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management costs. Customizing today’s network devices is
also challenging (and often impossible) because many sup-

multiple virtual networks on shared commodity hardware. POt only limited, proprietary interfaces. These needddou

Trellis allows each virtual network to define its own topol-
ogy, control protocols, and forwarding tables, which low-

also be addressed by deploying an overlay network that runs
customized software on a distributed collection of comput-

ers the barrier for deploying custom services on an isojated €rS connected to the Internet. However, overlays have lim-

reconfigurable, and programmable network, while amor-
tizing costs by sharing the physical infrastructure. Tsell
synthesizes two container-based virtualization techgieky
VServer and NetNS, as well as a new tunneling mechanism,
EGRE, into a coherent platform that enables high-speed vir-
tual networks. We describe the design and implementation,
of Trellis, including kernel-level performance optimiiats,

and evaluate its supported packet-forwarding rates agains
other virtualization technologies. We are in the process of
upgrading the VINI facility to use Trellis. We also plan to
release Trellis as part of MyVINI, a standalone software dis
tribution that allows researchers and application devalep

to deploy their own virtual network hosting platforms.

1. Introduction

Network services that have strikingly different require-
ments in terms of throughput, packet loss, security, orilstab
ity must nevertheless operate over a single, common com-
munication infrastructure. Many of these services would
benefit from having their own network topologies, and direct
control over the routing, forwarding, and addressing mecha
nisms. For example:

e Interactive applications (e.g, gaming, VolP), which
could run amapplication-specific routing protocahat
converges more quickly than the existing network pro-
tocols that favor scalability over fast convergence.

o Critical services, which could run on a separate net-
work with protocols tailored to defend against un-

ited visibility into, and control over, network conditioremnd
typically cannot forward traffic at high speeds.

Instead, we propose a “network hosting” platform that

can run multiple programmable virtual networks over a
shared physical network infrastructure. This hosting-plat
form should have the following properties:

e Speed: A virtual network should be able to forward
packets up to multi-Gigabit speeds.

e Isolation: To prevent virtual networks from interfer-
ing with one another, the infrastructure should support
namespace and resource isolation of system resources
(e.g, process IDs, files, CPU) as well as network re-
sourcesé€.g, forwarding tables, link bandwidth).

o Flexibility: A service running inside the virtual net-
work should be able to define its own routing proto-
col and application logic. The platform should provide
a powerful and familiar development environment for
network services.

e Scalability: The platform should be able to support
many such virtual networks simultaneously to amor-
tize its deployment and maintenance costs.

e Low cost: The cost for hosting a virtual network
should be very low. Our hosting system should run on
commodity hardwarei.g., server-class PCs) to reduce
costs and barriers to entry. Using commodity hardware
also allows the infrastructure to more cheaply track ad-
vances in new technologe.g, multicore processors).

Our primary contribution is the design and implementa-

wanted traffic €.g, denial-of-service attacks). tion of Trellis, a platform for hosting virtual networks that

e Enterprises, which could construct and “lease” a achieves these goals. Trellis provides the substrate on top
private network Connecting geographicaiiy disparate of which multiple fast and flexible virtual networks can run.
sites, with in-network support for key applications. T_rellis_s_ynthesizes existing virtualization _technol(xg(éor

« Network service providers which could run a sepa- y|rtuaI|2|ng hosts and network stacks) ywth a new tunnel-
rate “development” network for deploying and testing ing protocol and a new fast software bridge kernel module,

new configurations, protocols, and designs, and sup- ioo provide a scialable hkostlr_i_% pli?tforrii Vi\i”th good 'SOI:’.‘SO”
porting “early-adopter” customers. etween virtual networks. The key challenge was to iden-

tify the right combination of technologies that could best
All of these needs could be addressed with the deploymentsatisfy our design goals: performance, scalability, isota
of separate physical networks, each with customized proto-and flexibility. We believe that the design choices and trade
cols and topologies. Unfortunately, deploying physical in offs we have made hit a “sweet spot” along these axes for a
frastructure per service incurs tremendous space, poner, a virtual network hosting platform.



Our experiments demonstrate that Trellis is fast and scal-
able and provides good isolation between virtual networks.
A virtual network hosted on Trellis can forward pack-
ets more than ten times faster than a similar overlay net-
work [10]. Nodes running Trellis can host more than 60
virtual networks in parallel with no noticeable degradatio
in performance. The performance and jitter in any virtual
network is nearly identical to that seen on native hosts.

We are deploying the Trellis software on our wide-area
Virtual Network Infrastructure (VINI) facility [10]. The gal
of VINI is to enable researchers to evaluate new protocols
and deploy new services in an environment that is both real-
istic (e.g, runs real routing software and carries real traffic)
and controlled. We believe Trellis’s high performance and
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Figure 1: Overview of host virtualization, with virtual hos ts shaded.

2.1 Trellis Design Requirements

We identify four high-level design requirements for Trel-
lis. First and foremost, it mustonnect virtual hosts with
virtual links to construct a virtual network. Second, it must

low jitter are a step towards achieving these goals. Becauseyn on commodity hardwardi.e., server-class PCs) in or-

the need for low cost, isolated, reconfigurable, and pro- ger to keep deployment, expansion, and upgrade costs low.

will run on our modest-sized VINI facility, we also plan to
release the Trellis software as part of MyVINI, a software
distribution that allows researchers, network desigrend,
application developers to deploy their own virtual network
hosting infrastructures. Beyond Trellis, MyVINI includes
software for instantiating the virtual networks, includial-
locating system resources such as CPU and bandwidth.
The rest of the paper is organized as follows. Section 2 de-
scribes Trellis’s design, its two constituent componeins (
virtual hosts and virtual links), and their integration tgps

port a virtual network. Section 3 assesses whether (and how),,

existing virtualization technologies, often designeddalif-
ferent purpose, can support virtual hosts and virtual links
Trellis. Section 4 describes the implementation choices we
made for Trellis to fulfill our design goals. Section 5 evalu-
ates Trellis’s performance, scalability, and isolatiolatiee

to both native packet forwarding and other virtualizatibn a

virtual hosts that can support existing routing softwarg.(e
XORP [18] and Quagga [5]) as well as provide a convenient
and familiar platform for developing new services. Finally
Trellis should supporpacket forwarding inside the kernel
of the general-purpose OS, since forwarding every packet in
user space introduces significant overhead and reduces the
packet forwarding rate. An application running in usergpac
inside a virtual host can interact with devices representin
the end-points of virtual links, and can write forwarding
table entries (FTES) to an in-kernel forwarding table (for-
arding information base, or FIB) to control how the ker-
nel forwards packets between the virtual links. Together, w
believe that these design requirements place Trellis in the
“sweet spot” mentioned earlier: it is the design point that
best satisfies our overall goal of hosting fast, flexibleuztt
networks on a scalable and low-cost platform.
Understanding the design of Trellis first requires a better

ternatives. Section 6 discusses our ongoing work, and Secnderstanding of the requirements for both virtual hosts an

tion 7 concludes.

2. Virtual Networks on Commodity Hardware
A virtual networkis built using two components:

1. virtual hosts, which run software and forward packets,
and

2. virtual links , which transport packets between virtual
hosts.

Virtual networks constructed using commercial routers tha
support virtualization [24] currently have the limitatitmat
they can only run one specific application (proprietary rout
ing software and operating system) inside a virtual host. In
contrast, Trellis is a virtual-network substrate that aaman

commodity hardware using general-purpose operating sys-

tems. Trellis is likely to be cheaper to deploy than com-
mercial offerings and can support a wide range of network
services and applications. In this section we drive thegatesi
of Trellis from our requirements for (1) the entire system,
and (2) the virtual hosts and virtual links that comprise it.

virtual links. The next two sections define these components
and detail their requirements.

