet demultiplexing, and traffic-shaping mechanisms to
provide a substrate for hosting fast, flexible, and isolatedvir-
tual networks. Rather than implement Trellis from scratch,
we chose to synthesize existing technologies into a working
system. A key challenge in building Trellis was to identify
and combine individual virtual host and virtual link tech-
nologies to provide the desired features. As it turns out, we
ultimately implemented several new components because
existing systems did not adequately meet our needs. The
next section provides background on various technologies
for host and link virtualization in order to motivate the spe-
cific implementation choices we made for Trellis. Section 4
describes the Trellis implementation.

3. Existing Virtualization Techniques
In this section, we discuss various approaches for virtual-

izing a host (full virtualization and “containers”) and a net-
work (VLANs, VPNs, overlays, and logical routers). We
summarize the strengths and weaknesses of each with regard
to hosting virtual networks on commodity hardware.

3.1 Virtual Hosts
A host can be virtualized using two mechanisms, as illus-

trated in Figure 3:full virtualization, whereby each virtual
node runs its own instance of an operating system; andOS-
level virtualization, whereby some of the operating system’s
resources are isolated per-virtual host.

3.1.1 Full virtualization
Full virtualization provides complete virtualization of the

underlying hardware. As illustrated in Figure 3(a), the hard-

ware runs a Virtual Machine Monitor (VMM), also called
a hypervisor, that hosts one or more “guest” operating sys-
tems. Each of the guests runs on avirtual machine(VM)
provided by the VMM; all software that is capable of run-
ning on the underlying hardware can be run in the virtual
machine itself. The VMM is responsible for implementing
resource isolation among individual guests and the virtual
machine abstraction naturally provides namespace isolation.
A variant of full virtualization is calledparavirtualization ,
which optimizes the hardware emulation to improve perfor-
mance, but also requires modifications to the guest operat-
ing system. VMWare Server [39, 35] and Linux’s Kernel-
based Virtual Machines (KVM) [1] provide full virtualiza-
tion, while Xen [13] and Denali [41] are examples of sys-
tems which use the paravirtualization paradigm. Xen can
also perform full virtualization on a CPU with virtualization
support.

Running a separate operating system per virtual network
can create unnecessary overhead for our network virtualiza-
tion substrate. The guest OS runs more slowly than it would
natively, because the trusted domain or VMM must inter-
cept system calls and translate instructions that potentially
interact with the native hardware (though this is somewhat
alleviated in Xen, which allows guests to register a “fast”
exception handler that bypasses the hypervisor). Full virtu-
alization also requires copying data packets from the trusted
domain or the VMM, which can degrade packet-forwarding
performance considerably. Although recent work has at-
tempted to improve the performance of virtual network de-
vices in Xen [25], these optimizations are primarily aimed at
bulk TCP transfers and only improvethroughput, as opposed
to thepacket-forwarding rate.

3.1.2 Network-based virtualization (“Containers”)
Containers (sometimes called “virtual environments”)

partition operating system resources without requiring OS
instances to be run in separate virtual machines as shown
in Figure 3(b). A container-based operating system iso-
lates some subset of the resources that it manages. The
OS typically implements container virtualization using ad-
vanced scheduling techniques for physical resources (e.g.,
CPU time), and tagging and contextualizing for logical ones
(e.g., kernel data structures). Multiple containers run ontop
of a single operating system kernel. Typically, fully virtual-
ized and paravirtualized systems can provide better isolation
than containers, but container-based systems have better per-
formance since containers are more lightweight abstractions
than virtual machines [33, 7].

Existing systems provide OS-level virtualization for var-
ious aspects of the operating system’s resources. Linux
VServers [23], FreeBSD Jails [20], and Solaris Zones [36],
add OS-level virtualization capabilities to the kernel; they
securely partition OS resources, such as the file system and
CPU time. The PlanetLab platform uses the Linux VServers
for its OS-level virtualization [9]. Unfortunately, many of
these technologies do not provide virtualization of the net-
work stack,i.e., they do not contextualize the variables in the
network stack for each container. As a result, different con-
tainers share a common kernel forwarding table and, thus,
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they cannot be used directly to allow each user to define a
custom network topology or forwarding mechanisms.

A relatively new OS-level virtualization technology
called OpenVZ [26], and its commercial counterpart Vir-
tuozzo [38], allows virtualization of various OS-level re-
sources, including the network stack. OpenVZ primarily
aims to achieve efficient utilization of server resources (“vir-
tual private servers”) and live migration of running applica-
tions; in contrast, we focus on how to use OS-level virtual-
ization approach to construct virtual networks.

NetNS [11] is a prototype network stack virtualization
technology that takes advantage of recently introduced virtu-
alization APIs in Linux. NetNS does not virtualize an entire
host, but rather provides each “network container” with its
own in-kernel virtual devices, FIB, iptables settings, config-
uration variables, and so on. A process binds to a network
container to obtain access to the virtual resources that it con-
tains. One can think of NetNS as providing roughly equiva-
lent functionality to OpenVZ’s network stack virtualization.

3.2 Virtual Networks
We describe the motivation behind existing technologies

for building virtual networks and relate them to Trellis.
Virtual Local Area Networks (VLANs) [16] allow net-

work operators to give hosts that are potentially topologi-
cally dispersed the appearance of being on an isolated LAN
with a single broadcast domain and subnet. All frames
bear a VLAN ID in the MAC header, and switches forward
frames based on both the destination MAC address and the
VLAN ID. Switched VLANs at different sites can be con-
nected usingtrunking to tunnel VLAN-tagged frames be-
tween switches through the network. Assigning a set of hosts
to the same VLAN offers many potential advantages, such
as affording other hosts on the VLAN a higher level of trust,
and being able to run broadcast protocols (e.g., DHCP).

