Frenetic: A High-Level Language for OpenFlow Networks

Nate Fostert
Michael J. Freedman*
T Cornell University

ABSTRACT

Most interfaces for programming network devices are de-
fined at the low level of abstraction supported by the under-
lying hardware, which leads to complicated programs that
are prone to errors. This paper proposes a high-level pro-
gramming language for OpenFlow networks based on ideas
originally developed in the functional programming com-
munity. Our language, called Frenetic, includes a rich pat-
tern algebra for classifying packets, a “program like you see
every packet” abstraction, and a run-time system that au-
tomatically generates the low-level packet-processing rules.
We describe the design and implementation of Frenetic, and
show how to use it to implement common management tasks.

1. INTRODUCTION

Network administrators must configure network devices
to provide services such as routing, load balancing, traf-
fic monitoring, and access control. Unfortunately, most in-
terfaces for programming network devices offer primitive
abstractions derived from the capabilities of the underlying
hardware. We argue for raising the level of abstraction, draw-
ing on techniques from the programming languages com-
munity. In particular, we propose Frenetic, a language with
high-level packet-processing operators inspired by previous
work on functional reactive programming [5]. Frenetic sim-
plifies the task of programming OpenFlow [9] networks, with-
out compromising flexibility and efficiency.

In an OpenFlow network, a central controller manages
switches that support the concept of a flow—i.e., a stream
of related packets that are processed in the same way. Every
switch maintains a flow table containing a set of rules, where
each rule includes a pattern (the set of packets belonging to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM PRESTO 2010, November 30, 2010, Philadelphia, USA.

Copyright 2010 ACM 978-1-4503-0467-2/10/11 ...$5.00.

Rob Harrison*
Jennifer Rexford*

Matthew L. Meola*
David Walker*

* Princeton University

the flow), a priority (that disambiguates overlapping rules),
an expiration time, a list of actions (to apply to the packets),
and counters (to measure the traffic). To process an incom-
ing packet, the switch identifies the matching rule with the
highest priority, updates the counters of the rule, and applies
the actions. If no matching rule is found, the switch forwards
the packet to the controller and awaits further instructions.

Most controllers are based on NOX [6], a network oper-
ating system for handling events and installing rules. NOX
programmers must grapple with several difficult challenges:

Interactions between concurrent modules: Networks
often perform multiple tasks, like routing, access control,
and monitoring. These functions cannot be performed inde-
pendently unless they operate on non-overlapping portions
of the traffic (as in FlowVisor [14]), since a rule (un)installed
by one module could undermine the proper functioning of
other modules.

Low-level interface to switch hardware: OpenFlow pro-
vides a low-level interface to the switches. Applications
must install rules that match on bits in the packet header.
Since rules can have wildcards, a packet may match multi-
ple overlapping rules with different priorities. In addition, a
high-level policy may translate into multiple low-level rules
(e.g., to match on ranges of values, or to support negation).

Two-tiered programming model: The controller only
sees packets the switches do not know how to handle. This
limits the controller’s visibility into the underlying traffic—
in essence, application execution is split between the con-
troller and the switches. Applications must avoid installing
rules that hide important information from the controller.

Frenetic alleviates these burdens by offering a program-
ming language with a high-level filter algebra and a “pro-
gram like you see every packet" abstraction. While the pro-
grammer uses these high-level abstractions, the run-time sys-
tem generates low-level rules, ensures correct execution of
multiple modules, and splits execution between the switch
and controller to keep packets in the data plane whenever
possible. To ease adoption of Frenetic, our language is sim-
ply a set of Python libraries. While this paper primarily fo-
cuses on the design of the Frenetic language, we also discuss
our prototype implementation of the run-time system.

Controller

Switch
Figure 1: Simple Network Topology

2. OPENFLOW/NOX DIFFICULTIES

This section presents three examples that highlight the dif-
ficulties of writing programs for the OpenFlow/NOX plat-
form. We have elided a few details of the platform which are
not needed to understand the examples (a complete descrip-
tion is available in the OpenFlow specification [12]).

Let us warm up with a simple program that implements
a repeater. We assume that the network has the topology
depicted in Figure 1, where a single switch connects a pool
of internal hosts on port 1 to a wide-area network on port
2. To implement a repeater, we simply install rules on the
switch that forward traffic in both directions.

def repeater(switch):
pl = {IN_PORT:1}

p2 = {IN_PORT:2}
al = [output(2)]
a2 = [output(1)]

install(switch, pl, al, DEFAULT)
install(switch, p2, a2, DEFAULT)

The variables p1 and p2 are bound to patterns that describe
sets of packets while a1 and a2 are bound to actions. The
install function sends a message to instruct the switch to
apply the actions to packets matching the given patterns at
priority level DEFAULT. Upon receiving this message, the
switch installs a rule in its flow table and begins using this
rule to process traffic.