2.2 Virtual Hosts

A virtual hostsees the illusion of a dedicated physical
host, even though multiple virtual hosts may be running on
the same physical hardware. At a high level, a virtual host
can be thought of as a “box” containing resources, as illus-
trated in Figure 1. A virtual host appears to have dedicated
physical or logical resources inside this box; examples of
physical resources are CPU, memory, and link bandwidth,
whereas logical resources are resources implemented by the
operating system such as the process table, page table, IPv4
forwarding table, memory buffers, etc. In reality, all otte
resources are only “virtual” in that they are enabled by a vir
tualization layer that implements the virtual host abstoac
The virtualization layer creates virtual resources frompgsh
ical ones using resource allocation and scheduling mecha-
nisms, so that each virtual host receives its expected share
the resource in question. Likewise, the virtual host alestra
tion limits the scope of logical resources to inside the “hox
so that each virtual host can safely manipulate its own log-
ical resources. The virtualization layer may not virtualiz
all possible resources, and so there may be resources resid-



ing on the physical machine but outside of the “box”; these
resources may be either inaccessible, support limited-inte
action from within a virtual host, or be shared with other
applications. Virtual hosts achieve two types of isolation

e Resource isolatioensures that no virtual host can in-
terfere with the resources.gg, CPU, memory, network
bandwidth) that are allocated to another virtual host.
Resource allocators in the virtualization layer multi-

plex and schedule these physical resources to provide

virtualized resources inside a virtual host.

Namespace isolatioensures that each virtual host can
name and reference resourcesg( processes, files,
memory, network interfaces, network addresses, for-

warding tables) and cannot reference resources in other

contexts. For example, an application in one virtual
host is not able to add routes to the FIB of another vir-
tual host, and two or more virtual hosts can use the
same IP address to name different virtual interfaces.

In addition, Trellis’s virtual host technology must fastand
scalable Our goal is to scale to approximately 50 active
virtual hosts per node, in order to appropriately amortiee t
cost of the hosting platform (in our case, the VINI facility)

2.3 Virtual Links

A virtual link has the appearance of a physical link, but
many virtual links may share a single physical link, and a vir
tual link may span many hops through the underlying physi-
cal network. In our design for Trellis, virtual links trarmp
traffic between two virtual hosts. A virtual host transmits
a packet on a virtual network interface to send it on a vir-
tual link. After a packet exits the virtual host via the vatu
interface, it is optionally rate-controlled by a traffic plea
(to enforce a maximum bitrate) before being tunneled to the
other endpoints of the virtual link.

In Trellis, virtual links should support:

e The appearance of a virtual ethernét/e choose eth-
ernet as the basis of Trellis’s virtual link abstraction
because it is a ubiquitous and familiar layer-2 technol-
ogy. A virtual link should provide ethernet semantics
(e.g, broadcast domains, point-to-multipoint topolo-
gies) and support the ethernet frame format.

Lightweight encapsulation and demultiplexinde-
cause multiple virtual ethernet devices (and multiple
virtual hosts) may share a single physical device, the
substrate must ensure that packets are demultiplexe
to the correct virtual interface (and virtual host).

Bandwidth enforcement outside the virtual hdsach
virtual link can have a bandwidth cap, to ensure iso-
lation between virtual networks. The substrate should
not permit the virtual link to send traffic in excess of
this specified rate.

2.4 Trellis Design

Given these requirements, we now present the Trellis de-
sign. Figure 2 illustrates this design by showing a virtual
network as hosted on Trellis. The functionality of the vattu

network is spread across three layers: user space inside the
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Figure 2: Overview of Trellis design, showing virtual hostsconnected
by a virtual link

virtual host; in the kernel inside the virtual host; and ddgs

the virtual host in a substrate layer that is shared by all vir
tual networks residing on a single host. The elements inside
a virtual host can be accessed and controlled by an applica-
tion running on that virtual host. Elements in the substrate
cannot be directly manipulated, but are configured by the
Trellis management software on behalf of an individual vir-
tual network. Of course, multiple virtual hosts can run am th
same physical hardware, but this is not shown in the picture.
Physical network interfaces are also not shown because they
are hidden behind the tunnel abstraction.

The virtual links that connect virtual hosts in Trellis con-
sist of four components, as outlined by the dotted U-shaped
box in Figure 2: (1) two or moreirtual interfaceseach with
a unique MAC address; (2)tannelbetween the interfaces,
incorporating both an underlying transport mechanism and
a method for encapsulating and demultiplexing the packet;
(3) abridgethat connects each virtual interface to a tunnel
interface; and (4) draffic shaperbetween each virtual in-
terface and its corresponding tunnel interface. A virtaal i
terface sends and receives packets for the virtual hoste Onc
on a virtual link, the packet travels through a traffic shaper

nd via a tunnel to the host on the other side of the virtual
ink. The remote host receives the packet, decapsulates it,
and delivers it to the corresponding virtual interface, rehe
it is received by the network stack in a virtual host. This
virtual link presents to the host the appearance of a virtual
point-to-multipoint ethernet linkif.,, it is a link that will
transport ethernet frames), although in practice thisusirt
link may span multiple hops in the underlying network.

We note several salient features of this design:

e Per-virtual host virtual interfaces and tunnel€ach
virtual host is a node in a larger virtual network topol-
ogy; thus, Trellis must be able to define interfaces and
associated tunnels specific to that virtual network.



(" N - N ware runs a Virtual Machine Monitor (VMM), also called
[ Guest H Guest H Guest [ virtual ] [Virtual ] [ Virtual a hypervisor, that hosts one or more “guest” operating sys-
0s os |i| os Environ- | | Environ- | | Environ= tems. Each of the guests runs owigtual machine(VM)
ment ment ment . .
: ; provided by the VMM; all software that is capable of run-
[ Virtual ] [ Virtaal ] ( Virtaal ] 05 Virtualization Layer ning on the underlying ha_rdware can be run in the vir_tual
Hardware ) \_Hardware ) _Hardvware machine itself. The VMM is responsible for implementing
el SEICELETEE resource isolation among individual guests and the virtual
L IRETEELE ) L Hardware D, machine abstraction naturally provides namespace isalati
(a) Full virtualization (b) OS-level virtualization A variant of full virtualization is callegaravirtualization,
which optimizes the hardware emulation to improve perfor-
Figure 3: Two approaches for implementing virtual hosts. mance, but also requires modifications to the guest operat-

ing system. VMWare Server [39, 35] and Linux’s Kernel-

e In-kernel, per-virtual-host forwarding tablesEach ~ based Virtual Machines (KVM) [1] provide full virtualiza-
virtual host must be able to define how traffic is for- tion, while Xen [13] and Denali [41] are examples of sys-
warded by writing its own forwarding-table entries. A tems which use the paravirtualization paradigm. Xen can
virtual host's forwarding table must be independent of also perform full virtualization on a CPU with virtualizati

other forwarding tables, and processes running on oneSUpport.

