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Accurate Traffic Splitting on SDN Switches
Ori Rottenstreich, Yossi Kanizo, Haim Kaplan and Jennifer Rexford

Abstract—Traffic splitting is essential for load balancing over
multiple servers, middleboxes, and paths. Often the target traffic
distribution is not uniform (e.g., due to heterogeneous servers
or path capacities). A natural approach is to implement traffic
split in existing rule matching tables in commodity switches. In
this paper we conduct an analytical study to understand this
ability of switches. To do that, we indicate on a surprising strong
connection between the description of distributions in switches
to signed representations of positive integers. We introduce an
optimal algorithm that minimizes the number of rules needed
to represent a weighted traffic distribution. Since switches often
have limited rule-table space, the target distribution cannot al-
ways be exactly achieved. Accordingly, we also develop a solution
that, given a restricted number of rules, finds a distribution
that can be implemented within the limited space. To select
among different solutions, we describe metrics for quantifying
the accuracy of an approximation. We demonstrate the efficiency
of the solutions through extensive experiments.

Index Terms—Load Balancing; Software Defined Networking;
Ternary Content Addressable Memory

I. INTRODUCTION

Traffic splitting is a commonly required capability in mod-
ern networks for balancing traffic over multiple network paths
or servers. Traditionally, load balancers rely on dedicated mid-
dleboxes, servers or hardware switches for traffic splitting [2],
[3], [4], [5]. Equal-cost multi-path routing (ECMP) [6], [7]
is a common approach to achieve a uniform distribution by
hashing the packet header. While ECMP achieves a uniform
distribution, sometimes the desired distribution is not uniform.
When servers are heterogeneous, more traffic should be sent
to servers with more resources (e.g., CPU, memory, and
storage). In irregular topologies, the network may need to split
traffic unevenly among output ports when different paths have
different costs. Furthermore, even regular topologies (e.g., fat-
trees) can become irregular upon a link or switch failure.

WCMP (weighted cost multipathing) [8] generalizes ECMP
for non-uniform distributions. While also relying on hashing,
a variable number of entries is required for implementing the
different distributions. Achieving high accuracy for skewed
distributions, sometimes requires an unrealistic number of
memory entries (e.g., at least proportional to the ratio between
the largest and smallest weights).

One can also consider addressing load balancing through
maintaining some state within stateful switching devices such
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as those supporting P4. A recent study [9] indicates that main-
taining a state for all active connections, is typically impossible
in the memory available in latest generations of switching
ASICs. Authors mentioned that the capacity of forwarding ta-
bles is typically larger than that of stateful memories available
to implement stateful algorithms in switches. Moreover, our
approach also allows the aggregation of multiple connections
in a single memory entry. Another potential issue is that
to maintain per-connection consistency in stateful memories
during updates, some connection states might need to be
maintained externally in an expensive process. On the contrary,
consistent updates of the content of forwarding tables can be
relatively simple [10].

In the last years several schemes capitalize on the rule
matching tables (implemented typically by Ternary Content
Addressable Memory (TCAMs)), commonly available in com-
modity switches, to implement traffic splitting (e.g., [11] and
Niagara [12]). A part of the packet header (e.g., the destination
or the source IP field) is compared in parallel against a list of
rules and traffic is forwarded according to the highest-priority
matching rule. (Priority is usually implemented by ordering
the rules, early rules in the order are of higher priority.)
We address the problem of how to construct such tables that
implement exactly or approximately a given distribution.

We restrict the tables to consist of prefix rule (wildcards
are consecutive at the end of the rule). While TCAMs support
general wildcard matches, common approaches for policy
representations are limited to the use of prefix rules (e.g., [11],
[13]). A critical reason is that finding a concise representation
of a given mapping has a polynomial time algorithm for prefix
rules [14], [15] while the problem is known to be NP-hard
for wildcard matching [16]. Moreover, following the high
power consumption of TCAMs such restricted implementa-
tions might allow some power saving [17], [18]. This typical
restriction also appears in Niagara [12]. Likewise, recently
suggested programmable switch architectures such as RMT
and Intel’s FlexPipe [19], [20] include various match-action
tables and in particular tables restricted to prefix matching.

Assume traffic has to be split into k = 3 servers in
ratio of 2:3:5 based on matching W = 8 bits of the
header. This implies a target (unnormalized) distribution
of C = (0.2 · 2W , 0.3 · 2W , 0.5 · 2W ). Assume that the
W = 8 traffic bits are uniformly distributed with values in
{00000000, . . . , 1111111}. As illustrated in Table I, with three
allowed rules, our target distribution C is best approximated as
D1 = (64, 64, 128) = (0.25 ·2W , 0.25 ·2W , 0.5 ·2W ) meaning
that 64 bit combinations are mapped to server 1, another 64
bit combinations are mapped to server 2, and the remaining
128 are sent to server 3. With four rules a distribution of
D2 = (48, 80, 128) = (0.1875 ·2W , 0.3125 ·2W , 0.5 ·2W ) can
be implemented, with a higher similarity to C (as formally



Target distribution C
= (0.2 · 2W , 0.3 · 2W , 0.5 · 2W ) ≈ (51, 77, 128)

n1 = 3 rules n2 = 4 rules n3 = 6 rules
00****** → 1 0000**** → 2 00000000 → 1
01****** → 2 00****** → 1 0000001* → 1
1******* → 3 01****** → 2 0000**** → 2

1******* → 3 00****** → 1
01****** → 2
1******* → 3

Output distribution D
D1 = (64, 64, 128) D2 = (48, 80, 128) D3 = (51, 77, 128)

TABLE I
APPROXIMATING THE TARGET DISTRIBUTION C WITH A LIMITED NUMBER

OF n RULES. RULES ARE DEFINED ON W = 8 BITS AND ARE ORDERED
ACCORDING TO THEIR PRIORITIES. THE FIRST MATCHING RULE APPLIES.

defined later). With six rules an even closer distribution
D3 = (51, 77, 128) ≈ (0.1992 · 2W , 0.3008 · 2W , 0.5 · 2W )
to C can be implemented.

If traffic is split based on the destination IP for instance,
W = 32 in IPv4 and W = 128 in IPv6. Accordingly, exactly
implementing a distribution by dedicating a rule for each of the
2W possible bit combinations is impractical. TCAM memories
are often restricted to thousands of rules (for instance, the
above mentioned Intel’s FlexPipe architecture [20] includes
tables with up to 64K prefix rules), such that the majority of
the memory is used for other tasks like classification. A critical
reason that is high power consumption of TCAMs, known
to be roughly proportional to their number of entries [21].
While an application might require a representation of high
accuracy, little is known about the number of rules required
to perform traffic split to within some prespecified accuracy,
and how to optimally utilize a given number of rules to
maximize accuracy. There are two previous papers, which we
are aware that address the problem of how to split traffic
by rule matching. The work of [11], uses disjoint rules,
that is each packet is matched only by a single rule. This
unnecessary restriction increases the table size. The work of
Kang et al. [12] suggests an algorithm named Niagara. They
did not provide any theoretical guarantees for Niagara but
demonstrated empirically that it efficiently generates compact
table. We conjecture that Niagara (or a slight variation of it)
does compute the smallest set of rules required to exactly
implement a given distribution (in which the probabilities are
multiples of 1/2W ).