2.1 Interactions Between Concurrent Modules

The first difficulty of writing programs in OpenFlow/NOX
is that programs do not compose. Suppose that we want to
extend the repeater to monitor the total amount of incom-
ing web traffic. The usual way to implement monitoring in
NOX is to install separate rules that handle the traffic that
needs to be monitored, and periodically poll the byte and
packet counters for those rules to collect the necessary data.!
The following program uses this strategy to monitor incom-
ing web traffic, printing the total number of bytes every 30
seconds. The monitor function installs a rule that matches
all incoming packets with TCP source port 80 and issues
a query for the counters associated with that rule. Upon re-
ceiving the response from the switch, the NOX run-time sys-
tem invokes stats_in, which prints the current byte count to
the console, sleeps for 30 seconds, and issues the next query.

! Another way is to send every packet to the controller and aggre-
gate the data there. However, this strategy does not scale and in-
creases the latency of processing packets by orders of magnitude.

def monitor(switch):
p = {IN_PORT:2,TP_SRC:80}
install(switch, p, [], DEFAULT)
query_stats(switch, pattern)

def stats_in(switch, pattern, stats):
print stats[’bytes’]
sleep(30)
query_stats(switch, pattern)

We would like to compose this program with the repeater
to obtain a program that both forwards packets and monitors
traffic. Unfortunately, naively composing the programs does
not behave as expected due to low-level interactions between
the rules installed by each program. Because their patterns
overlap, when an incoming packet with TCP source port 80
arrives, the switch is free to process the packet using the rule
installed by repeater or the one installed by monitor_web.
But either choice leads to incorrect behavior: the repeater
rule does not update the counters used by the monitoring
program, and the monitor rule breaks the repeater program
as it drops the packet (its list of actions is empty).

To obtain the desired behavior, we have to manually com-
bine the forwarding logic from the first program with the
monitoring policy from the second.

def repeater_monitor(switch):
pl = {IN_PORT:1}
p2 = {IN_PORT:2}
p2web = {IN_PORT:2,TP_SRC:80}
al = [output(2)]
a2 = [output(1)]
install(switch, pl, al, DEFAULT)
install(switch, p2, a2, DEFAULT)
install(switch, p2web, a2, HIGH)
query_stats(switch, p2web)

Note that performing this combination is non-trivial: the
p2web rule needs to include the output (1) action from the
repeater program, and must be installed with HIGH priority
to resolve the overlap with the p2 rule.

In general, composing OpenFlow/NOX programs requires
significant careful, manual effort on the part of the program-
mer to preserve the semantics of the original programs. This
makes it nearly impossible to factor out common pieces of
functionality into reusable libraries. It also prevents compo-
sitional reasoning about programs.

2.2 Low-Level Programming Interface

Another difficulty in OpenFlow/NOX is the low-level na-
ture of the programming interface, which is derived from the
features of the switch hardware rather than being designed
for ease-of-use. This interface makes programs unnecessar-
ily complicated, as they must specify low-level details that
are irrelevant to the overall behavior of the program. Sup-
pose that we want to extend the repeater further to monitor
all incoming web traffic except for traffic to an internal server
at address 10.0.0.99. To do this, we need a way to “sub-
tract” patterns, but the patterns supported by switches only

express positive constraints. To simulate the difference be-
tween two patterns, we must install two rules on the switch,
disambiguating overlaps using priorities.

def repeater_monitor_noserver (switch):
pl = {IN_PORT:1}
p2 = {IN_PORT:2}
p2web = {IN_PORT:2,TP_SRC:80}

p2srv = {IN_PORT:2,NW_ADDR:10.0.0.99,TP_SRC:80}

al = [output(2)]

a2 = [output(1)]

install(switch, pl, al, DEFAULT)
install(switch, p2, a2, DEFAULT)
install(switch, p2web, a2, MEDIUM)
install(switch, p2srv, a2, HIGH)
query_stats(switch, p2web)

This program is similar to the previous one, but uses a sep-
arate rule to process web traffic destined for the internal
server—p2srv matches packets going to the internal server,
while p2web matches all other incoming web packets. The
program installs p2srv at HIGH priority to ensure that the
p2web rule only processes (and counts!) packets going to
hosts other than the internal server.