virtual host must not be able to affect or control for- ~ Running a separate operating system per virtual network
warding table entries on a different virtual host. can create unnecessary overhead for our network virtualiza

tion substrate. The guest OS runs more slowly than it would
natively, because the trusted domain or VMM must inter-
cept system calls and translate instructions that potgntia
interact with the native hardware (though this is somewhat
alleviated in Xen, which allows guests to register a “fast”
exception handler that bypasses the hypervisor). Fullivirt
alization also requires copying data packets from theearust
domain or the VMM, which can degrade packet-forwarding
The Trellis design incorporates virtualization, tunnglin  performance considerably. Although recent work has at-
packet demultiplexing, and traffic-shaping mechanisms to tempted to improve the performance of virtual network de-
provide a substrate for hosting fast, flexible, and isol&ted vices in Xen [25], these optimizations are primarily aiméd a
tual networks. Rather than implement Trellis from scratch, bulk TCP transfers and only improtleroughput as opposed
we chose to synthesize existing technologies into a working to thepacket-forwarding rate
system. A key challenge in building Trellis was to identify
and combine individual virtual host and virtual link tech- 3.1.2 Network-based virtualization (“Containers”)
nologies to provide the desired features. As it turns out, we  cgntainers (sometimes called “virtual environments”)

ultimately implemented several new components becausepatition operating system resources without requiring OS
existing systems did not adequately meet our needs. Thejnsiances to be run in separate virtual machines as shown
next section provides background on various technologies;, Figure 3(b). A container-based operating system iso-

for host and link virtualization in order to motivate the spe |5tes some subset of the resources that it manages. The
cific implementation choices we made for Trellis. Section 4 g typically implements container virtualization using ad

e Separating virtual interfaces from tunnel interfaces.
Separating the virtual interface from the tunnel end-
point enables the creation of point-to-multipoint links
(i.e., the emulation of a broadcast medium). In addi-
tion, this separation allows the substrate to enforce a
rate limit on each virtual link, to ensure resource isola-
tion between the virtual networks.

describes the Trellis implementation. vanced scheduling techniques for physical resources, (e.g.
. . o . CPU time), and tagging and contextualizing for logical ones
3. Existing Virtualization Techniques (e.g., kernel data structures). Multiple containers rumam

In this section, we discuss various approaches for virtual- of a single operating system kernel. Typically, fully vitu
izing a host (full virtualization and “containers”) and athe ized and paravirtualized systems can provide better isolat
work (VLANs, VPNs, overlays, and logical routers). We than containers, but container-based systems have better p
summarize the strengths and weaknesses of each with regartbrmance since containers are more lightweight abstrastio

to hosting virtual networks on commodity hardware. than virtual machines [33, 7].
i Existing systems provide OS-level virtualization for var-
3.1 Virtual Hosts ious aspects of the operating system’s resources. Linux

A host can be virtualized using two mechanisms, as illus- VServers [23], FreeBSD Jails [20], and Solaris Zones [36],
trated in Figure 3full virtualization, whereby each virtual ~ add OS-level virtualization capabilities to the kerneleyth
node runs its own instance of an operating system;@8ed securely partition OS resources, such as the file system and
level virtualization whereby some of the operating system’s CPU time. The PlanetLab platform uses the Linux VServers

resources are isolated per-virtual host. for its OS-level virtualization [9]. Unfortunately, many o
) L these technologies do not provide virtualization of the net
3.1.1 Fullvirtualization work stackj.e., they do not contextualize the variables in the
Full virtualization provides complete virtualization dfe network stack for each container. As a result, differentcon

underlying hardware. As illustrated in Figure 3(a), thedhar  tainers share a common kernel forwarding table and, thus,



they cannot be used directly to allow each user to define a Overlay networks compose networks from end systems

custom network topology or forwarding mechanisms.

A relatively new OS-level virtualization technology
called OpenVZ [26], and its commercial counterpart Vir-
tuozzo [38], allows virtualization of various OS-level re-
sources, including the network stack. OpenVZ primarily
aims to achieve efficient utilization of server resources{"
tual private servers”) and live migration of running applic
tions; in contrast, we focus on how to use OS-level virtual-
ization approach to construct virtual networks.

NetNS [11] is a prototype network stack virtualization
technology that takes advantage of recently introduced-vir
alization APIs in Linux. NetNS does not virtualize an entire
host, but rather provides each “network container” with its
own in-kernel virtual devices, FIB, iptables settings, figpn

and end-to-end paths; hosts are not typically virtualized,
but each “link” in an overlay network comprises many IP-
layer hops. Overlay networks treat the layer-3 network as
a black box, and provide a way to improve end-to-end per-
formance and reliability [6, 17] and deploy new distributed
services [34, 29, 32]. In a sense, our previous work on PL-
VINI [10] (i.e, an initial prototype of network virtualization
on top of the PlanetLab software) could be viewed as a par-
ticular instantiation of an overlay network that (1) is ¢aéd
to run software routers as a specific application and (2) al-
lows multiple such “overlays” to run in parallel. As with
conventional overlay networks, all forwarding in PL-VINI
occurs in user space, and links are IP-level paths.

Recently, commercial router vendors have started sup-

uration variables, and so on. A process binds to a network porting virtualization of their router hardwareLogical

container to obtain access to the virtual resources thahit ¢
tains. One can think of NetNS as providing roughly equiva-
lent functionality to OpenVZ'’s network stack virtualizati.

3.2 \Virtual Networks

routers [24] decompose a single physical router into mul-
tiple logical routers that have their own routing tables, in
terfaces, policies, and routing-protocol instances. Tiie p
mary driver for logical routers is consolidation of mulgpl
network elements into a single hardware device, to simplify
physical configurationg.g, racks and cables) and reduce

We describe the motivation behind existing technologies SPace and power requirements. For example, an ISP can pro-

for building virtual networks and relate them to Trellis.
Virtual Local Area Networks (VLANS) [16] allow net-

vide enterprise customers with access to logical routhed (t
the customers can configure), obviating the need to deploy

work operators to give hosts that are potentially topologi- SéParate physical edge routers. Support for logical reuter
cally dispersed the appearance of being on an isolated LAN @S0 opens the door for running customized routing configu-
with a single broadcast domain and subnet. All frames fations, or even different routing protocols, for key apti
bear a VLAN ID in the MAC header, and switches forward tOnS. o _ o
frames based on both the destination MAC address and the Some of the motivations for Trellis are similar to com-
VLAN ID. Switched VLANS at different sites can be con- Mercial vendors’ reasons for supporting logical routers. |
nected usingrunking to tunnel VLAN-tagged frames be- fact, Trellis can provide similar functionality by enalgin
tween switches through the network. Assigning a set of hostsMultiple instances of routing software like XORP [19] and
to the same VLAN offers many potential advantages, such Quagga [S], to run in different virtual hosts on the same
as affording other hosts on the VLAN a higher level of trust, Physical machine. However, we wish to provide a hosting
and being able to run broadcast protocels( DHCP). platform with much greater fI¢X|b|I|ty and lower cost. Avir-
Trunked VLANs are examples ofirtual private net- tual network hosted on Trellis can run a much wider range
works (VPNs), which are virtual networks implemented by Of software than today’s IP routing protocols. We believe
tunneling. Carriers may construct VPNs using technologies that supporting programmable virtual networks on a general
such as BGP/MPLS [31] or GRE to give customers the ap- PUrpose operating system will lower the barru_er for cregtin
pearance of a dedicated network over a shared IP backbongleW control-plane protocols and network services.
Today’s routers even provide some support for nested VPNSs, ] .
such as Cisco’s Carrier Supporting Carrier [12], which al- 4. Trellis Implementation
lows one network to provide the MPLS backbone for an-  Trellis synthesizes host and network virtualization tech-

other; and Inter-AS, which allows providers to “peer” to nologies into a single, coherent system that satisfies the de
provide end-to-end VPN support. In contrast to router- sign requirements in Section 2. In this section, we explain

supported VPN, tools such as OpenVPN [8] enable con- the implementation decisions we made when building Trel-
struction of an isolated virtual Iayer-2/3 network between lis to achieve our g0a|s of Speed' isolation, ﬂex|b|||typ|an

set of edge hosts. This sort of host-based VPN does not re-scalability.
quire special support from the core network infrastructure
A Trellis virtual link provides the samabstractionas a
VLAN, and one could envision constructing Trellis using
virtual hosts connected by trunked VLANS. This would re- pecision 1 Create virtual hosts using Container-based Vir-
quire control over the switches and routers inside the net-ajization (not full virtualization).
work. Looking ahead to Section 4, the Trelilmplementa-
tiontunnels ethernet frames over IP and so resembles a host- As explained in Section 3, two common mechanisms
based VPN. This allows virtual networks hosted on Trellis for implementing virtual hosts are full virtualization
to span multiple links and administrative domains without and container-based virtualization (also sometimes aalle
assuming administrative control over network devices. container-based operating systems, or simply “COS"). Our