Our contributions. In Section II we formalize the following
two basic optimization problems: 1) The Exact problem:
Find the smallest set of prefix rules that implement a given
target distribution (assuming it is implementable). 2) The
Approximate problem: Given a target distribution and a re-
stricted number of rules, find the set of rules implementing a
distribution which is “closest” to the target distribution among
all distributions implementable within the constrained rule
number. We consider two metrics to measure the distance
between distributions. A first metric refers to the server with
a maximal excess traffic while the second metric refers to the
average error in the amount of allocated traffic over servers.
The difficulty of the problems highly depends on the number
of servers the distribution is defined for and accordingly we
take this number into account in the design of our approach.

We first consider the case of splitting traffic to two servers in
Section III. In this case we give efficient algorithms computing
optimal solutions for the Exact and Approximate problems (for
both metrics). We show a connection between the optimal
solution for the Exact problem to particular signed bit repre-
sentations of integers [22], [23]. Specifically, we characterize
the number of rules in the optimal solution of the Exact
problem in terms of the smallest weights of a signed bit
representations of the integers specifying the distribution. This
characterization also suggests how to obtain an optimal set of
rules. One can verify that the solution computed by Niagara for
the Exact problem given two servers obeys our characterization
and is therefore optimal. For the Approximate problem we
observe that for two servers our two metrics are the same, and
we use the relation with the signed representations to give an
optimal algorithm also for this problem.

We generalize our approach to the case of an arbitrary
number of servers in Section IV, V and describe an optimal
algorithm for the Exact problem that is efficient for a small
number of servers. To do that, we first introduce a represen-
tation of a distribution over multiple servers by describing
rule interactions between all pairs of servers. We show that
the optimal solution can be found while restricting these
interactions to be of a specific form. In all our experiments we
observed that the number of rules that our algorithm computes
is identical to the number of rules computed by Niagara, which
supports the conjecture we made above. Finding an optimal
polynomial time algorithm for the Approximate problem for
an arbitrary number of servers (or proving that it is NP-hard)
is an intriguing open question.

II. TRAFFIC SPLITTING PROBLEM

The input is a target traffic distribution C = (c1, . . . , ck)
describing the relative amount of traffic required by each of
the k servers [1, k]. Traffic is split between servers based on
matching rules examining a field in the packet header. Let
W describe the length in bits of this field in the header. We
assume that ci > 0 (∀i ∈ [1, k]) and

∑
i c
i = 2W , so the

target distribution C = (c1, . . . , ck) is already “rounded” and
specified by integers ci’s that sum up to 2W , which is the total
number of bit combinations in the designed header field.

The field value is assumed to be uniformly distributed. That
is every bit combination among the 2W possible ones has the
same probability to appear in traffic. While this assumption is
not generally true, we observe that: (i) There are some bits
for which this is true, e.g., the least significant bits in many
cases. That’s enough for us and we can simply refer only to
those bits; (ii) in some applications such bits can be achievable
through the use of hash function (supported in recent versions
of the P4 switch programming language [24]); Or (iii) there
are ways to generalize some of our schemes to work around
known non-uniformities which we will address in future work.

A matching rule is of the form (s1 . . . sW ) → a where
si ∈ {0, 1, ∗} and the wildcard ∗ stands for a don’t care. It
is composed of a matching pattern (s1 . . . sW ) and an index
a ∈ [1, k] of a server. Rules are assumed to be of the form
of prefix rules where we refer to the matching pattern simply
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as a prefix. A prefix rule has a prefix of length ` ∈ [0,W ]
describing the number of first bits it examines and si = ∗ for
i ∈ [` + 1,W ]. We say that a packet with a bit combination
b1 . . . bW (as its field value) matches a rule s1 . . . sW iff si =
bi ∀i ∈ [1, `]. Intuitively, a prefix rule of length ` ∈ [0,W ]
corresponds to a subtree of size 2W−` in the W -bits trie. The
subtree includes the bit combinations the rule matches. The
rule matching process relies on a semantics named Longest
Prefix Match (LPM). In case of a match in multiple rules, the
longer more specific one is prioritized. Rules are ordered in
a non-increasing order of their prefix lengths so that the first
among multiple matches is with the longest prefix.

We refer to the number of bit patterns which are first
matched by a rule as the effective weight of this rule. The
effective weight determines the amount of traffic sent to the
corresponding server based on the rule. We assume that all
traffic is matched by at least one rule. We can see the set
of rules as defining a function that maps each of the 2W bit
combinations [0, 2W − 1] in the header space to one of the
k possible server indices. We refer to the distribution implied
by the selected rules as D = (d1, . . . , dk) where di ≥ 0 is the
total amount of traffic to server i, i.e., the sum of the effective
weights of rules pointing to server i ∈ [1, k]. We say that D
is the output distribution. Since all traffic is assumed to be
matched by at least one rule, D satisfies that

∑
i d
i = 2W .

Ideally, we would like to have D = C, meaning that di = ci,
∀i ∈ [1, k]. Therefore our first optimization problem is defined
as follows.

Problem 1. Given a target distribution C for k servers.
Find an exact representation of the function within a minimal
number of rules.

In many scenarios, the number of available rules is limited
and it may be impossible to realize a specific target distribution
C with the number of available rules. We define two metrics
to measure the dissimilarity of C and D when D 6= C. The
first is the maximum deviation of a server i above its target
load ci. The second is the average deviation or the `1 norm
of D − C.

Definition 1. (Dissimilarity Metrics) Consider a target distri-
bution C for k servers. For a given output distribution D, a
metric G examines the maximal amount of excess traffic in a
server,

G(D) = max
i∈[1,k]

(
max

(
di − ci, 0

))
= max
i∈[1,k]

(
di − ci

)
.

Likewise, a metric H examines the average amount of error
in the required traffic amount,

H(D) =
1

k
·
k∑
i=1

|di − ci|.

In the second optimization problem we are interested in a
distribution with a constrained number of rules.

Problem 2. Given a target distribution C for k servers and
an upper bound n on the number of rules. Find a distribution
D represented by at most n rules that minimizes G(D) or
H(D).

In particular, when we can implement C with at most n rules
then D = C and we have G(D) = H(D) = 0. Larger rule
number n can enable finding a distribution closer to the target
distribution, achieving smaller dissimilarities, for both metrics.
For a given target distribution C and a number of allowed
rules n we denote by GOPT , HOPT the optimal values of the
metrics G(D) and H(D), respectively.

The same output distribution can be achieved by imple-
menting different functions. For instance, the distribution
( 1
4 · 2

W , 34 · 2
W ) can be obtained by the rules (00*. . . *** →

server 1, ***. . . *** → server 2) as well as by the rules
(11*. . . *** → server 1, ***. . . *** → server 2), describing
two different mappings. Accordingly, the requirement for a
specific traffic distribution does not imply a unique mapping.

This flexibility leads to an inherent difficulty. While it is
easy to find a representation with a minimal number of (prefix)
rules for a particular mapping (e.g., by the ORTC algorithm or
similar alternatives [14], [15]), finding the most concise (exact)
representation of a target distribution can be challenging since
many possible mappings have to be considered. Furthermore,
finding a closest representation given a specific number of
rules can be even harder.

Since our model requires that all traffic is matched by the
set of rules, we assume without loss of generality that the last
among the n rules is a match-all (default) rule with a matching
pattern **. . . **. In any set of rules we can replace the last
rule to be a match-all (without modifying its target) and get
an equivalent set of rules of the same size.

Finally, throughout this paper, when looking for optimal rule
sets, we can consider only sets given in a compressed form as
defined below.