Describing packets using the low-level patterns supported
in OpenFlow/NOX is cumbersome and error-prone. It forces
programmers to use multiple rules and priorities to encode
patterns that could be easily expressed using natural opera-
tions such as negation, difference, and union. It adds unnec-
essary clutter to programs and further complicates reasoning
about programs.

2.3 Two-Tiered System Architecture

Another challenge of programming in OpenFlow/NOX
stems from the two-tiered system architecture—the controller
program manages the network by installing and uninstalling
switch-level rules. The extra level of indirection makes it
more complicated to specify the correct processing of pack-
ets. Also, the programmer must specify the communica-
tion patterns between the controller and switch and deal with
tricky issues such as coordinating asynchronous events. Con-
sider extending the repeater to monitor the total amount of
incoming traffic by host. Unlike the previous monitoring ex-
amples, we cannot install the monitoring rules in advance
because we may not know the addresses of each host in the
network a priori. Instead, the controller must dynamically
install rules for the packets seen at run time.

def repeater_monitor_hosts(switch):
p = {IN_PORT:1}
a = [output(2)]
install(switch, p, a, DEFAULT)
def packet_in(switch, inport, packet):
if inport ==
m = srcmac(packet)
p = {IN_PORT:2,DL_SRC:m}
a = [output(1)]
install(switch, p, a, DEFAULT)
query_stats(switch, p)

The repeater_monitor_hosts function installs a single rule
that forwards outgoing traffic. Initially, incoming packets do
not match any flow table entries, so the switch sends them up
to the controller. The NOX run-time invokes the packet_in
function which installs a rule for forwarding incoming pack-
ets with the same MAC address and issues a query for the
counters associated with that rule. Note that the controller
only sees one incoming packet for each host—the rule pro-
cesses future traffic going to that host directly on the switch.

In essence, OpenFlow/NOX applications are implemented
using two programs—one on the controller and another on
the switch. While essential for efficiency, the two-tiered ar-
chitecture makes reasoning about applications difficult be-
cause the behavior of each program depends on the other—
e.g., installing/uninstalling rules changes which packets are
sent up to the controller. In addition, the controller program
must specify the communication patterns between the two
programs and deal with subtle concurrency issues—e.g., if
we were to extend the example to monitor traffic in both
directions, the controller program would have to issue two
queries, one for incoming traffic and another for outgoing
traffic, and synchronize the resulting callbacks.

Although OpenFlow/NOX enables the management of net-
works using arbitrary general-purpose programs, its two-
tiered architecture forces programmers to specify the asyn-
chronous and event-driven interaction between the programs
running on the controller and the switches in the network. In
our experience, these details are a significant distraction and
a frequent source of bugs.

3. FRENETIC

This section presents Frenetic, a new language for net-
work programming that provides a number of high-level fea-
tures addressing each of the issues with the OpenFlow/NOX
programming model just described.

3.1 Unified Architecture

Frenetic is based on functional reactive programming
(FRP), a model in which programs manipulate streams of
values. FRP eliminates the need to write event-driven pro-
grams and leads naturally to a unified architecture where
programs “see every packet” rather than processing traffic
indirectly by manipulating switch-level rules.

To get a taste for FRP, let us reimplement the web mon-
itoring program from the last section (we will extend this
program with forwarding later in this section).

def monitor_sf():
return(Filter (inport_p(2) & srcport_p(80)) |ol
GroupByTime (30) |ol
SumSizes())
def monitor():
stats = Apply(Packets(), monitor_sf())
print_stream(stats)

The first declaration defines a stream function monitor_sf
that takes a stream of packets and produces a stream of inte-

gers. The stream function Filter discards all packets from
the input stream that do not represent incoming web traffic.
The GroupByTime stream function divides the stream of fil-
tered packets into a stream of lists containing the packets in
each 30-second window. SumSizes computes the total size
of all packets in each list. The infix operator |o| denotes
sequential composition of stream functions. The final result
is a stream of integers that represent the amount of incoming
web traffic every 30 seconds. The top-level monitor function
applies monitor_sf to Packets, which is a stream containing
all of the packets flowing through the network, and then uses
print_stream to print the result to the console.

Note that unlike the OpenFlow/NOX program, which spec-
ifies the layout of the rules on the switch as well as the com-
munication needed to retrieve the counters from the switch,
Frenetic’s unified architecture makes it possible to express
this program as a simple, declarative query.