4.1 Hosts: Container-Based Virtualization



requirements for good speed and scalability, and reasenabl g”ter(ija S Full Vim’ila”za“"” chs
isolation and flexibility, suggest that container-basetiwvi pee Dick. b%uﬁé"?;e:ggons No Yoo
alization is more §uitab|e for bu_ilding Trellis. Therefovee _ CPU-bound operations Yes Yes
chose to synthesize two container-based approaches, Linuy Isolation  Rate fimiting Yes Yes
VServer [33] and NetNS [11], to serve as the virtual host- il_ttirlloisgatl_ency contro Un':\anW” YNeS
ing environment of Trellis . Since the PlanetLab OS is also - Ik scheduling 9 0

. .| Flexibility —Custom data plane Guest OS change| No
based on VServer, this allows us to leverage PlanetLab’s Custom control plane Yes Yes

management software to run a Trellis-based platform. An-
other possible choice for a COS would have been OpenVvZz;
we evaluate both our approach and OpenVvZ in Section 5.  Table 1: Container-based virtualization vs. full virtuali zation. Previous
: - g studies on container-based virtualization and full virtuaization explain
Table 1 summarizes how f_uII V|r_tual|zat|on a_n(_JI_COS COM- 4 ese results in more detail [33, 27].
pare with respect to speed, isolation, and flexibility. Téwt r
of this section justifies our choice to use container-baged v

tualization in more detail. lays in sending or receiving traffic, though no such schedul-

ing mechanisms yet exist for either full virtualization or
Speed. Packet forwarding in Trellis must be fast; both full ~ container-based virtualization. Incorporating a schiedul
virtualization and forwarding in user space do not forward mec_hamsm for a fair allocation of resource across contain-
packets as fast as container-based virtualization. Rusvio €rs is an area for future work.

studies have shown that, without optimizations, packet for
warding performance in Xen can suffer significant perfor-
mance penalties due to packet multiplexing and demultiplex
ing overheads, the I/O channel between the driver domain
and the guest domains, and bridging the physical interfaces
to the back-end network interfaces [25].

Flexibility. Virtual hosts in Trellis are connected by a virtual
ethernet link; ethernet connectivity between hosts allapss
plications to run routing protocols between virtual hostd a
have the appearance of a directly connected IP link. etherne
connectivity also allows different virtual hosts on the gam
physical host to number virtual interfaces from the same ad-

mgétggrngfrl:nso\?r?u\gl?zr: dhsasst]:)r%t:-}s(gdbono Otﬁ)rtr'}'?;iﬁm?nggfor' dress space. Both container-based virtualization andifull
y y 9. by op 9 tualization enable this function.

o S o, VUl networs may wih t run cusom conrol plane
forwarding can tak(fplace entirely within thegléernel vvphich (1.e, routing) software. For example, some virtual networks
avoids any data copying and scheduling overheads. Our re_ma_y Wish to run a secure routing protoog]g[, S-_BGP [21])’-
sults in Section 5 confirm these findings by compari'ng sev- Whll_e_oth(_ers may not. BOth types of V|rtual_|za_t|on prowde

. . o . sufficient isolation for this purpose. A thornier issue is-cu
eral container-based virtualization technologies to Xen. tom data plane operations, such as forwarding non-IP pack-
Isolation. As previously mentioned, virtual networks must  €ts, which requires modifications to the network stack in the
have both namespace isolation and resource isolation. Bothoperating system. In full virtualization, such customiaat
full virtualization and container-based virtualizatioopide i possible but requires modifications to the guest OS; un-
namespace isolation for many system resources, includingfortunately, container-based virtualization does not/jgte
the network stack. Full virtualization does provide more this erX|b|I|ty because all virtual hosts share the sama dat
comprehensive isolation than container-based virtutidiza structures in the kernel (recall that containers achiege se
for example, full virtualization protects against opemgti ~ aration by tagging according to context, not by allocating
System Crasheg.:-(g’ due to a buggy device driver or some separate phySICal memory and data structures to eachlvirtua
other software fault). However, for the purpose of creat- host). We believe, however, that providing in-kernel data-
ing independent networks with independent resource allo- Plane customizability may be possible for container-based
cations, both full virtualization and container-baseduai- ~ Virtualization by partitioning kernel memory and data stru
ization provide a roughly equivalent amount of isolatioor. f ~ tures analogously to how similar systems have done this in
example, both technologies prevent a virtual host from ac- hardware [37].
cessing the resources @, processes, files, network devices)
of some other virtual host.

Hosts in virtual networks require the appearance of ded-
icated network interfaces: the behavior of each virtu& lin
(e.g, packet loss rate, latency, jitter) musdt depend on
the traffic patterns or load on other virtual networks that ar
sharing the physical infrastructure, which implies that th
isolation provided by the virtual host must perform two func
tions: rate limiting and scheduling. At the moment, both
full virtualization and container-based virtualizatiarmpgort
traffic shaping in the root context. In principle, it is also
possible for the root context chedulehe traffic on each
virtual link to ensure that no virtual host sees inordinage d

Scalability. Trellis should support a large humber of net-
works running simultaneously. Previous work, as well as
our experiments in Section 5, show that container-based vir
tualization scales better than other alternatives: spadlifi

given a fixed amount of physical resources, it can support
more concurrent virtual hosts than full virtualization. i¥h
better scalability makes sense because in container-based
virtualization only a subset of the operating system resesir

and functions are virtualized.



4.2 Links: Tunnels Criteria In Container | In Root Context
Speed Direct connection Yes No, needs bridging
L . . . Isolation Enforceable bandwidth No Yes
Decision 2 Implement virtual links by sending ethernet limits
frames over GRE tunnels (EGRE). Flexibility  Multi-point No Yes
] ) topologies

Virtual links must be fast. First, the overhead of trans- User-defined Yes Yes

porting a packet across a virtual link must be minimal when shaping

compared to that of transporting a packet across a “native”

network link. Therefore, encapsulation and multiplexipg o

erations must be efficient. Virtual links must also be flesibl

they must allow multiple virtual hosts on the same network ~ ~————=\ ——\ X\
. . NetNS NetNS NetNS

to use overlapping address space, and they must provide sup-

port for transporting non-1P packets.

We tackled these problems by implementing a new tun-

neling module for Linux, ethernet-over-GRE (EGRE). Trel-

lis uses GRE [15] as the tunneling mechanism because it has

a small, fixed encapsulation overhead and also uses a four-

byte key to demultiplex packets to the right tunnel integfac

This approach is much faster than approaches that perform

Table 2: Tradeoffs for terminating tunnel endpoints.

container

container container

L7
Bridge@

a lookup on the source, destination address pair. Other user ggre
space tunneling technologies likg un [40] impose con- Vvserver | Ethernet Tunnel Ethernet Tunnel ] vserver
siderable performance penalty compared to tunnels imple-

mented as kernel modules. Figure 4: Bridging supports easy configuration of point-tomultipoint

EGRE tunnels allow each virtual network to use overlap- topologies. A pair ofet un interfaces are used to send ethernet frames
ping IP address space, since hosts can multiplex packet%“?g“ aner:work co(r;te)_(tlnto_ trtlehroot context. Tr|1¢ Llnfux bridge module
based on an ethernet frame's destination MAC address. This ' 2cS "eet un device with the EGRE tunnefinterface.
also allows Trellis to forward non-IP packets, which allows
virtual networks to use alternate addressing schemesirin tu
providing support for existing routing protocols that da no
run over IP €.g, I1S-IS sometimes runs directly using layer 2
addresses). Currently, forwarding non-IP packets in regui
running Click in user space, as in PL-VINI [10]. In our on-
going work, we are investigating how to implement virtual-
izable custom data planes; Section 6 discusses this proble
in more detail.

ultimately to implement packet scheduling algorithms that
provide service guarantees for each virtual interface.rédJse
though can still apply their own traffic shaping policies on
the virtual network interfaces inside their respectivetaon
ers for their traffic.
Terminating the tunnel endpoints outside the network con-
tainer also provides flexibility for configuring topologies
rrépecifically, this choice allows users to create point-to-
multipoint topologies, as illustrated by Figure 4 and dis-
cussed in more detail in Section 4.3. It also allows containe
to be connected directly when they are on the same host, in-
stead of being forced to use EGRE tunnels.