Definition 2. A compressed-form prefix rule set is an ordered
set of rules, where for each rule ri in the set, the first colliding
lower-priority rule rj (i) has a shorter prefix, i.e. a larger
number of wildcards, and, (ii) is mapped to a different server.

By the above property of two intersecting prefixes, if
condition (i) in Definition 2 is not met then rj can be removed
from the set, while if condition (ii) is not met then ri can be
removed; both remove operations do not affect the mapping
that the original rule set implements. Note that a compressed
form is not necessarily the most concise way to represent a
function.

III. THE CASE OF TWO SERVERS

In this section we consider the case of two servers. We
present a simple mapping that realizes a given target distribu-
tion with a minimal number of prefix rules. This enables us
to calculate the number of required rules for realizing a target
distribution. Such information can help a network designer to
estimate the number of rules available in a switch for other
common tasks such as forwarding and traffic measurements.
Furthermore, given a specific number of rules, we describe
how to select them so that the distribution D which they realize
minimizes G(D) and H(D). Let OPTC be the minimal
number of prefix rules required to obtain an output distribution
that equals a target distribution C = (c1, c2).
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A. Representation as a range function

Different functions can be implemented to realize C. The
next theorem shows that an optimal number of rules can
always be achieved by a function that partitions the address
space [0, 2W − 1] to two consecutive ranges, such that bit
combinations from the first range are mapped to server 1 and
bit combinations from the second range are mapped to server
2.

Theorem 1. For a given target distribution C = (c1, c2) with
k = 2 servers, there exists a set of OPTC rules implementing
a function FC satisfying FC(x) = 1 for x ∈

[
0, c1 − 1

]
and

FC(x) = 2 for x ∈
[
c1, 2W − 1

]
.

Proof. Consider an ordered set S of prefix rules that realizes
the distribution C = (c1, c2). We show how to construct an
ordered set of prefix rules R implementing the function FC
such that (i) FC satisfies FC(x) = 1 for x ∈

[
0, c1 − 1

]
and

FC(x) = 2 for x ∈
[
c1, 2W − 1

]
, and (ii), |R| ≤ |S|.

Recall our Definition 2 regarding the compressed-form re-
quirement. Furthermore, without loss of generality we assume
that the last match-all rule in S is mapped to server 2. Thus,
we can express the number of distinct bit combinations c1

that are mapped to server 1 by using a linear combination of
powers of two. Let bi be the number of wildcards in the i-th
rule, and define ai as follows:

ai =

{
1 i-th rule is mapped to server 1,
−1 i-th rule is mapped to server 2.

Then, we get that

c1 =

W−1∑
j=0

qj · 2j , (1)

where qj =
∑
i,bi=j

ai, that is, qj equals the total number
of prefix rules with j wildcards that are mapped to server 1,
minus those with j wildcards that are mapped to server 2.

We denote by Q = (qW−1, . . . , q1, q0) the vector of the
coefficients of the powers of two in Equation (1). Note that
the shortest prefix, that is, the one with the largest number of
wildcards, excluding the last match-all rule, may have at most
W − 1 wildcards.

The elements in Q will be used to construct the alternative
ordered set of prefix rules R that satisfies the required prop-
erties of this theorem. In this construction, in addition to a
match-all rule, the number of rules in R will be exactly as
the sum of the absolute values of the elements in Q. By the
definition of Q, the number of rules in R will be at most the
number of the rules in S.

We further simplify Q by operations on its elements:
• For j ∈ [0,W − 2] such that qj ≥ 2 set qj := qj − 2 and
qj+1 := qj+1 + 1.

• For j ∈ [0,W − 2] such that qj ≤ −2 set qj := qj + 2
and qj+1 := qj+1 − 1.

Each of these two operations preserves Equation (1), and it
lowers the sum of absolute values of the elements in Q by at
least 1. We perform either of these operations repetitively until
they do not apply anymore. The resulting vector Q satisfies
that

# rule mapping
1 11010 server 2
2 0011* server 1
3 1101* server 1
4 001** server 2
5 101** server 1

# rule mapping
6 110** server 2
7 10*** server 2
8 00*** server 1
9 1**** server 1
10 ***** server 2

(a) Input rule set (with 10 rules, defined over W = 5 bits), that yields a
distribution of (15, 17) of the 2W = 32 bit combinations.

0 8 16 24 31

(b) graphical illustration of the input rule set

0 8 16 24 31

(c) graphical illustration of the resulting rule set (with 3
rules) that describes a simpler function and yields the same
distribution (15,17)

Fig. 1. An example of the technique described in the proof of Theorem 1:
(a) an example rule set given in a compressed form defined over W = 5
bits, (b) a graphical illustration of the rule set, and (c) a graphical illustration
of the resulting rule set (01111 → server 2, 0**** → server 1, ***** →
server 2). Clear white and solid blue rectangles correspond to rules mapped
to server 1 and server 2, respectively.

• For the largest j for which qj 6= 0, qj = 1.
• The vector Q has at most W elements.
• For each j ∈ 0, . . . ,W − 1, |qj | ≤ 1.
Finally, we construct the prefix rule set R. We first select

the last match-all rule as in S (mapped to server 2), and then
we add rules with an increasing order of their priority by going
over the elements of Q.

Specifically, set u = 0, and for each of the elements of Q
(from j = W − 1 to j = 0):
• If qj = 1, add the rule

[
u, u+ 2j − 1

]
→ 1, and set

u := u+ 2j .
• If qj = −1, add the rule

[
u− 2j , u− 1

]
→ 2, and set

u := u− 2j .
• Skip if qj = 0.
In the last construction, the number of rules in R is not

larger than that of S, and the function FC defined by the rule
set R satisfies FC(x) = 1 for x ∈

[
0, c1 − 1

]
and FC(x) = 2

for x ∈
[
c1, 2W − 1

]
. Therefore, the theorem follows.

The construction of the new rule set R given the rule set
S as described in the proof of Theorem 1 is illustrated in the
following example.

Example 1. Given the rule set S in Fig. 1(a) which
is illustrated graphically in Fig. 1(b), the vector Q =
(q4, q3, q2, q1, q0) is initially equal to (1, 0,−1, 2,−1). The
reason q2 = −1 is due to the rules with 2 wildcards which
are rules 4, 5, and 6. These rules are mapped to servers
2,1, and 2, respectively. Therefore, a4 = −1, a5 = 1, and
a6 = −1, which sum up to q2 = −1. The number of
bit combinations that are mapped to server 1 is given by
c1 = 1 · 24 + 0 · 23 − 1 · 22 + 2 · 21 − 1 · 20 = 15.

4



The only element with an absolute value greater or equal
to 2 is q1. Therefore, we apply the simplification process on
q1 and get that q1 := q1 − 2 = 0 and q2 := q2 + 1 = 0. The
resulting vector Q = (1, 0, 0, 0,−1) has no element with an
absolute value greater than 1. Hence, this process is over.

To construct the rule set R, we first take the match-all
rule as in S (mapping to server 2). We set u = 0, and
go from left to right over the elements of Q. For q4 we
add the rule

[
0, 24 − 1

]
→ 1, and set u = 16. We skip

q3, q2, and q1 since they equal 0, and last, for q0, we add
the rule

[
24 − 20, 24 − 1

]
→ 2. Fig. 1(c) shows a graphical

illustration of the resulting rule set S = (01111 → server 2,
0**** → server 1, ***** → server 2).