3.2 High-Level Patterns

Frenetic includes a rich pattern algebra which provides an
easy way to describe sets of packets. Suppose that we want
to change the monitoring program to exclude traffic to the
internal server. In Frenetic we can simply take the difference
between the pattern describing incoming web traffic and the
one describing traffic to the internal web server.

def monitor_noserver_sf():
pl = inport_p(2) & srcport_p(80)
p2 = dstip_p("10.0.0.99")
return (Filter(diff_p(p1,p2)) lol
GroupByTime (30) |ol
SumSizes())

The only change in this program compared to the previous
version is the pattern passed to Filter. The diff_p operator
computes the difference between patterns. Recall that craft-
ing rules to implement this program in OpenFlow/NOX was
challenging—we had to simulate the difference using two
rules and priorities.

3.3 Compositional Semantics

Arguably the most important feature of Frenetic is sup-
port for composition. Suppose that we want to extend the
monitoring program to behave like a repeater. In Frenetic,
we specify the forwarding rules and register them with the
run-time system.

rules = [Rule(inport_p(1), [output(2)]),
Rule(inport_p(2), [output(1)]1)]
def repeater_monitor():
register_static(rules)
stats = Apply(Packets(), monitor_sf())
print_stream(stats)

The register_static function takes a list of Rule objects,
each containing a high-level pattern and a list of actions, and
registers them as the forwarding policy in the Frenetic run-
time system. Note that the monitoring portion of the pro-
gram does not change. The run-time system ensures that

there are no harmful interactions between the forwarding
and monitoring components.

To illustrate the benefits of composition, let us carry the
example a step further and extend it to monitor incoming
traffic by host as well. Implementing this program in NOX
would be difficult—we cannot run the two smaller programs
side-by-side because the rules for monitoring web traffic over-
lap with the rules for monitoring traffic by host. Thus, we
would need to rewrite both programs to ensure that the rules
installed on the switch are compatible with both programs—
e.g., installing two rules for each host, one for web traf-
fic and another for all other traffic. This would work, but
it would require a major effort from the programmer, who
would need to understand the low-level implementations of
both programs in full detail.

In contrast, the Frenetic program is simple. The following
stream function monitors incoming traffic by host.

def host_monitor_sf():
return (Filter(inport_p(2)) lol
Group(dstmac_g()) lol
RegroupByTime (60) ol
SumGroupSizes())

It uses Filter to discard the outgoing traffic, Group to ag-
gregate the top-level stream of packets into a stream of pairs
of source MACs and nested streams that contain all pack-
ets from that source, RegroupByTime to divide the nested
streams into 60-second windows, and SumGroupSizes to add
up the size of the packets in each window. When applied to
the stream of packets, it yields a stream of pairs of MAC ad-
dresses and integers that represent the total amount of traffic
to that host in the preceding 60-second window. The top-
level program applies both stream functions to the stream of
packets and registers the forwarding rules with the run-time.
Despite the slightly different functionality and polling inter-
vals of the two programs, Frenetic allows the programmer
to easily compose them without any concerns about undesir-
able interactions or timing issues.

def repeater_monitor_hosts():
register_static(rules)
statsl = Apply(Packets() ,monitor_sf())
stats2 = Apply(Packets() ,host_monitor_sf())
print_stream(Merge(statsl,stats2))

Support for composition is one of Frenetic’s most impor-
tant features. Raising the level of abstraction frees program-
mers from having to worry about low-level details and en-
ables writing programs in a modular style. This represents a
major advance over today’s NOX, where programs must be
written monolithically to avoid harmful interactions between
the switch-level rules installed by different program pieces.

4. LEARNING SWITCH

So far, we have focused on small examples that illustrate
the features of Frenetic. Our final example is a more substan-
tial program that implements an Ethernet learning switch.

def learning sf():
return (Group(srcmac_g()) lol
Regroup (inport_r()) |ol
UngroupFirst() |ol
LoopPre({}, Lift(add_rule)) |ol
Lift(complete_rules))
def learning():
rules = Apply(Packet(),learning_sf())
register_stream(rules)

It uses Group to aggregate the stream of packets by source
MAC address and Regroup to split the resulting streams when-
ever traffic from a source MAC appears at a different switch
port (i.e., because the host has moved). We are now left with
a stream of streams where each substream contains pack-
ets that all share the same source MAC address and ingress
switch port. UngroupFirst retrieves the first packet from
each group, and LoopPre builds a dictionary that maps MAC
addresses to forwarding rules (the helper add_rule inserts a
rule into the dictionary). The last operator, Lift, converts
an ordinary function to a stream function that operates on
event streams. The complete_rules function extracts the
list of rules from the dictionary and adds a catch-all rule that
floods packets destined for unknown MAC addresses. The
top-level learning function registers these rules in the Fre-
netic run-time. Note that unlike the previous examples, the
rules are not static. The register_stream function takes a
stream of lists of rules and registers them in the run-time.