Trunked VLANs are examples ofvirtual private net-
works (VPNs), which are virtual networks implemented by
tunneling. Carriers may construct VPNs using technologies
such as BGP/MPLS [31] or GRE to give customers the ap-
pearance of a dedicated network over a shared IP backbone.
Today’s routers even provide some support for nested VPNs,
such as Cisco’s Carrier Supporting Carrier [12], which al-
lows one network to provide the MPLS backbone for an-
other; and Inter-AS, which allows providers to “peer” to
provide end-to-end VPN support. In contrast to router-
supported VPNs, tools such as OpenVPN [8] enable con-
struction of an isolated virtual layer-2/3 network betweena
set of edge hosts. This sort of host-based VPN does not re-
quire special support from the core network infrastructure.

A Trellis virtual link provides the sameabstractionas a
VLAN, and one could envision constructing Trellis using
virtual hosts connected by trunked VLANs. This would re-
quire control over the switches and routers inside the net-
work. Looking ahead to Section 4, the Trellisimplementa-
tion tunnels ethernet frames over IP and so resembles a host-
based VPN. This allows virtual networks hosted on Trellis
to span multiple links and administrative domains without
assuming administrative control over network devices.

Overlay networks compose networks from end systems
and end-to-end paths; hosts are not typically virtualized,
but each “link” in an overlay network comprises many IP-
layer hops. Overlay networks treat the layer-3 network as
a black box, and provide a way to improve end-to-end per-
formance and reliability [6, 17] and deploy new distributed
services [34, 29, 32]. In a sense, our previous work on PL-
VINI [10] ( i.e., an initial prototype of network virtualization
on top of the PlanetLab software) could be viewed as a par-
ticular instantiation of an overlay network that (1) is tailored
to run software routers as a specific application and (2) al-
lows multiple such “overlays” to run in parallel. As with
conventional overlay networks, all forwarding in PL-VINI
occurs in user space, and links are IP-level paths.

Recently, commercial router vendors have started sup-
porting virtualization of their router hardware.Logical
routers [24] decompose a single physical router into mul-
tiple logical routers that have their own routing tables, in-
terfaces, policies, and routing-protocol instances. The pri-
mary driver for logical routers is consolidation of multiple
network elements into a single hardware device, to simplify
physical configuration (e.g., racks and cables) and reduce
space and power requirements. For example, an ISP can pro-
vide enterprise customers with access to logical routers (that
the customers can configure), obviating the need to deploy
separate physical edge routers. Support for logical routers
also opens the door for running customized routing configu-
rations, or even different routing protocols, for key applica-
tions.

Some of the motivations for Trellis are similar to com-
mercial vendors’ reasons for supporting logical routers. In
fact, Trellis can provide similar functionality by enabling
multiple instances of routing software like XORP [19] and
Quagga [5], to run in different virtual hosts on the same
physical machine. However, we wish to provide a hosting
platform with much greater flexibility and lower cost. A vir-
tual network hosted on Trellis can run a much wider range
of software than today’s IP routing protocols. We believe
that supporting programmable virtual networks on a general-
purpose operating system will lower the barrier for creating
new control-plane protocols and network services.

4. Trellis Implementation
Trellis synthesizes host and network virtualization tech-

nologies into a single, coherent system that satisfies the de-
sign requirements in Section 2. In this section, we explain
the implementation decisions we made when building Trel-
lis to achieve our goals of speed, isolation, flexibility, and
scalability.

4.1 Hosts: Container-Based Virtualization

Decision 1 Create virtual hosts using Container-based Vir-
tualization (not full virtualization).

As explained in Section 3, two common mechanisms
for implementing virtual hosts are full virtualization
and container-based virtualization (also sometimes called
container-based operating systems, or simply “COS”). Our
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requirements for good speed and scalability, and reasonable
isolation and flexibility, suggest that container-based virtu-
alization is more suitable for building Trellis. Therefore, we
chose to synthesize two container-based approaches, Linux
VServer [33] and NetNS [11], to serve as the virtual host-
ing environment of Trellis . Since the PlanetLab OS is also
based on VServer, this allows us to leverage PlanetLab’s
management software to run a Trellis-based platform. An-
other possible choice for a COS would have been OpenVZ;
we evaluate both our approach and OpenVZ in Section 5.

Table 1 summarizes how full virtualization and COS com-
pare with respect to speed, isolation, and flexibility. The rest
of this section justifies our choice to use container-based vir-
tualization in more detail.

Speed.Packet forwarding in Trellis must be fast; both full
virtualization and forwarding in user space do not forward
packets as fast as container-based virtualization. Previous
studies have shown that, without optimizations, packet for-
warding performance in Xen can suffer significant perfor-
mance penalties due to packet multiplexing and demultiplex-
ing overheads, the I/O channel between the driver domain
and the guest domains, and bridging the physical interfaces
to the back-end network interfaces [25].

Although some work has focused on optimizing perfor-
mance in fully virtualized systems (e.g., by optimizing mem-
ory usage and minimizing data copies in the guest OSes), a
COS nevertheless provides faster forwarding, since packet
forwarding can take place entirely within the kernel which
avoids any data copying and scheduling overheads. Our re-
sults in Section 5 confirm these findings by comparing sev-
eral container-based virtualization technologies to Xen.

Isolation. As previously mentioned, virtual networks must
have both namespace isolation and resource isolation. Both
full virtualization and container-based virtualization provide
namespace isolation for many system resources, including
the network stack. Full virtualization does provide more
comprehensive isolation than container-based virtualization:
for example, full virtualization protects against operating
system crashes (e.g., due to a buggy device driver or some
other software fault). However, for the purpose of creat-
ing independent networks with independent resource allo-
cations, both full virtualization and container-based virtual-
ization provide a roughly equivalent amount of isolation: for
example, both technologies prevent a virtual host from ac-
cessing the resources (e.g., processes, files, network devices)
of some other virtual host.