B. Calculating the cost of a given distribution with signed
representations of positive integers

Following Theorem 1, we express the minimal number of
prefix rules OPTC required to follow (exactly) a target dis-
tribution C = (c1, c2) by relating it to signed representations
of positive integers. As mentioned, this can be useful for a
network designer to determine the number of rules available
for other tasks such as forwarding and traffic measurements.

Unlike the regular binary representation, in the signed-bit
representation an integer is described as a sum of positive and
negative powers of two. We now define it formally, following
the terminology of [23].

Definition 3. A signed-bit representation of y ∈ Z is given by
a sequence Q = (qt, qt−1, . . . , q0), such that y =

∑t
i=0 qi · 2i

and ∀i ∈ [0, t− 1] , qi ∈ {−1, 0, 1} and qt ∈ {−1, 1}. We
refer to t + 1 as the length of the representation and to the
number of non-zero qi’s as the weight of the representation.
The integer 0 is represented by the empty sequence denoted
by ().

Unlike the regular binary representation, which is unique,
there are multiple signed-bit representations for a given integer
y ∈ Z. Consider for instance the integer y = 7. While
the unique binary representation (1, 1, 1) is also a signed-bit
representation (satisfying 7 = 4 + 2 + 1 = 22 + 21 + 20),
another signed-bit representation is (1, 0, 0,−1) (satisfying
7 = 8− 1 = 23 − 20). The last representation has a property
captured in the following definition.

Definition 4. A signed-bit representation of an integer y ∈
Z is said to be in a non-adjacent form if there are no two
non-zero adjacent signed bits, that is, ∀i ∈ [1, t] , if qi 6=
0 then qi−1 = 0.

By [23] positive integers have a unique non-adjacent form.
This can be easily generalized for any integer.1

Property 1. All integers have a unique non-adjacent form
representation.

It is easy to derive the non-adjacent signed-bit form rep-
resentation of an integer. Start with its binary representation

1Clearly, this property of positive integers applies for any integer since we
can negate a represented number by negating the signed bits in its signed-bit
representation. Similarly, there is only one representation for 0.

and while beginning from the right bit, replace any sequence
of 0, 1, 1, . . . , 1, 1 by the sequence 1, 0, 0, . . . , 0,−1 of the
same length (where the most significant 1 bit of the assigned
sequence can be considered as the least significant 1 bit of the
next sequence to be replaced).

As we show later, we are interested in the weight of the
representation since it relates to the number of prefix rules
required to follow a distribution. The following property is
due to [23].

Property 2. For all integers, the non-adjacent form has a
minimal weight among all signed-bit representations.

Notice that for some integers, in addition to the unique non-
adjacent form, there can be additional signed-bit representa-
tions that also achieve the minimal weight.

For an integer x, we denote by φ(x) the weight of its non-
adjacent form representation. It is easy to calculate φ(x) by the
above computation of the non-adjacent form. Clearly, φ(x) =
φ(−x). Notice that for a distribution C =

(
c1, c2

)
of k = 2

servers, we have c1 + c2 = 2W and accordingly |φ(c1) −
φ(c2)| ≤ 1. To represent cj in a signed bit representation we
can always negate a representation of the other value c3−j

and add a coefficient of 2W (achieving a representation with
a weight that is at most larger by one and thus by Property
2 the weight of a non-adjacent form cannot be larger). We
characterize the minimal required number of rules to exactly
represent a distribution.

Theorem 2. Consider a target distribution C =
(
c1, c2

)
. The

minimal number of rules OPTC required to realize C, is given
by min(φ(c1), φ(c2)) + 1.

Proof. We first show that we can realize C with
min(φ(c1), φ(c2))+1 rules. Without loss of generality assume
that the minimum is attained by φ(c1). We use φ(c1) rules
(mapping prefixes either to server 1 or to server 2) to map
c1 bit combinations to server 1. If the last rule is not a
match-all rule, we add a last match-all rule to map the
other c2 = 2W − c1 bit combinations to server 2. Thus
OPTC ≤ min(φ(c1), φ(c2)) + 1. For the opposite inequality,
assume C is realized with OPTC rules. Let’s assume, without
loss of generality, that the last is an all-match rule that maps
to server 2. The value c1 must correspond to the number of
bit combinations matched by the rules that map to server 1
among the first OPTC − 1 rules. We can derive from these
rules a signed bit representation with a weight OPTC − 1 for
c1. Thus φ(c1) ≤ OPTC − 1.

Interestingly, the values of φ(x) (for non-negative values)
have been widely investigated, and the values {φ(x) | x ≥ 0}
have been described as a sequence in the Encyclopedia of
Integer Sequences [22]. Applications of the sequence have
been suggested for instance for minimizing communication
between processors as well as for routing in peer-to-peer
networks [25], [26]. Bounds and recursive formulas for the
value of φ(x) were suggested. An illustration of the values
of φ(x) and OPTC of a distribution C = (x, 27 − x) for
x ∈ [0, 128] is given in Fig. 2. This graph can give an
intuition on the representation cost of a distribution. It is easy
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Fig. 2. The value of φ(x) and the number of rules OPTC required to describe
a distribution C = (x, 27 − x) for an integer x ∈ [0, 27].

to observe the symmetry of OPTC , i.e., the same rule count
is required for (x, 27 − x) and (27 − x, x). We can also see
that OPTC ∈ [φ(x), φ(x) + 1] and that the only distributions
that can be described by at most two rules are those where x
or 27 − x are powers of two.

C. Approximated distribution realization

Consider a target distribution C = (c1, c2) and a given
number of allowed rules n. We study the case where the
target distribution cannot necessarily be realized accurately by
at most n rules (i.e., n < OPTC). Instead, we find a realizable
distribution with a minimal dissimilarity value with the target.
By Theorem 2, the output distribution D = (d1, d2) must sat-
isfy min(φ(d1), φ(d2))+1 ≤ n. For the metric G, considering
the maximal amount of excess traffic in a server, among the
realizable distributions (d1, d2) we would like to find the one
minimizing |d1−c1| = |d2−c2|. For the metric H , considering
the average amount of error, we would like to minimize the
sum 0.5 · (|d1 − c1| + |d2 − c2|) = |d1 − c1|. It follows that
for k = 2 servers the two metrics are minimized by the same
distributions. In the rest of this section we describe an efficient
algorithm that achieves a target distribution minimizing the
two metrics.

We start with a statement on the number of bits required
to represent an integer in its non-adjacent form. Intuitively,
it shows that given t + 1 bits, the largest integer that can be
represented (in its non-adjacent form) is yu = 2t+2t−2 + . . .,
that is starting with 1 in the most significant bit and alternating
between 1 and 0 when going from left to right. Likewise,
the smallest integer that can be represented is yd = −yu =
−2t−2t−2− . . .. Furthermore, the next lemma shows that the
non-adjacent form of any integer in the range [yd, yu] has no
more than t+ 1 bits.

Lemma 3. An integer y has a non-adjacent form representa-
tion of at most t+ 1 bits iff

(i) |y| ≤ 2t + 2t−2 + . . .+ 1 for an even t,
(ii) |y| ≤ 2t + 2t−2 + . . .+ 2 for an odd t.

Proof. The proof is by an induction on t ≥ 0. For t = 0,
the only possible non-adjacent forms of length at most 1

are (1), () and (−1), representing the integers 1, 0 and
−1, respectively. For t = 1, there are two additional non-
adjacent representations of length 2, namely (1, 0) and (−1, 0),
representing 2 and −2, respectively. For the induction step,
assume that the claim holds for t− 1 and t− 2, the proof for
t is as follows. We assume that t is even, the proof for odd t
is the same.