5. IMPLEMENTATION

Frenetic facilitates describing network programs without
having to specify unimportant low-level details concerning
the underlying switch hardware. Of course, the need to deal
with these details does not go away. The rubber meets the
road in the implementation. We have implemented a com-
plete prototype of Frenetic in Python. Figure 2 depicts its
architecture, which consists of three pieces: an implementa-
tion of the FRP operators, a run-time system, and NOX. The
use of NOX is not essential—we borrow its OpenFlow API
but could also use a different back-end.

The FRP operators are implemented as a Python library
that defines representations for streams and stream functions,
as well as implementations of primitives such as Filter,
LoopPre, SumSizes, etc. Unlike classic FRP implementa-
tions, which support both continuous streams called behav-
iors and discrete streams called events, Frenetic focuses ex-
clusively on discrete streams. The pull-based strategy used
in most FRP implementations is optimized for behaviors and
so is not a good fit for Frenetic. Instead, we use a push-based
strategy that propagates values from input to output streams.

Although Frenetic programs “see every packet”, a naive
implementation that processed every packet on the controller
would not scale to networks of realistic size; it iS neces-
sary to develop optimizations that move packet processing
off the controller and onto the switches. We have developed
optimizations that capture some common idioms, but hope

Frenetic Program

—
=
subscribe Packets
register Seconds

‘ Frenetic Run-Time System ‘

install
packet_in
uninstall

‘ NOX ‘

OpenFlow ﬁ gvi 57

Switches
Figure 2: Frenetic Architecture

to discover additional optimizations that will allow Frenetic
programs to perform as well as the best hand-written pro-
grams. Much like garbage collection, we believe that man-
aging switch-level rules is a tedious task that is best handled
in a run-time system.

The interface to our run-time system supports subscrib-
ing to streams of packets, headers, and statistics, and reg-
istering packet-forwarding rules. These functions allow the
run-time system to determine which packets must go to the
controller and which can be processed on the switch. They
are designed to be fully compositional—programs can sub-
scribe to multiple, overlapping streams of packets and regis-
ter forwarding rules for subscribed packets without worrying
about harmful low-level interactions. To connect programs
to streams we transform programs, replacing groupings of
FRP operators with calls to these functions. For example,
Apply(Packets(), Filter(p) lol sf), where sf is an ar-
bitrary stream function, becomes Apply (subscribe(p), sf).
We currently rewrite programs by hand but are developing an
optimizer to do it automatically.

The core of the run-time system is the back-end, which
manages the installation and uninstallation of rules as well
as all communications between the switches and controller.
It generates rules using a simple reactive strategy. At the
start of the execution of a program, no rules are installed
on switches, so all packets are sent up to the controller and
passed to the packet_in function. Upon receiving a packet,
the run-time traverses the lists of subscribers and forwarding
rules, propagating the packet to any subscribers and deter-
mining the actions specified in the forwarding rule. If there
are no subscribers for the packet, the system installs a mi-
croflow rule on the switch—i.e. a rule whose pattern matches
the header fields of the packet exactly—that processes fu-
ture packets with the same header fields using the packet-
forwarding policy registered in the run-time. This rule can
be used until the packet-forwarding policy changes. Sub-
scribers to streams of statistics are handled similarly, using
the counters associated with the microflow rules.

6. RELATED WORK

Frenetic’s stream functions are modeled after functional
reactive languages such as Yampa and others [11, 5, 13, 10].
Its push-based implementation is based on FrTime [3] and is
similar to self-adjusting computation [2]. The key difference

between Frenetic and these languages is in our run-time sys-
tem, which uses the capabilities of switches to implement
the semantics of the operators in the language.