Decision 3 Terminate tunnels in the “root context”, outside
of virtual host containers.

Trellis’s virtual links must be isolated from links in other S . .
virtual networks ie., traffic on one virtual network cannot 4-3  Bridging: Bridge vs. Shortbridge
interfere with that on another), and they must be flexible  Ourdecision to terminate tunnels in the root context rather
(i.e., users must be able to specify many policies). To satisfy than in the host container itself creates the need to trahspo
these goals, Trellis terminates virtual links in the roohco  ethernet frames between the tunnel interface (in the rast co
text, rather than in the virtual host contexts. Table 2 summa text) and the virtual interface (on a virtual host). One way t
rizes why we made this decision, with further detail below. implement this is wittsoftware bridgingwhich is supported

Terminating the tunnel in the root context, rather than in- by Linux kernel or by some stand-alone virtualization solu-
side the container, allows the infrastructure adminietrad tions [39]. Like a traditional ethernet bridge, the softevar
impose authoritative bandwidth restrictions on users. Ap- bridge performs a lookup on the destination MAC address
plications running on a virtual host have full control over and determines where to send the packet. Software bridge
the environment in a container, including access to network enables connecting interfaces together at Layer 2 withrethe
bandwidth. To enforce isolation, Trellis must enforce @pa net semantics.
ity and scheduling policiesutside the containefTrellis ter- We explore two options for bridging EGRE tunnels to vir-
minates tunnels in the root context; an intermediate quguei  tual interfaces: (1) the standard Lintxidge module [3];
device between the tunnel interface and a virtual host’s vir and (2) shortbridge a custom, high-performance device
tual interface resides in the root context and shapes trafficthat we implemented specifically for bridging a single vir-
usingt ¢, the Linux traffic control module [22]. The vir-  tual interface directly to its corresponding tunnel indes.
tual device inside the virtual host’'s context is bridgedhwit Each option offers different benefits: the bridge module
the tunnel endpoint. This arrangement allows them to ap- offers additionalflexibility in defining the network topol-
ply traffic shaping policies and packet-filtering rules, and ogy, while the shortbridges offers bettgreed(i.e., higher



Criteria Bridge | Shortbridge

Flexibility  Multi-point | Yes No NetNs NetNS NetNS
topologies container container container

Speed No Yes

Scalability No Yes

Table 3: Design tradeoffs for using bridge vs. shortbridge.

packet-forwarding rates). We use the standard Linux bridge vserver| Ethernet Tunnel Ethernet Tunnel

in links that require point-to-multipoint connectivity;nd
shortbridgego maximize performance for interfaces that are Figure 5: High speed forwarding using shortbridges: The shdbridge
connected to point-to-point links. Table 3 summarizes the device is used to connect thetun device located inside the container

tradeoffs. which we discuss in more detail in this section with the EGRE tunnel interface. Shortbridge avoids any loolups as
! ! performed by the bridge and hence improves forwarding speed

Decision 4 When the virtual network topology requires

point-to-multipoint links, connect tunnel interfacestwitir-

tual interfaces using the Linux bridge. SpeedForwarding packets between the virtual network in-
terface and the tunnel interface must be fast, which implies
that the bridge should determine as quickly as possible out-

Flexibility Some networks require bus-like, transparent going interface on which it could send the packet. A po-

multipoint topologies, where a set of interfaces can have

the appearance of being on the same local area network Ortential b(_)ttler_1eck for tr_ansporting t_raffi_c is thus the lapk
broadcast medium. In these situations, a broadcast or mu!-at the bridgei(e., mapping the destination MAC address of

ticast packet sent from a single interface can reach all in- the ethernet frame to an outgoing port). In the case of short-

terfaces on the medium. The standard Linux bridge module _bridge, which connects only a pair of interfaces, this Iqoku

makes configuring such a topology quite easy, because it carf® trivial and is thus_ very fast. The L|_nux bndge module,
interconnect more than two interfaces. Figure 4 shows an©" the other hand, is slightly slower, since it performs sev-

example point-to-multipoint topology with the Linux bridg ;aral at(jj(j|t|onal oge:ratmns. Fort th'sd rt(;ason,t Wh;?r; paTket-
configuration. The three nodes perceive the underlying net- orwarding Speed IS paramount and theé network topology
work as connected by a single switch. need not support point-to-multipoint links, we opt to cocine

In multipoint topology case, Trellis connects an EGRE virtual interfaces to tunnel interfaces with the shortged.
tunnel to its corresponding virtual interface usingéiun, We have implemented an optimized version of the bridge

a pair of devices that transports packets from a host <:on-mOdUIe calledshortbridge We have also implemented a

tainer to the root context; and (2) the Linux bridge module, new _dewc_ezt un Wh'c.h’ unlike thee_t un device, is &in-
which emulates the behavior of a standard Layer 2 bridge glevirtual interface inside the container that the shortbeidg

in software and connects interfaces together inside the roo can connect dire.ctly.to the tu_nnel interface without requir
context ing a corresponding interface in the root context. Zhen

As shown in Figure 4et un is instantiated as pair of interface is instantiated as a single interface inside & hos
connected devices, of which one is located inside a user con-container anq connects o!lrectly to the s_hortbndg_e. Figure
tainer €t un0) and the othergt unl is located in the root shows a conﬂggranon using the shortbr!dge d.eV|ce; asingle
context. The pair oét un devices is necessary because the shortbridge device connects one virtual interfae, ¢t un

bridge lies in the root context and it must have an abstractio de\\//\;ce) tﬁ_one tun?el mterfacee{., eg_:he dhev'fbe?a b
of an interface to bridge to. Frames sent gtaun0 arrive € achieve periormance gan with shortbridge, because

atet unl, and vice versa. The Linux bridge module con- no bridge table lookup is required: traffic can simply be for-

nects the end of the virtual interface that resides in thé roo warded from the singlegr e device to the_smgle_t un dFT"
contextet uni, to the tunnel endpoint. vice, and vice versa. Second, the configuration avoids an

Unfortunately, as our experiments in Section 5 show, us- extra header copy operation by reusing the packet data struc
ing the bridge module can degrade packet forwarding per- ture for the two devices that are connected to the shorteridg

formance considerably, due to the overhead of copying the T_h|rd, this pair of devices is very restrlqteg: theun de- :

frame header, learning the MAC addresses, and perform—V'Ce aIv_vays connects to atqnnel endpomt, thus, shortbndg

ing the MAC address table lookup itselfd, to determine maintains a pre—def!ned dewce—namlng scheme Wh'gh allows

which outgoing interface corresponds to the destinatibn et eac_hzt un/et un pair to have a static mapping, avoiding po-

ernet address). When network links are point-to-poing thi tentially slow lookups.

lookup is unnecessary and can be short-circuited; thiglsi .

is the basis for the “shortbridge” optimization, whichwe de 5. Evaluation

scribe next. This section evaluates whether Trellis satisfies our three
design goalsforwarding performancescalability, andiso-

Decision 5 When the virtual links are point-to-point, con- lation. We focus in particular on Trellis’s packet-forwarding

nect tunnel interfaces with virtual interfaces using the performance compared to other possible environments for

“shortbridge”. building virtual networks, including Xen, OpenVZ, and for-



warding in user space. Our experiments show that Trellis can Node-Under- Node-Under-Test
provide packet-forwarding performance that is atipt® of

kernel-level packet forwarding rates, which is nearly a ten
fold improvement over previous systems for building viftua "
networks [10]. The rest of this section describes the exper-
imental setup and the detailed results of our performance
evaluation.