Hosts in virtual networks require the appearance of ded-
icated network interfaces: the behavior of each virtual link
(e.g., packet loss rate, latency, jitter) mustnot depend on
the traffic patterns or load on other virtual networks that are
sharing the physical infrastructure, which implies that the
isolation provided by the virtual host must perform two func-
tions: rate limiting and scheduling. At the moment, both
full virtualization and container-based virtualization support
traffic shaping in the root context. In principle, it is also
possible for the root context toschedulethe traffic on each
virtual link to ensure that no virtual host sees inordinate de-

Criteria Full Virtualization COS
Speed Packet forwarding No Yes

Disk-bound operations No Yes
CPU-bound operations Yes Yes

Isolation Rate limiting Yes Yes
Jitter/loss/latency control Unknown Yes
Link scheduling No No

Flexibility Custom data plane Guest OS change No
Custom control plane Yes Yes

Table 1: Container-based virtualization vs. full virtuali zation. Previous
studies on container-based virtualization and full virtualization explain
these results in more detail [33, 27].

lays in sending or receiving traffic, though no such schedul-
ing mechanisms yet exist for either full virtualization or
container-based virtualization. Incorporating a scheduling
mechanism for a fair allocation of resource across contain-
ers is an area for future work.

Flexibility. Virtual hosts in Trellis are connected by a virtual
ethernet link; ethernet connectivity between hosts allowsap-
plications to run routing protocols between virtual hosts and
have the appearance of a directly connected IP link. ethernet
connectivity also allows different virtual hosts on the same
physical host to number virtual interfaces from the same ad-
dress space. Both container-based virtualization and fullvir-
tualization enable this function.

Virtual networks may wish to run custom control plane
(i.e., routing) software. For example, some virtual networks
may wish to run a secure routing protocol (e.g., S-BGP [21]),
while others may not. Both types of virtualization provide
sufficient isolation for this purpose. A thornier issue is cus-
tom data plane operations, such as forwarding non-IP pack-
ets, which requires modifications to the network stack in the
operating system. In full virtualization, such customization
is possible but requires modifications to the guest OS; un-
fortunately, container-based virtualization does not provide
this flexibility because all virtual hosts share the same data
structures in the kernel (recall that containers achieve sep-
aration by tagging according to context, not by allocating
separate physical memory and data structures to each virtual
host). We believe, however, that providing in-kernel data-
plane customizability may be possible for container-based
virtualization by partitioning kernel memory and data struc-
tures analogously to how similar systems have done this in
hardware [37].

Scalability. Trellis should support a large number of net-
works running simultaneously. Previous work, as well as
our experiments in Section 5, show that container-based vir-
tualization scales better than other alternatives: specifically,
given a fixed amount of physical resources, it can support
more concurrent virtual hosts than full virtualization. This
better scalability makes sense because in container-based
virtualization only a subset of the operating system resources
and functions are virtualized.
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4.2 Links: Tunnels

Decision 2 Implement virtual links by sending ethernet
frames over GRE tunnels (EGRE).

Virtual links must be fast. First, the overhead of trans-
porting a packet across a virtual link must be minimal when
compared to that of transporting a packet across a “native”
network link. Therefore, encapsulation and multiplexing op-
erations must be efficient. Virtual links must also be flexible:
they must allow multiple virtual hosts on the same network
to use overlapping address space, and they must provide sup-
port for transporting non-IP packets.

We tackled these problems by implementing a new tun-
neling module for Linux, ethernet-over-GRE (EGRE). Trel-
lis uses GRE [15] as the tunneling mechanism because it has
a small, fixed encapsulation overhead and also uses a four-
byte key to demultiplex packets to the right tunnel interface.
This approach is much faster than approaches that perform
a lookup on the source, destination address pair. Other user-
space tunneling technologies likevtun [40] impose con-
siderable performance penalty compared to tunnels imple-
mented as kernel modules.

EGRE tunnels allow each virtual network to use overlap-
ping IP address space, since hosts can multiplex packets
based on an ethernet frame’s destination MAC address. This
also allows Trellis to forward non-IP packets, which allows
virtual networks to use alternate addressing schemes, in turn
providing support for existing routing protocols that do not
run over IP (e.g., IS-IS sometimes runs directly using layer 2
addresses). Currently, forwarding non-IP packets in requires
running Click in user space, as in PL-VINI [10]. In our on-
going work, we are investigating how to implement virtual-
izable custom data planes; Section 6 discusses this problem
in more detail.

Decision 3 Terminate tunnels in the “root context”, outside
of virtual host containers.

Trellis’s virtual links must be isolated from links in other
virtual networks (i.e., traffic on one virtual network cannot
interfere with that on another), and they must be flexible
(i.e., users must be able to specify many policies). To satisfy
these goals, Trellis terminates virtual links in the root con-
text, rather than in the virtual host contexts. Table 2 summa-
rizes why we made this decision, with further detail below.

Terminating the tunnel in the root context, rather than in-
side the container, allows the infrastructure administrator to
impose authoritative bandwidth restrictions on users. Ap-
plications running on a virtual host have full control over
the environment in a container, including access to network
bandwidth. To enforce isolation, Trellis must enforce capac-
ity and scheduling policiesoutside the container. Trellis ter-
minates tunnels in the root context; an intermediate queueing
device between the tunnel interface and a virtual host’s vir-
tual interface resides in the root context and shapes traffic
usingtc, the Linux traffic control module [22]. The vir-
tual device inside the virtual host’s context is bridged with
the tunnel endpoint. This arrangement allows them to ap-
ply traffic shaping policies and packet-filtering rules, and,

Criteria In Container In Root Context
Speed Direct connection Yes No, needs bridging
Isolation Enforceable bandwidth No Yes

limits
Flexibility Multi-point No Yes

topologies
User-defined Yes Yes
shaping

Table 2: Tradeoffs for terminating tunnel endpoints.