Several other research projects draw on ideas from pro-
gramming languages to develop new languages for program-
ming networks. The most similar language to Frenetic is
Nettle [15], which is also based on FRP. Nettle supports
network-wide control and domain-specific languages for dif-
ferent tasks, but lacks Frenetic’s support for composition of
modules affecting overlapping portions of flowspace. An-
other related language is NDLog, which has been used to
specify and implement routing protocols, overlay networks,
and services such as distributed hash tables [8]. NDLog
differs from Frenetic in that it is designed for distributed
systems (rather than a centralized controller) and is based
on logic programming. Also based on logic programming,
FML focuses on specifying policies such as access control
in OpenFlow networks [7]. Finally, the SNAC OpenFlow
controller [1] provides a GUI for specifying access control
policies using high-level patterns similar to the ones we have
developed for Frenetic. However, SNAC provides a much
less general programming environment than Frenetic.

One of the main challenges in the implementation of Fre-
netic involves splitting work between the (powerful but slow)
controller and the (fast but limited) switches. The same idea
was used in Gigascope [4], a stream database for monitoring
networks. Unlike Frenetic, it only supports querying traffic
and cannot be used to control the network itself.

7. CONCLUSIONS AND FUTURE WORK

This paper describes the design and implementation of
Frenetic, a new language for programming OpenFlow net-
works. Frenetic addresses some serious problems with the
OpenFlow/NOX platform by providing a high-level, com-
positional, and unified programming model. It includes a
collection of operators for transforming streams of network
traffic, and a run-time system that handles all of the details
related to installing and uninstalling switch-level rules.

We are currently working to extend Frenetic in several
directions. We are developing applications for a variety of
tasks including load balancing, authentication and access con-
trol, and a framework inspired by FlowVisor [14] for en-
suring isolation between programs. We are developing a
front-end and an optimizer that will transform programs into
a form that can be efficiently implemented on the run-time
system. Finally, we are exploring a proactive strategy that
generates rules from the registered subscribers and forward-
ing rules eagerly. We plan to compare the tradeoffs between
different rule generation strategies empirically.

Acknowledgments. We wish to thank Minlan Yu for many
helpful discussions. Our work is supported by ONR grant
N00014-09-1-0770 Networks Opposing Botnets. Any opin-
ions, findings, and recommendations are those of the authors
and do not necessarily reflect the views of the ONR.

8. REFERENCES

[1] The SNAC OpenFlow controller. See
http://snacsource.org/, 2010.

[2] Umut A. Acar, Guy E. Blelloch, and Robert Harper.
Adaptive functional programming. ACM Trans.
Program. Lang. Syst., 28(6):990-1034, 2006.

[3] Gregory H. Cooper and Shriram Krishnamurthi.
Embedding dynamic dataflow in a call-by-value
language. In ESOP, pages 294-308, March 2006.

[4] Chuck Cranor, Theodore Johnson, Oliver Spataschek,
and Vladislav Shkapenyuk. Gigascope: A stream
database for network applications. In ACM SIGMOD,
pages 647-651, 2003.

[5] Conal Elliott and Paul Hudak. Functional reactive
animation. In ICFP, pages 163—173, June 1997.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben
Pfaff, Martin Casado, Nick McKeown, and Scott
Shenker. NOX: Towards an operating system for
networks. SIGCOMM CCR, 38(3):105-110, 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin
Casado, John C. Mitchell, and Scott Shenker. Practical
declarative network management. In WREN, pages
1-10, 2009.

[8] Boon Thau Loo, Tyson Condie, Minos Garofalakis,
David E. Gay, Joseph M. Hellerstein, Petros Maniatis,
Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. Declarative networking. CACM, 52(11):87-95,
2009.

[9] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. Openflow: Enabling
innovation in campus networks. SIGCOMM CCR,
38(2):69-74, 2008.

[10] Leo A. Meyerovich, Arjun Guha, Jacob Baskin,
Gregory H. Cooper, Michael Greenberg, Aleks
Bromfield, and Shriram Krishnamurthi. Flapjax: A
programming language for Ajax applications. In
OOPSLA, pages 1-20, 2009.

[11] Henrik Nilsson, Antony Courtney, and John Peterson.
Functional reactive programming, continued. In ACM
SIGPLAN Haskell Workshop, pages 51-64, October
2002.

[12] The OpenFlow Switch Consortium. OpenFlow Switch
Specification, December 2009.

[13] John Peterson, Paul Hudak, and Conal Elliott. Lambda
in motion: Controlling robots with Haskell. In PADL,
January 1999.

[14] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Martin
Casado, Guido Appenzeller, Nick McKeown, and
Guru Parulkar. Can the production network be the
testbed? In OSDI, October 2010.

[15] Andreas Voellmy and Paul Hudak. Nettle: Functional
reactive programming of OpenFlow networks. In
Symposium on Practical Aspects of Declarative
Languages (PADL), January 2011. To appear.