Let y be the largest number whose non-adjacent representa-
tion consists of t+1 bits. The representation of y has bit t equal
to 1, bit t− 1 equal to 0, and the rest t− 1 bits representing
the largest integer, y′, whose non-adjacent representation is of
length t − 1. It follows that y = 2t + y′ which by induction
equals to 2t+2t−2+. . .+1. The proof that the smallest number
that can be represented with t+1 bits is −(2t+2t−2+ . . .+1)
is analogous.

For the converse, let y be a number such that |y| ≤ 2t +
2t−2 + . . . + 1. We show a non-adjacent representation of y
with at most t+ 1 bits. If y ≥ 2t − (2t−2 + . . .+ 1) then we
set bit t to 1, bit t − 1 to 0, and the rest t − 1 are set such
that they represent y′ = y − 2t. Since |y′| ≤ 2t−2 + . . . + 1
such a representation for y′ exists by the induction hypothesis.
The argument for y ≤ −2t + (2t−2 + . . .+ 1) is analogous. If
y < 2t− (2t−2 + . . .+1) and y > −2t+(2t−2 + . . .+1) then
y ≤ 2t−1+2t−3+ . . .+2 and y ≥ −(2t−1+2t−3+ . . .+2) so
we get that y can be represented by t bits by induction.

Recall that we aim at finding a set of at most n rules
that best approximates the target distribution

(
c1, c2

)
. The

following lemma significantly reduces the search space for
the output distribution D =

(
d1, d2

)
.

Lemma 4. Given an integer y = x · 2a, with a, x ∈ N, and
let Ua =

∑ba/2c
i=1 2a−2·i. Then,

min {φ(y − Ua), . . . , φ (y) , . . . , φ (y + Ua)} = φ (y) = φ (x) .

Moreover, the value of φ (y) is uniquely retrieved for y.

Proof. Let X be the non-adjacent form of x. We first show
that all integers in the range [y − Ua, y + Ua] have the same
prefix X followed by (at least one) bit of 0. Consider the non-
adjacent form representation of y. It has a prefix X followed
by exactly a zeros. By applying Lemma 3 with t = a − 2,
all integers whose absolute value is smaller or equal to Ua =∑ba/2c
i=1 2a−2·i have a non-adjacent form representation using

upto a−1 bits. For each such integer z, since its non-adjacent
form has upto a−1 bits, the non-adjacent form of y+z differs
from the non-adjacent form of y only in the lower a− 1 bits.
Therefore, all integers in the range [y − Ua, y + Ua] have the
same prefix X , followed by (at least one) bit of 0. Since all a
least significant bits of the non-adjacent form of y are zeros,
and it is the only integer with that property, it has the minimal
weight, which is uniquely retrieved only for it, and also equals
φ (x).

To find a distribution D = (d1, d2) satisfying
min(φ(d1), φ(d2)) + 1 ≤ n, we consider four scenarios
such that at least one of them occurs (the scenarios are
not necessarily disjoint). We explain how to find D of
a minimal dissimilarity under each scenario. They are (i)
d1 ≥ c1 and φ(d1) = min(φ(d1), φ(d2)), (ii) d1 ≤
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c1 and φ(d1) = min(φ(d1), φ(d2)), (iii) d1 ≥ c1 and
φ(d2) = min(φ(d1), φ(d2)), (iv) d1 ≤ c1 and φ(d2) =
min(φ(d1), φ(d2)).

Since for k = 2 servers the two metrics G and H are
minimized by the same distributions, we arbitrarily focus on
the metric G and the optimality follows also for the metric
H . We discuss scenario (i). We consider W + 1 disjoint
ranges for the value d1 ∈ [c1, 2W ]. The ranges are denoted by
R0, R1, . . . , RW such that Ra = [

⌈
c1/2a

⌉
· 2a−Ua,

⌈
c1/2a

⌉
·

2a+Ua] for a ∈ [0,W ]. Let φa be the minimal value of φ for
values in Ra. By Lemma 4 it satisfies φa = φ(

⌈
c1/2a

⌉
· 2a).

We take the minimal value of a that satisfies φa ≤ n − 1.
Notice that for a ∈ [0,W − 1] it satisfies φa − φa+1 ≤ 1.
This is since the two values

⌈
c1/2a

⌉
·2a,

⌈
c1/2a+1

⌉
·2a+1 are

either equal or differ by the power of two 2a. For the selected
value of a, we set d1 as

⌈
c1/2a

⌉
· 2a and we have that this

value minimizes the error while satisfying the constraint of n.
The scenario of (ii) is similar. We consider W + 1 disjoint
ranges for the value d1 ∈ [0, c1]. They are R0, R1, . . . , RW
such that Ra = [bc1/2ac ·2a−Ua, bc1/2ac ·2a+Ua]. We find
the first range for which φa = φ(bc1/2ac · 2a) ≤ n− 1. Then
we set d1 = bc1/2ac · 2a. For (iii), (iv) we repeat (i), (ii) by
replacing c1, c2. Finally, among the four options, we select the
one minimizing |di − ci|.

IV. THE VECTOR-SET REPRESENTATION FOR MULTIPLE
SERVERS

We study the case of an arbitrary number of servers. Our
ultimate goal is to develop also for this scenario solutions
for an exact representation with minimal rules or the best
representation for a given number of rules. Towards this
goal, while relying on an analytic model, we suggest a novel
representation of a given rule set which can be manipulated to
construct an alternative low-cost rule set that yields the same
distribution. Then, in Section V we use this tool to develop
algorithms for both problems.

In Section III, for the case of two servers, we used the vector
Q = (qW−1, . . . , q1, q0) with coefficients of powers of two
for summarizing a set of rules involving two servers. In this
section, we generalize this representation for multiple servers.
We refer to this generalization as a vector set, denote it by Q̂
and explain that a vector set implies a single distribution. In
Section IV-A, we formally define the vector set, explain how
to construct it for a given set of rules and study its properties.
Then, in section IV-B, we explain how to process a vector
set while keeping the distribution it implies, so that it can be
realized into a set of rules of a small size.

A. Construction and basic properties

A vector set Q̂ consists of k2 vectors denoted as
{
Qij
}

with i, j ∈ [1, k]. Each vector Qij =
(
qijW−1, . . . , q

ij
0

)
has W

elements. A given set of rules, can be associated with a vector
set Q̂, described in the following. Informally, a vector Qij

represents the amount of traffic (number of bit combinations)
that server i “takes” from server j. Thus, a vector set Q̂
represents the entire relation (in that manner) between the
servers.

# rule mapping
1 11011 server 2
2 0011* server 1
3 1101* server 3
4 001** server 2
5 110** server 1
6 10*** server 2
7 01*** server 1
8 ***** server 3

Q12 = (0, 0, 0, 1, 0)
Q13 = (0, 1, 1,−1, 0)
Q23 = (0, 1, 1, 0, 1)

Fig. 3. Rule set example (left) and its corresponding vector set representation
(right). The output distribution is D = (12, 11, 9).

We explain a way to construct a vector set from a general
compressed-form rule set S for representing its structure.
Formally, consider a general ordered set S of prefix rules. We
assume that the rule set S adheres to the compressed-form
requirement described in Definition 2 and that the last match-
all rule is mapped to server k. Following Definition 2, for each
rule r in the set, the first colliding lower-priority rule, that is,
the rule that r “takes” traffic from, (i) has more wildcards, and
(ii) maps to a different server.