Figure 4: Bridging supports easy configuration of point-to-multipoint
topologies. A pair ofetun interfaces are used to send ethernet frames
from a network context into the root context. The Linux bridge module
bridges theetun device with the EGRE tunnel interface.

ultimately to implement packet scheduling algorithms that
provide service guarantees for each virtual interface. Users
though can still apply their own traffic shaping policies on
the virtual network interfaces inside their respective contain-
ers for their traffic.

Terminating the tunnel endpoints outside the network con-
tainer also provides flexibility for configuring topologies.
Specifically, this choice allows users to create point-to-
multipoint topologies, as illustrated by Figure 4 and dis-
cussed in more detail in Section 4.3. It also allows containers
to be connected directly when they are on the same host, in-
stead of being forced to use EGRE tunnels.

4.3 Bridging: Bridge vs. Shortbridge
Our decision to terminate tunnels in the root context rather

than in the host container itself creates the need to transport
ethernet frames between the tunnel interface (in the root con-
text) and the virtual interface (on a virtual host). One way to
implement this is withsoftware bridging, which is supported
by Linux kernel or by some stand-alone virtualization solu-
tions [39]. Like a traditional ethernet bridge, the software
bridge performs a lookup on the destination MAC address
and determines where to send the packet. Software bridge
enables connecting interfaces together at Layer 2 with ether-
net semantics.

We explore two options for bridging EGRE tunnels to vir-
tual interfaces: (1) the standard Linuxbridge module [3];
and (2) shortbridge, a custom, high-performance device
that we implemented specifically for bridging a single vir-
tual interface directly to its corresponding tunnel interface.
Each option offers different benefits: the bridge module
offers additionalflexibility in defining the network topol-
ogy, while the shortbridges offers betterspeed(i.e., higher
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Criteria Bridge Shortbridge
Flexibility Multi-point Yes No

topologies
Speed No Yes
Scalability No Yes

Table 3: Design tradeoffs for using bridge vs. shortbridge.

packet-forwarding rates). We use the standard Linux bridge
in links that require point-to-multipoint connectivity; and
shortbridgesto maximize performance for interfaces that are
connected to point-to-point links. Table 3 summarizes the
tradeoffs, which we discuss in more detail in this section.

Decision 4 When the virtual network topology requires
point-to-multipoint links, connect tunnel interfaces with vir-
tual interfaces using the Linux bridge.

Flexibility Some networks require bus-like, transparent
multipoint topologies, where a set of interfaces can have
the appearance of being on the same local area network or
broadcast medium. In these situations, a broadcast or mul-
ticast packet sent from a single interface can reach all in-
terfaces on the medium. The standard Linux bridge module
makes configuring such a topology quite easy, because it can
interconnect more than two interfaces. Figure 4 shows an
example point-to-multipoint topology with the Linux bridge
configuration. The three nodes perceive the underlying net-
work as connected by a single switch.

In multipoint topology case, Trellis connects an EGRE
tunnel to its corresponding virtual interface using (1)etun,
a pair of devices that transports packets from a host con-
tainer to the root context; and (2) the Linux bridge module,
which emulates the behavior of a standard Layer 2 bridge
in software and connects interfaces together inside the root
context.

As shown in Figure 4,etun is instantiated as apair of
connected devices, of which one is located inside a user con-
tainer (etun0) and the other,etun1 is located in the root
context. The pair ofetun devices is necessary because the
bridge lies in the root context and it must have an abstraction
of an interface to bridge to. Frames sent viaetun0 arrive
at etun1, and vice versa. The Linux bridge module con-
nects the end of the virtual interface that resides in the root
context,etun1, to the tunnel endpoint.

Unfortunately, as our experiments in Section 5 show, us-
ing the bridge module can degrade packet forwarding per-
formance considerably, due to the overhead of copying the
frame header, learning the MAC addresses, and perform-
ing the MAC address table lookup itself (i.e., to determine
which outgoing interface corresponds to the destination eth-
ernet address). When network links are point-to-point, this
lookup is unnecessary and can be short-circuited; this insight
is the basis for the “shortbridge” optimization, which we de-
scribe next.

Decision 5 When the virtual links are point-to-point, con-
nect tunnel interfaces with virtual interfaces using the
“shortbridge”.

Figure 5: High speed forwarding using shortbridges: The shortbridge
device is used to connect theztun device located inside the container
with the EGRE tunnel interface. Shortbridge avoids any lookups as
performed by the bridge and hence improves forwarding speed.

SpeedForwarding packets between the virtual network in-
terface and the tunnel interface must be fast, which implies
that the bridge should determine as quickly as possible out-
going interface on which it could send the packet. A po-
tential bottleneck for transporting traffic is thus the lookup
at the bridge (i.e., mapping the destination MAC address of
the ethernet frame to an outgoing port). In the case of short-
bridge, which connects only a pair of interfaces, this lookup
is trivial and is thus very fast. The Linux bridge module,
on the other hand, is slightly slower, since it performs sev-
eral additional operations. For this reason, when packet-
forwarding speed is paramount and the network topology
need not support point-to-multipoint links, we opt to connect
virtual interfaces to tunnel interfaces with the shortbridges.

We have implemented an optimized version of the bridge
module calledshortbridge. We have also implemented a
new device,ztun which, unlike theetun device, is asin-
gle virtual interface inside the container that the shortbridge
can connect directly to the tunnel interface without requir-
ing a corresponding interface in the root context. Theztun
interface is instantiated as a single interface inside a host
container and connects directly to the shortbridge. Figure5
shows a configuration using the shortbridge device; a single
shortbridge device connects one virtual interface (i.e., ztun
device) to one tunnel interface (i.e., egre device).

