
Building Bug-Tolerant Routers with Virtualization

Matthew Caesar and Jennifer Rexford
Princeton University

Abstract
Implementation bugs are a highly critical problem in wide-
area networks. The software running on core routers is sub-
ject to vulnerabilities, coding mistakes, and misconfigura-
tion. Unfortunately, these problems are often foundafter
deployment in live networks, where they lead to outages,
make networks prone to attack, and involve a challenging
process to localize and debug. In this work, we propose
a bug-tolerant router that runs multiple diverse copies of
router software in parallel, such that each copy is unlikely
to fail at the same time as the others. Diversity is achieved
by varying the ordering and timing of routing messages, run-
ning different routing protocols, running code written by dif-
ferent implementers, etc. Because each copy is different,
each copy will likely have a different output during an er-
ror, and hence a simple voting procedure is then used to de-
cide which copy’s output will “drive” packet forwarding and
control-plane communication with other routers. In this pa-
per we motivate our design, describe some design decisions
and tradeoffs, and then conclude with a description of our
ongoing work in building a prototype of this architecture.

1. Introduction
Much of the Internet’s functionality is implemented in

softwarerunning on routers. Internet routers typically run
an operating system (e.g., Cisco IOS or JunOS) along with
a suite of protocol daemons to perform routing and admin-
istration functions. Since this software is written by human
programmers, it sometimes contains mistakes, orimplemen-
tation bugs. The fact that these bugs can produce incor-
rect and unpredictable behavior, coupled with the mission-
critical nature of core Internet routers, can produce disas-
trous results. Worse still, ISPs often run the same vendor
equipment and protocols network-wide, increasing the prob-
ability that a bug causes simultaneous failures or a network-
wide crash. Unfortunately, bugs are often discovered only
after they cause major outages. Operators must wait for ven-
dors to implement and release a patch for the bug, or find an
intermediate work around on their own, leaving their net-
works vulnerable in the meantime.

As an example, some early BGP implementations as-
sumed that the AS-path attribute would never have more
than 100 hops. Incidents occurred in which routers received
a route with a longer AS path, causing the router software
access memory beyond the previously-allocated space, lead-
ing the software to crash. Worse yet, correctly-functioning
routers throughout the Internet propagated the unusual route

to a large number of buggy routers, leading hundreds of
routers in the Internet to crash at nearly the same time. Even
worse still, upon restarting, these buggy routers receivedthe
offending announcement a second time, and crashed again.
While awaiting a software patch to fix the bug, network
operators configured their routers to filter routes with long
AS paths to avoid propagating routes that might cause their
neighbors to crash.

Unfortunately, this was not an isolated incident. The high
complexity and distributed nature of Internet routing has led
to a rich variety and numerous high-profile bugs and out-
ages [1, 2, 3, 4, 5, 6]. These bugs are notoriously difficult to
reproduce and localize, since they may violate protocol in-
variants, be “heisenbugs” that change characteristics or dis-
appear when investigated, or arise from interdependencies
across several distributed routers. Worse still, these bugs
may bevulnerabilitiesthat remote attackers can exploit to
compromise and control networks. Finally, we believe router
software bugs will become an even more critical problem in
the future, as router vendors start to open up their operat-
ing systems to third-party developers [7, 8], and as networks
are deployed in developing regions with fewer resources to
debug problems and upgrade software [9], and as other pre-
ventable sources of outages become less common (due to
better protocols/practices for planned maintenance, better
configuration automation and checking, etc.) [10].

As part of an ongoing study router software bugs, we man-
ually classified the bugs listed in the Bugzilla bug reposi-
tory web sites for the Quagga [11] and XORP [12] open-
source routers, as summarized in Table 1. Although some
bugs cause the router to crash, others allow the router to con-
tinue running while producing incorrect results, making the
problems potentially very hard to detect. To complement our
Bugzilla analysis, we are in the process of applying a variety
of static and dynamic analysis tools to open-source router
software to detect and characterize previously unreported
bugs for these routers. We also plan to conduct black-box
testing of commercial routers, and experiment with running
commercial router software directly on a PC [13, 14].