The construction of the vectors in Q̂, given a set of rules is
defined by the following process: Initiate all vectors in Q̂ to
zero, and repeat the following for each rule starting from the
highest priority rule (excluding the match-all rule). For each
rule, denote by i the server it maps to and by z its number of
wildcards. Find its first lower-priority colliding rule and denote
its server by j. Then, increase qi,jz and decrease qj,iz , both by
one. These operations reflect the fact that server i eliminates
2z bit combinations from server j.

By the definition of the above construction, for all i, j ∈
[1, k] and z ∈ [0,W − 1], qi,jz = −qj,iz . Moreover, since for
each rule (excluding the match-all rule), its first lower-priority
colliding rule is mapped to a different server then for all i ∈
[1, k] and z ∈ [0,W − 1], qi,iz = 0.

Fig. 3 shows an example of a rule set S and its corre-
sponding vector set representation Q̂. Since Q21, Q31 and Q32

are the element-wise negation of Q12, Q13 and Q23, only the
latter vectors are shown; the vectors Q11, Q22, and Q33 are
all zeroed.

The construction of the vectors (initialized with zeros) starts
with the first rule 11011 that has 0 wildcards and maps to
server 2. Its first lower-priority colliding rule is rule 3 (1101∗,
mapped to server 3). Therefore, we increase by one q2,30 (and
decrease q3,20 ). Next, the first colliding rule of rule 2 (mapping
to server 1, with a single wildcard) is rule 4 (mapping to server
2), then we increase q1,21 (and decrease q2,11 ). This process
continues for all rules (excluding the match-all rule).

Intuitively, if one keeps track on the exact function imple-
mented by considering only the last t rules for t = 1, 2, ..., k,
the vector set Q̂ represents succinctly, using cancellation, the
number of times there is a change in the function implemented
by the rule set. In particular, a vector Qij represents the times
the change in function involves server i and j.

Accordingly, one can count the number of bit combinations
mapped to each server. Let T ij =

∑W−1
t=0 qijt · 2t. The value

T ij counts the total number of bit combinations server i takes
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Qix = ( , ,≥ 1, , )
Qiy = ( , , , , )
Qxy = ( , ,≥ 1, , )

⇒
∆Qix = ( , ,−1, , )
∆Qiy = ( , ,+1, , )
∆Qxy = ( , ,−1, , )

(a) step I

Qix = ( , ,≥ 2, , ) ⇒ ∆Qix = ( ,+1,−2, , )
(b) step II

Qix = ( , ,≥ 1, , )
Qiy = ( , ,≥ 1, , )
Qxy = ( , , , , )

⇒
∆Qix = ( ,+1,−1, , )
∆Qiy = ( , ,−1, , )
∆Qxy = ( , ,+1, , )

(c) step III

Fig. 4. Illustration of the simplification process of the vector set Q̂, describing
the delta (addition) to each of the vectors. The output distribution is preserved
in each of these changes.

from server j. Given these values one can count for each server
i the total number of bit combinations di that the function
maps to:

di =

{ ∑k
j=1 T

ij 1 ≤ i ≤ k − 1

2W +
∑k
j=1 T

ij i = k

For each vector Qij , we further define a partial (weighted)
sum series of its elements. For v ∈ [0,W − 1], representing
prefix length, let T ijv =

∑W−1
t=v qijt · 2t and T ijW = 0. An equiv-

alent more intuitive definition is through using the following
recursion: Let T ijW−1 = qijW−1 ·2W−1, and for v ∈ [0,W − 2],
T ijv = T ijv+1 + qijv ·2v . Likewise, let qit = Σj∈[1,k]q

ij
t . Last, we

define the number of bit combinations mapped to each server
by rules with prefix length of at most W−1−v (namely more
than v wildcards), as represented by the vectors in Q̂:

div =

{ ∑k
j=1 T

ij
v =

∑W−1
t=v qit · 2t 1 ≤ i ≤ k − 1

2W +
∑k
j=1 T

ij
v = 2W +

∑W−1
t=v qit · 2t i = k

We capture a simple property of a vector set.

Theorem 5. Given a compressed-form prefix rule set S, for
all i ∈ [1, k], v ∈ [0,W ], div ≥ 0.

Proof. Since the rule set S adheres to the compressed-form
requirement, we can assume that rules are ordered by a non-
increasing prefix length. Consider the series of functions the
rule set implements when going over the rules by an increasing
order of their prefix length (from 0 to W ), where at each step
we add all rules with a certain prefix length. In considering
the intermediate function of each step, the number of bit
combinations mapped to every server must be at least 0, and
the claim follows by the definition of div .

B. Processing and realization

We describe a technique to reduce the number of rules
required to achieve the output distribution of a vector set.
In the next theorem we show that the vector set can be
manipulated, preserving its original implemented distribution,
such that for each prefix length and for each server there is
at most one rule that changes the number of bit combinations
mapped to the server.

Theorem 6. Any vector set Q̂, with div ≥ 0 for all i ∈ [1, k]
and v ∈ [0,W − 1], can be processed, preserving the original
distribution and the non-negativity of its partial sums such that
qixt ∈ {−1, 0, 1} for all i, x, t. Further, for all t and i, if for
some x, qixt 6= 0, then for all j 6= x, qijt = 0 (and qjit = 0).

Proof Outline. The processing has two main phases, each
composed of several steps among steps I-III, as illustrated in
Fig. 4. Each of the steps maintains the output distribution D.
We verify that along the processing, for all i ∈ [1, k], v ∈
[0,W ] the partial sums satisfy div ≥ 0. Phase 1 relies on steps
I and II. In step I, for instance, illustrated in Fig. 4(a), we
consider t ∈ [0,W − 1]. Assume there exist i, x, y such that
qixt , q

xy
t > 0. We reduce qixt , q

xy
t by one and increase qiyt by

one (and update qxit , q
yx
t , qyit correspondingly). In phase 1, we

repeat steps I and II, column by column for t ∈ [0,W −2] and
then apply step I for t = W −1. In phase 2, steps I and III are
repeated, column by column for t ∈ [0,W − 2] and then step
I is applied for t = W − 1. We explain that following phases
1 and 2, the vector set has the required form in all columns
besides maybe the most-left one. To satisfy the property also
for that column, we might have to replace the default server
by another server.

The next theorem shows that when a simple condition on a
vector set holds, there exists a set of rules (in a compressed
form) for which the vector set corresponds.

Theorem 7. Consider a vector set Q̂ satisfying: (i) div ≥ 0
for all i ∈ [1, k], v ∈ [0,W ]. (ii) qixt ∈ {−1, 0, 1} for all
i, x, t. (iii) for all t and i, if for some x, qixt 6= 0, then for all
j 6= x, qijt = qjit = 0. Then, vector set can be realized to a
compressed-form prefix rule set.