We achieve performance gain with shortbridge, because
no bridge table lookup is required: traffic can simply be for-
warded from the singleegre device to the singleztun de-
vice, and vice versa. Second, the configuration avoids an
extra header copy operation by reusing the packet data struc-
ture for the two devices that are connected to the shortbridge.
Third, this pair of devices is very restricted: theztun de-
vice always connects to a tunnel endpoint; thus, shortbridge
maintains a pre-defined device-naming scheme which allows
eachztun/etun pair to have a static mapping, avoiding po-
tentially slow lookups.

5. Evaluation
This section evaluates whether Trellis satisfies our three

design goals:forwarding performance, scalability, andiso-
lation. We focus in particular on Trellis’s packet-forwarding
performance compared to other possible environments for
building virtual networks, including Xen, OpenVZ, and for-
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warding in user space. Our experiments show that Trellis can
provide packet-forwarding performance that is about2/3 of
kernel-level packet forwarding rates, which is nearly a ten-
fold improvement over previous systems for building virtual
networks [10]. The rest of this section describes the exper-
imental setup and the detailed results of our performance
evaluation.

5.1 Setup

Test NodesWe evaluated the performance of Trellis and
other approaches using the Emulab [42] facility. The Em-
ulab nodes are connected through a switched network. All
connections offer stable 1 Gbps speeds and negligible, LAN-
level delays. The Emulab nodes used were Dell Poweredge
2850 servers with 3.0 GHz 64-bit Intel Xeon processor with
1MB L2 cache, 800 MHz FSB, 2GB 400MHz DDR2 RAM
and two Gigabit ethernet interfaces. We used a customized
2.6.20 Linux kernel patched with Linux VServer and NetNS
support and used the Redhat Linux distribution. The kernel
also includes our custom kernel patches to provide support
for EGRE and shortbridge.

Traffic Generation Popular network performance tools
such asiperf or netperfare not sufficient for our needs, be-
cause these tools generate packets from user space which can
hardly exceed more than 80,000 packets per second (pps).
Instead, we generated traffic usingpktgen [28], a kernel
module that generates packets at a very high rate. It by-
passes the networking stack to directly interact with the NIC
and includes other techniques to optimize memory allocation
for packet generation. Although it is fast,pktgenoffers poor
rate control at very high speeds. We re-ran all experiments
several times to confirm that the results were not affected by
pktgen’srate control problems.

The Linux kernel packet-forwarding rate follows the stan-
dard system-load curve: under increasing load system per-
formance improves; after a certain threshold it becomes less
effective due to overhead of processing multiple service re-
quests. To determine the peak performance, we gradually
varied load from high to low and noted the peak throughput.

Virtualization Environments In addition to the standard
Trellis setup, we evaluated the performance of network vir-
tualization by performing experiments in both a full virtual-
ization environment (i.e., Xen), two container-based virtual-
ization environments (i.e., Trellis and OpenVZ), and Click
tunnels in user space. Figure 6 summarizes the experimen-
tal setup for each of these experiments; we discuss these in
more detail in Section 5.2.

5.2 Forwarding Performance
In this section, we present the forwarding performance (in

terms of pps) for various virtualization technologies. We
performed packet-forwarding experiments for all of the en-
vironments shown in Figure 6 (including Xen, OpenVZ, and
NetNS in the case of Figure 6(d) and compared each of these
to the baseline forwarding performance of the native Linux
2.6.20 kernel. We established the topology simply by in-
stalling static routing table entries in the kernel routingtable,

Node-Under-

Test

eth0 eth1

Source Sink

Node-Under-Test

eth0 eth1

User-Space

Click

Source Sink

(a) Native Linux Kernel (b) Click User-Space Process

Node-Under-Test

eth0 eth1

veth0 veth1

Xen DomU/

OpenVZ Context/

NetNS Context

eth0 eth1

Bridge Bridge

Source Sink

Node-Under-Test

egre0 egre1

etun0 etun2

NetNS Context

etun1 etun3

Bridge Bridge

Source Sink

(c) Bridged Physical Interfaces (d) Bridged Tunnels

Node-Under-Test

NetNS Context

egre0 egre1

Source Sink

Node-Under-Test

egre0 egre1

NetNS Context

ztun0 ztun1

Source Sink

(e) Direct Tunnel Termination (f) Shortbridged Tunnels

Figure 6: Experiment Setup. Each setup has a source, a sink and a
node-under-test. The traffic from the source arrives on the physical
interfaces in setups (a),(b) and (c), while in setups (d), (e) and (f) the
source traffic goes through the tunnel interfaces.

Figure 7: Peak forwarding performance (in pps) with 64-bytepackets.

as shown in Figure 6(a). We evaluated scaling and isolation
performance only for Trellis.
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Figure 8: Setup For Scalability Evaluation. This setup is also used for the isolation experiment using multiple containers.

The goals for our experiments are two-fold. First, we
study the performance of various virtualization techniques
and their suitability for building virtual networks that can
forward packets at high rates. We quantify the perfor-
mance overhead associated with building virtual networks
with user-space packet processing or full virtualization.Sec-
ond, we evaluate the packet-forwarding performance for var-
ious network designs that use container-based virtualization.

5.2.1 Comparison of virtualization approaches

Click in user spaceTo evaluate the baseline performance
of forwarding packets in user space, we forwarded traffic
through a Click user-space process, as in the original PL-
VINI environment [10], as shown in the Figure 6(b). Click
offers flexible primitives for packet manipulation and for-
warding. It can run as a user-space process or a kernel-space
module. A kernel-space module cannot properly allocate re-
sources, because it exposes the whole kernel memory space
to any Click element. Our earlier PL-VINI [10] implemen-
tation successfully used a user-space Click process, but this
setup did not achieve adequate forwarding speed.