5.1 Setup (a) Native Linux Kernel  (b) Click User-Space Process
Test NodesWe evaluated the performance of Trellis and Node-Under-Tesh) Node-Under-Tesh)

other approaches using the Emulab [42] facility. The Em- Node-Under-Test Node-Under-Test

ulab nodes are connected through a switched network. All Xen DomU/

OpenVZ Context/

connections offer stable 1 Gbps speeds and negligible, LAN- NetNS Context

level delays. The Emulab nodes used were Dell Poweredge
2850 servers with 3.0 GHz 64-bit Intel Xeon processor with
1MB L2 cache, 800 MHz FSB, 2GB 400MHz DDR2 RAM
and two Gigabit ethernet interfaces. We used a customized
2.6.20 Linux kernel patched with Linux VServer and NetNS
support and used the Redhat Linux distribution. The kernel
also includes our custom kernel patches to provide support
for EGRE and shortbridge.

Source

Traffic Generation Popular network performance tools
such adperf or netperfare not sufficient for our needs, be- ) ) )
cause these tools generate packets from user space which é&hBridged Physical Interfaces  (d) Bridged Tunnels
hardly exceed more than 80,000 packets per second (pps).
Instead, we generated traffic usipgtgen[28], a kernel
module that generates packets at a very high rate. It by- [ Node-Under-Test
passes the networking stack to directly interact with th€ NI
and includes other techniques to optimize memory allonatio
for packet generation. Although it is fagigtgenoffers poor
rate control at very high speeds. We re-ran all experiments
several times to confirm that the results were not affected by Source
pktgen’'srate control problems.

The Linux kernel packet-forwarding rate follows the stan- () Direct Tunnel Termination  (f) Shortbridged Tunnels
dard system-load curve: under increasing load system per-igure 6: Experiment Setup. Each setup has a source, a sink dra
formance improves; after a certain threshold it becomes les node-under-test. The traffic from the source arrives on the pysical
effective due to overhead of processing multiple serviee re interfaces in setups (a),(b) and (c), while in setups (d), Yand (f) the
quests. To determine the peak performance, we graduallySCurce traffic goes through the tunnel interfaces.
varied load from high to low and noted the peak throughput.

Virtualization Environments In addition to the standard g 900 " other (000 PPS) . . ——
Trellis setup, we evaluated the performance of network vir- g 388 I Trellis (000 PPS) B ]
tualization by performing experiments in both a full virkua 3 600 - 578 |
ization environmentife., Xen), two container-based virtual- = 550 | 23t ]
ization environmentsig., Trellis and OpenVZ), and Click € 400t 1
. . . . E 307 312
tunnels in user space. Figure 6 summarizes the experimen- = 300 r 245 1
tal setup for each of these experiments; we discuss these ir 5 ?88 L 0 7 ]
more detail in Section 5.2. E 0 1 [
€ + Q% O A 8 O R
. : D 4 % 7
5.2 Forwarding Performance T ey, T, My Ty, e
. . : . %
In this section, we present the forwarding performance (in 60,0 o\,% S
terms of pps) for various virtualization technologies. We ”’% %,

performed packet-forwarding experiments for all of the en-

vironments shown in Figure 6 (including Xen, OpenVZ, and Figure 7: Peak forwarding performance (in pps) with 64-bytepackets.
NetNS in the case of Figure 6(d) and compared each of these

to the baseline forwarding performance of the native Linux

2.6.20 kernel. We established the topology simply by in- as shown in Figure 6(a). We evaluated scaling and isolation
stalling static routing table entries in the kernel routialgle, performance only for Trellis.
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Figure 8: Setup For Scalability Evaluation. This setup is aso used for the isolation experiment using multiple contaiars.

Sender DeMux

The goals for our experiments are two-fold. First, we 2e+06 :
study the performance of various virtualization technigjue Theoretical 1Gbps—+—
and their suitability for building virtual networks that rca 1.8e+06 Si%ﬁbfﬁrn:é _____ |
forward packets at high rates. We quantify the perfor-  1.6e+06r Bridgged o
mance overhead associated with building virtual networks & 1.4e+06| ]
with user-space packet processing or full virtualizati®ec- S er08l |
ond, we evaluate the packet-forwarding performance for var g '
ious network designs that use container-based virtuaizat 14 le+06 1 |

E 800000 1
5.2.1 Comparison of virtualization approaches 2 600000k ]

L

Click in user spaceTo evaluate the baseline performance 400000¢ |
of forwarding packets in user space, we forwarded traffic 200000 [ B ]
through a Click user-space process, as in the original PL- 0 s e
VINI environment [10], as shown in the Figure 6(b). Click 100 1000
offers flexible primitives for packet manipulation and for- Packet Size (Bytes)

warding. It can run as a user-space process or a kernel-space _ _ _ _
module. A kernel-space module cannot properly allocate re- Figure 9: Peak forwarding rate (in pps) for different packet sizes.
sources, because it exposes the whole kernel memory space

to any Click element. Our earlier PL-VINI [10] implemen-  with another container-based virtualization system. Offen
tation successfully used a user-space Click process, isut th does not provide EGRE or shortbridge features; thus, we
setup did not achieve adequate forwarding speed. connected the nodes directly, without tunnels and used-a reg

We used a simple, lightweight ClicRocket () element  ylar bridge module to connect the physical interfaces to the
to forward UDP packets. Figure 7 shows that the peak virtual interfaces. Figure 6(c) shows our configuration for
packet-forwarding rate for 64-byte packets was approxi- the OpenVZ setup and for a Trellis setup with no EGRE tun-
mately 80,000 pps. PL-VINI sustained even worse perfor- nels and a regular bridge moduig(, NetNS+VServer); this
mance because it used a large set of Click elements withsetup is analogous to our setup for the forwarding experi-
complex interactions between them. ment with Xen.

Figure 7 shows that the performance of OpenVZ is com-
parable to that of Trellis when plain ethernet interfaces
and bridging are used; with this configuration, both sys-
tems achieve peak packet-forwarding rates of approximatel
300,000 pps. This result is not surprising, because both
OpenVZ and Trellis have similar implementations for the
network stack containers. This result suggests that Trel-
lis could be implemented with OpenVZ, as opposed to
VServers+NetNS, and achieve similar forwarding rates.

Full Virtualization: Xen We measured the forwarding per-
formance of Xen by running Xen 3.0.2 on the node under
test with one guest domain. We bridged the virtual inter-
faces in DomuU (the user domain) to the physical interfaces in
the privileged domain, DomO, using the Linux bridge mod-
ule, as shown in Figure 6(c). We swapped in Xen from the
Emulab system image repository. The Emulab images are
specifically compiled for Emulab nodes. Unfortunately, we
found Xen 3.0.2 unstable under high packet load, which is
consistent with observations in other studies [25, 27]kPac S . . o
rates of more than 70,000 pps resulted in unstable behavior. 5.2.2 Optimizing container-based virtualization

Recent activity in the Xen community suggests that newer We evaluate the effects of various design decisions within
versions of Xen might have a more stable network stack that the context of container-based virtualization: In additio
offers better network performance [25]; we intend to evalu- the five environments above, we evaluated various optimiza-

ate these alternatives in the future. tions and implementation alternatives within the contéxt o
i i L . Trellis. Specifically, we examined the effects of (1) where
Container-Based Virtualization: OpenVZ and Trellis the tunnel terminates and (2) using bridge vs. shortbridge o

We evaluated OpenVZ to compare Trellis's performance poth packet-forwarding performance and isolation.