Proof. Assume that we are given a vector set Q̂ such that for
all i ∈ [1, k] , v ∈ [0,W ], div ≥ 0. We show a construction of a
compressed-form rule set. Note that the prefix length of a rule
with v wildcards is W −v. The construction is in W +1 steps
considering values of v = W,W−1, ..., 0. For an iteration with
value v, rules of v wildcards are added (with higher priority) to
those obtained in previous steps. We show that the set of rules
in step v yields an output distribution of (d1v, d

2
v, ..., d

k
v) and

results in a vector set obtained from Q̂ by setting to zero in all
vectors the values with indices smaller than v. First for v =
W , we start with a single match-all rule (with W wildcards)
mapping traffic to server k. For v < W , start with the set of
rules for the previous step for v + 1. Consider the values qijv
for i, j ∈ [1, k] for which qijv > 0. Add qijv prefix rules with v
wildcards, mapping traffic to server i that contradicts a rule for
server j. The added rules should have the first W − v bits as
the rule for server j. The rules have additional non-wildcard
bits to have v wildcards, while the following non-wildcard bits
are selected as the minimal values that avoid an intersection
with rules previously added for also taking traffic from server
j. By the positiveness of the values div we can find such rules
for server i to contradict a rule associated with server j. Note
that for each column at most one rule is required. The set of
rules obtained in the last step of v = 0 (with 0 wildcards) is
the desired one.
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# rule mapping
1 11000 server 2
2 1100* server 3
3 100** server 1
4 00*** server 1
5 1**** server 2
6 ***** server 3

Q12 = (0, 0, 1, 0, 0)
Q13 = (0, 1, 0, 0, 0)
Q23 = (1, 0, 0,−1, 1)

Fig. 5. The rule set S and the corresponding vector set representation Q̂
derived after the processing of the rule set from Fig. 3. The output distribution
is again D = (12, 11, 9).

Note that the number of required (non-default) rules in the
construction of the proof of Theorem 7 equals half the sum of
the absolute values of all elements (i.e. 0.5 ·

∑
i,j∈[1,k] |qi,j |).

Fig. 5 describes the set of rules obtained after the processing
of the vector set from Fig. 3. While maintaining the output
distribution, the number of rules is reduced from 8 to 6.

V. SOLUTIONS FOR MULTIPLE SERVERS

Inspired by the representation of a distribution for multiple
servers through a vector set from Section IV, we turn to design
algorithms that find an exact representation with minimal
rules (in Section V-A) and the best representation for a given
number of rules (in Section V-B).

A. Exact distribution realization

We describe an algorithm to find an exact representation
with the minimal possible number of rules for any given target
distribution. We start with properties that relate the vector set
to the output distribution it yields. For space constraints we
provide the high-level details of the algorithm.

Theorem 8. Let Q̂ be a vector set with an output distribution
D = (d1, . . . , dk) for which the processing from Theorem 6
was applied. For all i ∈ [1, k], u ∈ [1,W ], let hiu =
bdi/2W−uc · 2W−u. Then, the value diW−u, expressed by the
u high-indices values of the vector set, satisfies diW−u = hiu
or diW−u = hiu + 2W−u.

Proof. By definition diW−u = di −
∑W−u−1
t=0 2t · qit ∈ [di −

(2W−u − 1), di + (2W−u − 1)], where the bounds follow the
processing of the vector set Q̂. Likewise, hiu ∈ [di− (2W−u−
1), di]. Since diW−u and hiu are both multiplies of 2W−u, the
result follows.

We define the notion of a server state. Given a vector set
Q̂, a server i ∈ [1, k] is associated with a state for every
u ∈ [0,W ] (corresponds to the bit index W − u). Intuitively,
the state examines the difference between the allocation of a
server following the complete vector set Q̂ and its allocation
as expressed by some high-indexed bits of Q̂. For u ∈ [1,W ],
• A server i is in zero-state for u if diW−u = hiu = di.
• In negative-state for u if diW−u = hiu and diW−u < di.
• In positive-state for u if diW−u = hiu + 2W−u. This

implies that di < diW−u.
In other words, the server i is in positive state for a bit index
W − u if all rules involving it with prefix-length lower than

Bi
W−u−1 qiW−u−1 server-state for bit u+ 1

0 -1 positive
0 0 invalid
0 1 invalid
1 -1 negative / zero
1 0 positive
1 1 invalid

TABLE II
SERVER STATE TRANSITION: DEPENDENCY OF SERVER STATE i FOR BIT
u+ 1 ON Bi

W−(u+1)
AND qiW−u−1 , GIVEN A POSITIVE-STATE FOR BIT

INDEX W − u.

u encode a specific number that is larger than the number of
bit combinations in the target distribution. It is in a negative
state if these rules encode a specific number that is lower than
the number of bit combinations in the target distribution, and
it is in zero state if both numbers are equal. By Theorem 8,
there is no other possibilities.

Assuming that none of the servers has a target number of
bit combinations equals zero, then by this definition it follows
that for u = 0 all servers are in negative-state, except for the
server that is assigned with the default rule who is in positive
state.

For each of the servers, its states (either negative, positive,
or zero) over the bit indices are related to each other.

Given the state of server i for some bit index W −u where
u ∈ [0,W − 1], its state for u + 1 can be determined based
on BiW−u−1 ∈ {0, 1}, and qiW−u−1 ∈ {−1, 0, 1}, where
BiW−(u+1) is the bit located at index W − (u + 1) in the
binary representation of di, and qiW−(u+1) is determined by
the existence of a rule with the corresponding prefix length
that involves server i. Following Theorem 6, there exists an
optimal solution such that qiW−(u+1) ∈ {−1, 0, 1}.

Table V-A captures this dependency given a server that is in
positive state for a bit index W−u. For example, given that the
server is in positive-state for bit W −u meaning that diW−u =
hiu + 2W−u, then if BiW−(u+1) = 0 and qiW−(u+1) = −1, we
get that diW−(u+1) = diW−u−2W−(u+1) = hiu+1+2W−(u+1),
that is, the server stays in a positive-state for bit index u+ 1.
On the other hand, if qiW−u = 0, we would get neither of the
states as defined. Similar tables given a negative-state and a
zero-state for bit u can be obtained.

Consequentially, for each server, based on its state for bit
index W − u and the value of BiW−(u+1), we can describe
whether a rule that refers to it should be added, and if so
whether this can be a positive rule (increasing qiW−(u+1) by
one) or a negative rule (decreasing qiW−(u+1) by one). The
result state of the server for bit index W − (u + 1) depends
on this choice.

Since any distribution can be represented using the vector
set Q̂ with the constraints reflected in Section IV that is, for
each prefix length there is at most one rule that changes the
number of bit combinations mapped to each server, the search
space for the optimal exact traffic split is bounded. Moreover,
by Theorem 8, we can consider an additional constraint on the
vector set Q̂ by which for each server i and prefix length v, the
(weighted) partial sum diu, corresponding to the high indices
(equal at least W − u), can take at most two values. We refer
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to the state of all servers for some index u as a super-state.
The suggested search algorithm considers values u ∈

{0, 1, . . . ,W−1}, and is defined on these superstates. Initially,
we have only one superstate where all servers are in negative
states except for the server who gets the default rule and is
in a positive state. At each iteration, the algorithm iterates
over all superstates and for each one of them, it calculates
the reachable super-states, and the minimal number of rules
required to achieve each such super-state. For a value u+1, the
algorithm allows adding rules with prefix length corresponding
to qiW−(u+1). Since for some given v, each server can have one
of three possible states, the number of super-states is clearly
bounded by 3k. In our experiments we observe that the number
of reachable states is in practice often much smaller although
still exponential in the number of servers.

For u ∈ {0, . . . ,W − 1}, for the transition towards the
value of u + 1, we consider for i ∈ [1, k] the value BiW−u,
the corresponding bit in the binary representation of ci. We
calculate the set of reachable super-states for u based on
those reachable for u − 1. Given a state of a server, the
value of BiW−(u+1) determines the possible rule additions
to that server. Given a super-state for index u and the val-
ues B1

W−(u+1), . . . , B
k
W−(u+1) for the various servers, we

consider rule combinations for which an identical number
of positive rules and negative rules are added. We calculate
the achievable super-states for u + 1, each associated with a
number of required rules based on the number of rules required
for the super-state for index u and the additional required rules.
We keep for each super-state for index u + 1, the minimal
number of rules that can lead to it.