We used a simple, lightweight ClickSocket() element
to forward UDP packets. Figure 7 shows that the peak
packet-forwarding rate for 64-byte packets was approxi-
mately 80,000 pps. PL-VINI sustained even worse perfor-
mance because it used a large set of Click elements with
complex interactions between them.

Full Virtualization: Xen We measured the forwarding per-
formance of Xen by running Xen 3.0.2 on the node under
test with one guest domain. We bridged the virtual inter-
faces in DomU (the user domain) to the physical interfaces in
the privileged domain, Dom0, using the Linux bridge mod-
ule, as shown in Figure 6(c). We swapped in Xen from the
Emulab system image repository. The Emulab images are
specifically compiled for Emulab nodes. Unfortunately, we
found Xen 3.0.2 unstable under high packet load, which is
consistent with observations in other studies [25, 27]. Packet
rates of more than 70,000 pps resulted in unstable behavior.1

Recent activity in the Xen community suggests that newer
versions of Xen might have a more stable network stack that
offers better network performance [25]; we intend to evalu-
ate these alternatives in the future.

Container-Based Virtualization: OpenVZ and Trellis
We evaluated OpenVZ to compare Trellis’s performance

1After about 15 seconds of such load, the DomU virtual interfaces stopped
responding. Increasing the traffic load further, to more than 500,000 pps,
caused the hypervisor to crash. We repeated the experiment with the same
setup and similar hardware on our own nodes and found similarbehavior.
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Figure 9: Peak forwarding rate (in pps) for different packet sizes.

with another container-based virtualization system. OpenVZ
does not provide EGRE or shortbridge features; thus, we
connected the nodes directly, without tunnels and used a reg-
ular bridge module to connect the physical interfaces to the
virtual interfaces. Figure 6(c) shows our configuration for
the OpenVZ setup and for a Trellis setup with no EGRE tun-
nels and a regular bridge module (i.e., NetNS+VServer); this
setup is analogous to our setup for the forwarding experi-
ment with Xen.

Figure 7 shows that the performance of OpenVZ is com-
parable to that of Trellis when plain ethernet interfaces
and bridging are used; with this configuration, both sys-
tems achieve peak packet-forwarding rates of approximately
300,000 pps. This result is not surprising, because both
OpenVZ and Trellis have similar implementations for the
network stack containers. This result suggests that Trel-
lis could be implemented with OpenVZ, as opposed to
VServers+NetNS, and achieve similar forwarding rates.

5.2.2 Optimizing container-based virtualization
We evaluate the effects of various design decisions within

the context of container-based virtualization: In addition to
the five environments above, we evaluated various optimiza-
tions and implementation alternatives within the context of
Trellis. Specifically, we examined the effects of (1) where
the tunnel terminates and (2) using bridge vs. shortbridge on
both packet-forwarding performance and isolation.

Overhead of terminating tunnels outside of containerDi-
rectly terminating EGRE tunnels inside the container con-
text inside the container context. This approach provides
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little control over the network resources that the container
uses (i.e., it is not possible to schedule or rate-limit traffic on
the virtual links), but it offers better performance by saving a
bridge table lookup. To quantify the overhead of terminating
tunnels outside of containers, we perform a packet forward-
ing experiment with the configuration shown in Figure 6(e).

Figure 7 summarizes these results. Directly terminating
the tunnels within the container (Figure 6(e)) achieves a
packet-forwarding rate of 580,000 pps (73% of native for-
warding performance); as mentioned, however, this mecha-
nism does not provide the capability to shape or otherwise
control outside the container. This performance gap directly
reflects the overhead of network-stack containers and EGRE
tunneling.

Bridge vs. Shortbridge To evaluate the performance im-
provement of the shortbridge configuration over the standard
Linux bridge module, we evaluate packet-forwarding perfor-
mance in the following two setups:

• Bridge. Figure 6(d) shows the setup of bridged exper-
iment for Trellis. A similar setup is used for evaluating
forwarding performance in Xen and OpenVZ where
a bridge is used. However, in Xen and OpenVZ, the
bridge joins virtual environment (or virtual machine in
the case of Xen) with the physical interfaces on the
node, but in Trellis the bridge connects the virtual en-
vironment to EGRE tunnels.

• Shortbridge. We replace the Linux bridge module
with our custom high-performance forwarding module
shortbridgeto connect virtual devices with their corre-
sponding physical devices, as shown in Figure 6(f). We
perform this experiment to determine the performance
improvement over the regular bridging setup.

The shortbridge configuration achieves a forwarding rate
of 525,000 pps (about 67% of native forwarding perfor-
mance). The performance gain over the bridge configura-
tion results from avoiding both copying the ethernet frame
an extra time, as well as performing bridge table lookup for
each ethernet frame. The bridged setup can forward packets
at around 250,000 pps.

5.2.3 Effects of packet size on forwarding rate
Figure 9 shows how the packet-forwarding rate varies

with packet size, for the bridge and shortbridge configu-
rations, with respect to the theoretical capacity of the link
and the raw kernel forwarding performance. The nearly flat
lines in the bridged and shortbridged configurations indicate
that Trellis packet-forwarding performance does not change
much as the packet size changes. This result is expected,
because all packet processing happens in-kernel and most
operations are performed only on the packet header. For
larger packets, the rate is limited by the 1 Gbps link. Trellis’s
packet-forwarding performance with the shortbridge config-
uration approaches the performance of native forwarding for
256-byte packets; for 512-byte and larger packets, both the
bridge and shortbridge configurations saturate the outgoing
1 Gbps link.
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5.3 Scalability
We evaluate scalability of the bridge and shortbridge con-

figurations in Trellis by increasing the number of contain-
ers on the single physical node under test and measuring the
corresponding throughput of the resulting flows. Figure 8
shows the configuration that we used to test the scalability of
Trellis’s container mechanism for both the bridge and short-
bridge configurations. As with the packet-forwarding rate
experiments, we use the bridged and shortbridged setups as
shown in Figure 6(d) and Figure 6(f), respectively.