L After about 15 seconds of such load, the DomU virtual intexastopped Overhead of terminating tunnels outside of containeDi-
responding. Increasing the traffic load further, to morent6@0,000 pps, : : P : _
caused the hypervisor to crash. We repeated the experinignthe same reCtI_y te_zrmlnatlng EG_’RE tunnels 'n_Slde the Contame_r con
setup and similar hardware on our own nodes and found sibiglaavior. text inside the container contextThis approach provides
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little control over the network resources that the containe : :
uses i.e. itis not possible to schedule or rate-limit traffic on 500000
the virtual links), but it offers better performance by saya
bridge table lookup. To quantify the overhead of termirtin
tunnels outside of containers, we perform a packet forward-
ing experiment with the configuration shown in Figure 6(e).
Figure 7 summarizes these results. Directly terminating
the tunnels within the container (Figure 6(e)) achieves a

Shortbridged——
ridged =3

T
!

400000

300000 1

packet-forwarding rate of 580,000 pps (73% of native for- 200000F X, 1
warding performance); as mentioned, however, this mecha- e
nism does not provide the capability to shape or otherwise 100000} 1

Peak Rate with 64byte packets (PPS)

control outside the container. This performance gap direct

reflects the overhead of network-stack containers and EGRE . .

tunneling. 1 10 100
Number of Containers

Bridge vs. Shortbridge To evaluate the performance im-

provement of the shortbridge configuration over the stathdar Figure 10: Scalability test. Peak forwarding rate (in packes per sec-
Linux bridge module. we evaluate packet-forwarding perfor ond) for 64-byte packets for different number of concurrentcontainers.
mance in the following two setups:

e Bridge. Figure 6(d) shows the setup of bridged exper- 5.3  Scalability

iment for Trellis. A similar setup is used for evaluating e evaluate scalability of the bridge and shortbridge con-
forwarding performance in Xen and OpenVZ where figurations in Trellis by increasing the number of contain-
a bridge is used. However, in Xen and OpenVZ, the ers on the single physical node under test and measuring the
bridge joins virtual environment (or virtual machine in - corresponding throughput of the resulting flows. Figure 8
the case of Xen) with the physical interfaces on the shows the configuration that we used to test the scalabiflity o
node, but in Trellis the bridge connects the virtual en- Trellis’s container mechanism for both the bridge and short
vironment to EGRE tunnels. bridge configurations. As with the packet-forwarding rate
e Shortbridge. We replace the Linux bridge module experiments, we use the bridged and shortbridged setups as
with our custom high-performance forwarding module shown in Figure 6(d) and Figure 6(f), respectively.
shortbridgeto connect virtual devices with their corre- Our tests show that Trellis can support at least 64 con-
sponding physical devices, as shown in Figure 6(f). We current virtual networks without a noticeable degradaiion
perform this experiment to determine the performance performance. As can be seen from Figure 10, in the case of
improvement over the regular bridging setup. the shortbridged configuration, the forwarding perforneanc
. i . ) ) decreases from 525,000 pps with one container to 70,000 pps
The shortbridge configuration achieves a forwarding rate ity 512 containers. In the bridged configuration, the deop |
of 525,000 pps (about 67% of native forwarding perfor- mqre gramatic because each container uses two bridges. The
mance). The performance gain over the bridge configura-a1e starts at 250,000 pps with one context and ends with
tion results from avoiding both C(_)pying the ethernet frame 10,000 pps combined throughput for 512 containers. Pro-
an extra time, as well as performing bridge table lookup for fjjing the bridged configuration showed that several factors
each ethernet frame. The bridged setup can forward packet$iroduced overhead, including checking the consistericy o
at around 250,000 pps. the ethernet header, copying the packet header, and perform

5.2.3 Effects of packet size on forwarding rate ing a table qukup and update. Furthermore, as t_he number
, ) . of containers increases, the overhead for forwarding,@nca
Figure 9 shows how the packet-forwarding rate varies gjation and decapsulation consumes most of the CPU.
with packet size, for the bridge and shortbridge configu- — another notable feature is the sharp drop in the forward-
rations, with respect to the theoretical capacity of th& lin 4 yate with shortbridge when the number of containers is

and the raw kernel forwarding performance. The nearly flat hetyeen 64 and 80. There are many possible explanations
lines in the bridged and shortbridged configurations in@ica ¢, this degradation, including shared data structures; li

that Trellis packet-forwarding performance does not cleang jted hardware caches, etc. We are still investigating tioé ro
much as the packet size changes. This result is expectede,,se of this behavior.

because all packet processing happens in-kernel and most

operations are performed only on the packet header. For .

larger packets, the rate is limited by the 1 Gbps link. Tsalli 9.4 Isolation

packet-forwarding performance with the shortbridge cenfig ~ To understand how Trellis would perform in scenarios

uration approaches the performance of native forwarding fo with many virtual networks operating in parallel, we eval-

256-byte packets; for 512-byte and larger packets, both theuate how Trellis provides isolation with multiple virtuat

bridge and shortbridge configurations saturate the ouggoin works running concurrently. Our results show that Trellis

1 Gbps link. can prevent traffic on one virtual network from interfering
with traffic from other virtual networks that are using the
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Flow 1 No other load Disk-bound CPU-bound

(kpps) | CPU (%) | Loss (%) ] Jitter (ms)| CPU (%) | Loss (%) ] Jitter (ms)| CPU (%) | Loss (%) Jitter (ms)
0 20 0 0.030 31 0 0.030 18(82) |0 0.030
500 92 0 0.049 100 0 0.080 97 (3) 0 0.102
800 100 25 0.063 100 26 0.120 100 (0) | 32 0.110

Table 4: This table summarizes the results from the isolatio experiment using setup as shown in Figure 11. We performechtee different experi-
ments: when the forwarding node had no other load, a disk boud process and a CPU bound process running. The rows show theselts for each
experiment for three different rates of Flow 1. For the CPU-ound experiment, the numbers for CPU usage in parenthesis siws the CPU utilization
by the CPU-bound process.

interference from disk-bound 1/O. In our ongoing work, we

”””””””””” Receiver are studying the isolation properties of Trellis in moreadlet
and in more complex deployment scenarios.
We also evaluated the effects increasing the number of
Node B containers carrying traffic on the jitter induced by the for-
Sender Recaiver) warding nodeF' by establishing 32 concurrent containers,