The pseudo-code of this algorithm is described in Algo-
rithm 1. We use iSS, cSS and SS to stand for the initial, the
current and a general SuperState, respectively. For the sake
of brevity, the algorithm described only computes the optimal
rule count. For computing the actual vector set Q̂, one need
to keep track for each super-state, the super-state that it was
reached from. By the chain of the super-states the vector set Q̂
can be recovered. The solution is determined from the super-
states for v = W . In particular, to correctly represent the
target distribution we need all k servers to be of a zero state.
The required rules number is the count associated with this
super-state. By Theorem 6 the solution can be realized, where
the actual realization can be performed by Theorem 7. The
minimality of the representations in each iteration implies the
optimality of the algorithm.

Last, one may iterate over all p ∈ {1, . . . , k} and get the
server who the default rule is applied to that leads to the
optimal number of rules.

B. Approximated distribution realization

Given a restriction on the rule number, a simple approach is
to take the n first added (lowest priority) rules in an optimal
solution for an exact representation. However, we conclude by
the following example that this approach is not optimal.

Example 2. Consider the target distribution C = (2, 3, 3, 8).
In its first two rules, the solution for exact representation
applies a default rule to the last server, and the next rule as

Algorithm 1: Algorithm for computing the optimal num-
ber of rules given server p gets the default rule

Input: A target traffic distribution C = (c1, . . . , ck).
Server p who gets the default rule.

Output: An optimal number of rules realizing C

iSS.count = 0; iSS.state = all servers in negative-state,
except for server p who is in positive state;
A0 = {iSS};
For all i, u, Biu = uth binary bit of ci;
for u ∈ {0, 1, . . . ,W − 1} do

Au+1 = ∅
for cSS ∈ Au do

• Find for each server optional rule additions
• Consider balanced options to calculate the possible next

super-state added to Au+1

Find SS ∈ AW with k servers in zero-state that
minimizes SS.count.
return SS.count

a rule of size 23 mapping to server 3 and eliminating traffic
from server 4, resulting in a maximum excess traffic G(D) of
5 (to server 3). However, using two rules one can achieve a
value G(D) = 4, by replacing the second rule in the above
solution to be of size 22.

Our approach is based on intuition taken from study of
properties of the algorithm for optimal exact realization. Due
to space constraints we provide the high level ideas. We
basically follow the exact same steps as the algorithm for
exact realization where we keep record of the maximum excess
traffic G(D) of any distribution that is encoded by each super-
state the algorithm arrives at. We find for each number of rules,
the super-state that minimizes the maximum excess traffic
G(D).

For a more accurate consideration of the super-states we
arrive at, we also consider transitions between super-states
that involves more than one rule, for which we carefully, in a
separate sub-routine, add the involved rules one by the other,
where the next rule to be added is the one that results in the
minimal G(D). For each such sub-step we also record the
value of G(D).

The algorithm then outputs for each number of rules the
minimal G(D) encountered and its corresponding distribution
(along with the corresponding super-state or the corresponding
sub-step of a transition between super-states).

VI. EXPERIMENTAL RESULTS

A. Effect of number of servers on exact realization size
In this section we examine the optimal number of rules

needed for an exact realization of a distribution as given by
the algorithm from Section 1.

Fig. 6 shows the average and maximum optimal num-
ber of rules over 500 random traffic allocations for each
k ∈ {5, 6, . . . , 12} servers and a number of bits W ∈
{10, 15, 20, 25}. For given values of k and W , randomization
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Fig. 6. Average and maximum optimal number of rules over 500 uniformly
distributed traffic allocations as a function of the number of servers k and the
number of bits W . Legendary refers to both subfigures.

2−412−312−212−112−1
0

20

40

60

max. normalized expense G(D)

nu
m

be
r

of
ru

le
s W = 10

W = 15

W = 20

W = 25

Fig. 7. Expectation of number of rules required for a maximum normalized
expense G(D). Results are shown for the average of 5000 random instances
with k = 10 servers and W ∈ {10, 15, 20, 25} bits.

was performed such that the traffic allocations, represented as
a vector with sum 2W , is drawn uniformly from the space of
all integer vectors with sum 2W (and all elements are non-
negative). To create these random traffic allocations, that is,
fixed-sum vectors, we used a result related to Dirichlet dis-
tribution [27], where first we generated a1, . . . , ak uniformly
distributed numbers in [0, 1]. Then the allocation ci for a server
is given by the closest integer of 2W · log ai/(

∑k
j=1 log aj)

with last small corrections due to rounding so that their sum
is 2W . The results show a linear increase in the rule number
as a function of the number of servers.

Last, we note that in all instances that we tested we obtained
the exact same optimal number of rules as Niagara [12],
although the later one is not proven to be optimal.

B. Approximate realization of single flow
We now investigate the number of rules needed to achieve

a given normalized maximum amount of expense G(D). We
used the same method from Section VI-A for creating uni-
formly distributed fixed sum target traffic distribution. Fig. 7
shows the average number of required rules in a solution found
by our algorithm for approximating traffic allocation for a
given (normalized) maximum allocation expense G(D). The
results are based on the average of 5000 random instances with
k = 10 servers and W ∈ {10, 15, 20, 25} bits. Interestingly,
the number of required rules grows linearly with the logarithm
of the maximum allocation expense G(D) in a rate similar for
the various bit numbers. This is because our algorithm deals
first with the most significant bit and then considers lower bits,
making it indifference to the actual number of bits.
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Fig. 8. Relation between the allocated memory and the maximum expense
for our approach and WCMP, with k = 10 servers.

C. Comparison with WCMP
We compare our approach with WCMP [8]. In this ap-

proach, an array maintains mapping values with various
multiplicities. One array entry is accessed with the uniform
distribution, implying an output distribution D based on the
multiplicities. We created 1000 random target distributions
of size k = 8 (servers). Then, we apply WCMP with
various memory capacity values as well as our technique
with various header number of bits W . We measured the
normalized maximum excess traffic among servers, namely
1

2W
·maxi∈[1,k]

(
di − ci

)
= 1

2W
·G(D) for D.

Note that while in our approach, each memory entry is
of (W + log2 k) bits, composed of W matching bits and
additional log2 k for the server index, in WCMP each entry
has only a server index of log2 k bits. Accordingly, to compare
the approaches we compare their amount of total memory
and not the number of entries. It is important to mention
that while the WCMP can be implemented in SRAM, our
approach requires the combination of TCAM and SRAM, so
a memory bit for our approach can more expensive based
on the implementation. Fig. 8 shows the average maximum
expense as a function of average total number of bits for
both techniques. Our technique outperforms WCMP in terms
of accuracy given limited memory in all test cases that we
have examined. For instance, to achieve a maximum average
expense of 0.001, WCMP uses approximately 1500 memory
bits. Our approach uses as little as approximately 156 bits.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the representation of traffic dis-
tributions in commodity switches. We explained the tight
connection of the problem to signed representations of positive
integers. This observation allows us to construct representa-
tions with optimality guarantees. As a future work, we would
like to find also optimal limited size representations with a
minimal error. We would also like to examine whether this
link can help to understand more the expressiveness of switch
memory for other typical tasks such as traffic measurement
and policy enforcement.
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