Our tests show that Trellis can support at least 64 con-
current virtual networks without a noticeable degradationin
performance. As can be seen from Figure 10, in the case of
the shortbridged configuration, the forwarding performance
decreases from 525,000 pps with one container to 70,000 pps
with 512 containers. In the bridged configuration, the drop is
more dramatic because each container uses two bridges. The
rate starts at 250,000 pps with one context and ends with
10,000 pps combined throughput for 512 containers. Pro-
filing the bridged configuration showed that several factors
introduced overhead, including checking the consistency of
the ethernet header, copying the packet header, and perform-
ing a table lookup and update. Furthermore, as the number
of containers increases, the overhead for forwarding, encap-
sulation and decapsulation consumes most of the CPU.

Another notable feature is the sharp drop in the forward-
ing rate with shortbridge when the number of containers is
between 64 and 80. There are many possible explanations
for this degradation, including shared data structures, lim-
ited hardware caches, etc. We are still investigating the root
cause of this behavior.

5.4 Isolation
To understand how Trellis would perform in scenarios

with many virtual networks operating in parallel, we eval-
uate how Trellis provides isolation with multiple virtual net-
works running concurrently. Our results show that Trellis
can prevent traffic on one virtual network from interfering
with traffic from other virtual networks that are using the

11



Flow 1 No other load Disk-bound CPU-bound
(kpps) CPU (%) Loss (%) Jitter (ms) CPU (%) Loss (%) Jitter (ms) CPU (%) Loss (%) Jitter (ms)
0 20 0 0.030 31 0 0.030 18 (82) 0 0.030
500 92 0 0.049 100 0 0.080 97 (3) 0 0.102
800 100 25 0.063 100 26 0.120 100 (0) 32 0.110

Table 4: This table summarizes the results from the isolation experiment using setup as shown in Figure 11. We performed three different experi-
ments: when the forwarding node had no other load, a disk bound process and a CPU bound process running. The rows show the results for each
experiment for three different rates of Flow 1. For the CPU-bound experiment, the numbers for CPU usage in parenthesis shows the CPU utilization
by the CPU-bound process.

Figure 11: Setup for the isolation experiment.

same physical network. We evaluated isolation of experi-
ments under various load conditions of the forwarding node.

Figure 11 shows the topology that we used for the first
part of the experiment. Traffic flows from nodeA to nodeB
(Flow 1) and from nodeC to nodeD (Flow 2). All traffic
uses nodeF for forwarding. NodeF has two containers: one
container serves traffic for Flow 1, and the other container
serves traffic on Flow 2. The setups uses the shortbridge to
connect virtual interfaces with physical interfaces and EGRE
tunnels to connect nodes. We used the Linuxpktgen mod-
ule to generate packets for Flow 1 at a rate that is close to the
forwarding capacity of nodeF . We used theiperf utility
to generate Flow 2. We varied the traffic rate of Flow 1 us-
ing thetraffic control[22] utility in Linux to shape the traffic
and measured the resulting jitter and loss rate on as seen by
the receiver at Flow 2. We used a hierarchical token bucket
(HTB) filter to control the offered traffic load on Flow 1.

Table 4 summarizes the results of this experiment. When
the CPU utilization at the forwarding nodeF was below
100%, Flow 2 experienced no loss and only negligible jit-
ter. When Flow 1 sends 800 kpps (’000 pps), CPU utiliza-
tion atF becomes 100%, Flow 2 experiences loss, but jitter
is still negligible for packets thatF did not drop. To mea-
sure the possible impact of other interference, we ran two
additional experiments: a disk-bound I/O process (i.e., gen-
erating hard and soft interrupts) on the forwarding nodeF ,
and a CPU-bound process onF . In both cases, the loss and
jitter exhibited the same behavior as in the original experi-
ment: as long as the amount of CPU load due to forwarding
packets remained below 100%, packet loss and jitter were
negligible. We were not surprised that a CPU-bound process
had no impact (since in-kernel packet forwarding preempts
a running user-space process) but we expected to see more

interference from disk-bound I/O. In our ongoing work, we
are studying the isolation properties of Trellis in more detail
and in more complex deployment scenarios.

We also evaluated the effects increasing the number of
containers carrying traffic on the jitter induced by the for-
warding nodeF by establishing 32 concurrent containers,
introducing background traffic on the other 31 containers,
and measuring the jitter on one remaining flow at the re-
ceiver. For this experiment, we use the same setup as shown
in Figure 8. We did not observe any significant jitter; the
results were consistent with the ones described in Table 4.
Due to our inability to obtain a very large cluster of physical
nodes, all traffic flows—both the flow on which the resulting
jitter was measured was sent from the same nodes and the
background traffic—were sent from the same physical ma-
chine, which may have affected the jitter seen at the receiver
in addition to any contributions to jitter at the forwarding
node. We intend to investigate this result in more detail.

6. Ongoing Work
This section describes our ongoing work on Trellis. We

describe ongoing work in three areas: supporting high-
performance custom data planes, managing and allocating
physical resources, and implementing link scheduling disci-
plines to achieve better isolation.