introducing background traffic on the other 31 containers,
and measuring the jitter on one remaining flow at the re-
ceiver. For this experiment, we use the same setup as shown
N < in Figure 8. We did not observe any significant jitter; the
Node € Node F Node D results were consistent with the ones described in Table 4.
Due to our inability to obtain a very large cluster of physica
Figure 11: Setup for the isolation experiment. nodes, all traffic flows—both the flow on which the resulting
jitter was measured was sent from the same nodes and the
) _ _ ~ background traffic—were sent from the same physical ma-
same physical network. We evaluated isolation of experi- chine, which may have affected the jitter seen at the receive
ments under various load conditions of the forwarding node. jn addition to any contributions to jitter at the forwarding
Figure 11 shows the topology that we used for the first node. We intend to investigate this result in more detail.
part of the experiment. Traffic flows from nodeto nodeB
(Flow 1) and from node& to nodeD (Flow 2). All traffic .
uses nodé’ for forwarding. Node has two containers: one 6. Ongoing Work
container serves traffic for Flow 1, and the other container This section describes our ongoing work on Trellis. We
serves traffic on Flow 2. The setups uses the shortbridge todescribe ongoing work in three areas: supporting high-
connect virtual interfaces with physical interfaces andREG ~ performance custom data planes, managing and allocating
tunnels to connect nodes. We used the Lipkx gen mod- physical resources, and implementing link schedulingidisc
ule to generate packets for Flow 1 at a rate that is close to theplines to achieve better isolation.
forwarding capacity of nodé'. We used thé per f utilit .
to genera?e FE)W 2)./ We varied the traffic ra?e of Flowyl us- 6.1 Supporting Custom Data Planes
ing thetraffic control[22] utility in Linux to shape the traffic The current Trellis implementation uses container-based
and measured the resulting jitter and loss rate on as seen byirtualization. Thus, building a virtual network with a cus
the receiver at Flow 2. We used a hierarchical token buckettom data plane (either in Trellis or in any virtual network en
(HTB) filter to control the offered traffic load on Flow 1. vironment) requires forwarding packets either througir use
Table 4 summarizes the results of this experiment. When space or, in the case of Xen, a driver domain; these ap-
the CPU utilization at the forwarding nod€ was below proaches are significantly slower than forwarding packets i
100%, Flow 2 experienced no loss and only negligible jit- the kernel. Many virtual network deployments and exper-
ter. When Flow 1 sends 800 kpps ('000 pps), CPU utiliza- iments will not require custom data-plane operationg(
tion at I becomes 100%, Flow 2 experiences loss, but jitter non-IP forwarding), but we believe that ultimately some of
is still negligible for packets that’ did not drop. To mea-  them will require a custom data plane.
sure the possible impact of other interference, we ran two We are investigating mechanisms that would allow vir-
additional experiments: a disk-bound 1/O process,(gen- tual hosts to define custom data planes and still achieving
erating hard and soft interrupts) on the forwarding nége  fast performance. One option is to use Linux kernel-based
and a CPU-bound process 6h In both cases, the loss and virtual machines, which exploit hardware support for vir-
jitter exhibited the same behavior as in the original experi tualization to achieve performance that is close to that of
ment: as long as the amount of CPU load due to forwarding the native operating system [2]. KVM has a special guest
packets remained below 100%, packet loss and jitter weremode that, through a user-space emulator, interacts with a
negligible. We were not surprised that a CPU-bound processdevice driver for managing the virtualization hardwar® 1/
had no impact (since in-kernel packet forwarding preempts in KVM avoids costly context switches and interrupt pro-
a running user-space process) but we expected to see moreessing, which could make it possible to implement a cus-

iperf
(server)

iperf
(client)

\_ Root Context Y,
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tom data plane by running custom packet-processing soft-6.3 Resource Scheduling and Isolation

ware €.g, Click-based applications) as a KVM guest. It aAthough our experimentsin Section 5.4 suggest that Trel-
remains to be seen whether this model can provide both flex-jis already provides good resource isolation, we belieg th
ibility and fast packet forwarding. more complex usage scenarios and applications, as well as
Another alternative for supporting custom data planes |arger virtual networks, might still trigger cases wherdiin
would be to sub-divide the kernel memory itself, dedicating y;iqual virtual networks see behavior that differs from that

in-kernel memory to explicit processes in user spa@ (  which it would see if the network were running on dedicated
dedicating memory to each container). This model is analo- p5rgware.

gous to the approach that Supercharged PlanetLab (SPP) has one example that deserves further study is the schedul-
taken to virtualize forwarding hardware [37]. This approac ing of virtual links. Trellis’s traffic shapers on individua
would create a static mapping between each virtual host andinterfaces can ensure that no virtual interface exceeds its
kernel data structures; an experiment's special data-struc gjjgcated capacity; unfortunately, this traffic shapingsio
tures could be defined by the user using a Click-like speci- ot guarantee that each virtual link will see packet service
fication, checked at compile-time, and installed as a kernel (3tes that equate to those it would see in the case that it
module. had a dedicated link. For example, some scheduling disci-

plines might cause traffic in some virtual networks to expe-

rience temporary starvation, introducing jitter or padkes.

. Although the container-based virtualization communitg ha

6.2 Resource Management and Allocation made some progress in ensuring that each container sees

This paper has described the mechanisms by which a vir-some minimum level of performance., OpenVZ's Bean-
tual network can be created and hosted on shared, com-counters [14]), more work is needed to determine appropri-
modity hardware, but it has not tackled the allocation and ate service disciplines for scheduling the outgoing plajsic
management of the physical resources. This managemeninterface to different tunnel interfaces. Previous work on
requires two components: (1) a system for maintaining in- the performance guarantees offered by various service dis-
formation about the “inventory” of the physical network and ciplines [43], which were originally designed for multi4ho
what resources have been allocated; and (2) algorithms forend-to-end paths, might apply for scheduling service on a
embedding a virtual network topology on to the physical in- single virtual link.
frastructure.

To solve the problem of maintaining information about
available physical resources, we envision a software dis—7 Conclusion
tribution for Trellis that is analogous to PlanetLab’s My- )

PLC [4]. The MyPLC distribution packages the same This paper has presented Trellis, a platform for scalably
software base that operates the public PlanetLab facility. hosting virtual networks on commodity hardware. Trel-
Like PlanetLab, MyPLC allocates VServers to collections liS allows each virtual network to define its own topology,
of physical nodes and maintains information about how re- routing protocols, and forwarding tables, thus lowering th
sources have been allocated on each node, as well as statiarrier for enterprises and service providers to define cus-
tics about usage and load on each node. Trellis's managefom networks that are tailored to specific applications or
ment system would be slightly more complicated because USers. Trellis uses network V|rtual|zat|0n.to a!low mukip

it must maintain information about allocations on network Virtual networks to share the same physical infrastructure
links (where actual usage can be quite variable). Ultinyatel '_rhe p!atform integrates host_and network stack virtualiza-
we plan to package Trellis, including software for resource tion with tunneling technologies and our own components,
management, as a standalone distribution that anyone caffGRE tunnels and shortbridge to create a coherent frame-
use to operate and own a virtual network hosting platform. Work for building fast, flexible virtual networks.

The network manager must determine an allocation of re- _ While many of these technologies have existed for some
sources that satisfies the requests of many virtual networkstime, we believe our combination of these components pro-
running in parallel. This allocation boils down to an embed- Vides not only a useful system but also important lessons
ding problem: given an underlying physical topology (phys- for combining various host and link virtualization techmol
ical nodes, and links), and potentially many requests for vi  9i€s to I_Jund virtual networks. We have implemented Trellis
tual networks to be hosted on the infrastructure, determine Using Linux-VServer, NetNS, and EGRE tunnels and com-
the best way to embed the virtual topologies onto the under- Pared the speed, flexibility, and isolation of our systenhwit
lying physical topology. The embedding problem is chal- €Xisting techniques for building virtual networks. Whilg-a
lenging because it involves allocation of many resources, |  ditional work remains to improve Trellis’s resource manage
cluding CPU, link bandwidth, and memory. Additionally, Ment, allocation and scheduling, we believe our design to
to maximize utilization, the allocation mechanism miglyt tr € & promising step for building virtual networks from com-
to “overbook” links by taking advantage of statistical mul- modity hardware. Ultimately, we hope that Trellis can be
tiplexing across virtual networks. A few recent attempts to for virtual routers and networks what software routers have
tackle embedding a virtual network topology on a physical done fpr routing: a scalaple, fast_, low-cost alternative fo
topology [30, 44] suggest possible starting points for e n ~ deploying virtual networks in practice.
work embedding problem in Trellis.
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