6.1 Supporting Custom Data Planes
The current Trellis implementation uses container-based

virtualization. Thus, building a virtual network with a cus-
tom data plane (either in Trellis or in any virtual network en-
vironment) requires forwarding packets either through user
space or, in the case of Xen, a driver domain; these ap-
proaches are significantly slower than forwarding packets in
the kernel. Many virtual network deployments and exper-
iments will not require custom data-plane operations (e.g.,
non-IP forwarding), but we believe that ultimately some of
them will require a custom data plane.

We are investigating mechanisms that would allow vir-
tual hosts to define custom data planes and still achieving
fast performance. One option is to use Linux kernel-based
virtual machines, which exploit hardware support for vir-
tualization to achieve performance that is close to that of
the native operating system [2]. KVM has a special guest
mode that, through a user-space emulator, interacts with a
device driver for managing the virtualization hardware. I/O
in KVM avoids costly context switches and interrupt pro-
cessing, which could make it possible to implement a cus-
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tom data plane by running custom packet-processing soft-
ware (e.g., Click-based applications) as a KVM guest. It
remains to be seen whether this model can provide both flex-
ibility and fast packet forwarding.

Another alternative for supporting custom data planes
would be to sub-divide the kernel memory itself, dedicating
in-kernel memory to explicit processes in user space (i.e.,
dedicating memory to each container). This model is analo-
gous to the approach that Supercharged PlanetLab (SPP) has
taken to virtualize forwarding hardware [37]. This approach
would create a static mapping between each virtual host and
kernel data structures; an experiment’s special data struc-
tures could be defined by the user using a Click-like speci-
fication, checked at compile-time, and installed as a kernel
module.

6.2 Resource Management and Allocation
This paper has described the mechanisms by which a vir-

tual network can be created and hosted on shared, com-
modity hardware, but it has not tackled the allocation and
management of the physical resources. This management
requires two components: (1) a system for maintaining in-
formation about the “inventory” of the physical network and
what resources have been allocated; and (2) algorithms for
embedding a virtual network topology on to the physical in-
frastructure.

To solve the problem of maintaining information about
available physical resources, we envision a software dis-
tribution for Trellis that is analogous to PlanetLab’s My-
PLC [4]. The MyPLC distribution packages the same
software base that operates the public PlanetLab facility.
Like PlanetLab, MyPLC allocates VServers to collections
of physical nodes and maintains information about how re-
sources have been allocated on each node, as well as statis-
tics about usage and load on each node. Trellis’s manage-
ment system would be slightly more complicated because
it must maintain information about allocations on network
links (where actual usage can be quite variable). Ultimately,
we plan to package Trellis, including software for resource
management, as a standalone distribution that anyone can
use to operate and own a virtual network hosting platform.

The network manager must determine an allocation of re-
sources that satisfies the requests of many virtual networks
running in parallel. This allocation boils down to an embed-
ding problem: given an underlying physical topology (phys-
ical nodes, and links), and potentially many requests for vir-
tual networks to be hosted on the infrastructure, determine
the best way to embed the virtual topologies onto the under-
lying physical topology. The embedding problem is chal-
lenging because it involves allocation of many resources, in-
cluding CPU, link bandwidth, and memory. Additionally,
to maximize utilization, the allocation mechanism might try
to “overbook” links by taking advantage of statistical mul-
tiplexing across virtual networks. A few recent attempts to
tackle embedding a virtual network topology on a physical
topology [30, 44] suggest possible starting points for the net-
work embedding problem in Trellis.

6.3 Resource Scheduling and Isolation
Although our experiments in Section 5.4 suggest that Trel-

lis already provides good resource isolation, we believe that
more complex usage scenarios and applications, as well as
larger virtual networks, might still trigger cases where indi-
vidual virtual networks see behavior that differs from that
which it would see if the network were running on dedicated
hardware.

One example that deserves further study is the schedul-
ing of virtual links. Trellis’s traffic shapers on individual
interfaces can ensure that no virtual interface exceeds its
allocated capacity; unfortunately, this traffic shaping does
not guarantee that each virtual link will see packet service
rates that equate to those it would see in the case that it
had a dedicated link. For example, some scheduling disci-
plines might cause traffic in some virtual networks to expe-
rience temporary starvation, introducing jitter or packetloss.
Although the container-based virtualization community has
made some progress in ensuring that each container sees
some minimum level of performance (e.g., OpenVZ’s Bean-
counters [14]), more work is needed to determine appropri-
ate service disciplines for scheduling the outgoing physical
interface to different tunnel interfaces. Previous work on
the performance guarantees offered by various service dis-
ciplines [43], which were originally designed for multi-hop
end-to-end paths, might apply for scheduling service on a
single virtual link.

7. Conclusion
This paper has presented Trellis, a platform for scalably

hosting virtual networks on commodity hardware. Trel-
lis allows each virtual network to define its own topology,
routing protocols, and forwarding tables, thus lowering the
barrier for enterprises and service providers to define cus-
tom networks that are tailored to specific applications or
users. Trellis uses network virtualization to allow multiple
virtual networks to share the same physical infrastructure.
The platform integrates host and network stack virtualiza-
tion with tunneling technologies and our own components,
EGRE tunnels and shortbridge to create a coherent frame-
work for building fast, flexible virtual networks.

While many of these technologies have existed for some
time, we believe our combination of these components pro-
vides not only a useful system but also important lessons
for combining various host and link virtualization technolo-
gies to build virtual networks. We have implemented Trellis
using Linux-VServer, NetNS, and EGRE tunnels and com-
pared the speed, flexibility, and isolation of our system with
existing techniques for building virtual networks. While ad-
ditional work remains to improve Trellis’s resource manage-
ment, allocation and scheduling, we believe our design to
be a promising step for building virtual networks from com-
modity hardware. Ultimately, we hope that Trellis can be
for virtual routers and networks what software routers have
done for routing: a scalable, fast, low-cost alternative for
deploying virtual networks in practice.
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