In this paper we argue that instead of (or perhaps in addi-
tion to) finding ways to localize router bugs and quickly re-
cover from them, router software should be architected from
first principles with buggy code in mind. We propose the
design of abug-tolerantrouter that significantly reduces the
likelihood of a software error affecting the network. To other
routers, a bug-tolerant router appears like any other router:
it runs the same protocols and forwards packets in the same
way. However, internally, our bug-tolerant router consists



Table 1: Breakdown of bugs from bugzilla.quagga.net by their effect
(whether they cause a router to crash, not crash but behave wrong, or
not affect router behavior).

Bug Bug type # of bugs # of bugs
categ. in Quagga in XORP

C
au

se
ro

ut
er

to
cr

as
h Seg-fault 3 8

Memory leak 2 9
Failed assert 14 6

Outputs vty error 2 0
Outputs log error 5 0
Freezes/deadlocks 6 5

Unspecified crashes 9 2
Subtotal: 41 (43%) 30 (49%)

W
ro

ng
be

ha
vi

or Sends incorrect route 25 16
Security vuln. 2 1

Incorrectly parses config 6 4
Performance bugs 0 1

Subtotal: 33 (35%) 22 (36%)

N
o

ef
fe

ct Compile errors 10 5
Missing command/docs 10 4

Subtotal: 20 (21%) 9 (15%)
Totals: 94 61

of severalvirtual routersrunning in parallel. Each of these
virtual-router instances is made different from the others, by
modifying their execution environment (e.g., by reordering
the routing updates they receive, by changing their configu-
ration, or by modifying their layout in memory) or by mod-
ifying their internal structure (e.g., by running router code
implemented by different programmers). This diversity de-
creases the likelihood that multiple router copies will simul-
taneously fail. To allow multiple virtual routers interactwith
the outside environment,voting is used on their outputs to
decide which routes to use to forward packets, and which
routes to export to neighbors.

Running multiple versions of a piece of code is known
as Software and Data Diversity(SDD) [15] and has been
widely applied in non-networked programs that require very
high availability. Despite recent application of SDD to
other kinds of computer systems [16, 17, 18], and de-
spite increasing use of technologies such as HSRP [19] and
VRRP [20] that enable rapid failover from onephysical
router to another, SDD has not been widely explored in the
context of routing software. Although the distributed op-
eration and tight performance requirements of routing pro-
tocols introduce challenges, routing software offers several
unique opportunities to modify and customize SDD tech-
niques: the modular construction of routers, their well-
structured input/output, and their minimal dependence on
history. Finally, we acknowledge the long-standing debatein
the software-engineering community over whether it is pos-
sible to completely prevent software errors. We believe un-
foreseen interactions across protocols, the potential to mis-
interpret RFCs, the increasing functionality of Internet rout-
ing, and the ossification of legacy code and protocols in the
Internet will make router errors a “fact-of-life” for the fore-
seeable future and we proceed under that assumption.

To the best of our knowledge, our work represents the
first attempt to provide the strong foundations and principles
of SDD towards building highly-available routing software.
That said, our work can leverage and extend several existing
technologies, including virtual networks [21, 22, 23], vir-
tual routers [24, 25], virtual machine technologies [13, 26],

open-source routers [11, 12, 27, 28] and traditional applica-
tions of software and data diversity [15]. In the following
sections, we first give an overview of challenges and oppor-
tunities in applying software diversity to data networks (Sec-
tion 2). We then describe the architecture of a bug-tolerant
router, including several design decisions and tradeoffs (Sec-
tion 3). We then conclude by describing our future plans to
implement and evaluate our design (Section 4).

2. Improving routing software reliability
Routers run routing protocols that exchange reachability

information to compute paths that reach destination address
blocks. The protocols form thecontrol planethat consists
of routing processes, ordaemons, that select and announce
routes and populate their own Routing Information Bases
(RIBs) that store the routes learned from their neighbors.
The “best” routes in each RIB are combined to construct
a single Forwarding Information Base (FIB) that thedata
planeuses to forward each packet to the next hop in its jour-
ney. Most routers have a clear separation between the control
and data planes, with the control plane running in software
and the data plane running in the operating system or in ded-
icated hardware. In this section, we describe some of the
unique challenges in building reliable router software, the
opportunities to apply customized SDD techniques to this
environment.

2.1 Reliability challenges for routing software
Traditional SDD principles cannot be directly applied to

network routing, as routing systems have several unique
properties and requirements that must be taken into account
(we will later address these in Section 3).
Fast reaction: Data networks are increasingly called
upon to forward traffic with demanding performance re-
quirements. This has led to substantial work on building
routers that can react quickly to network changes. Router
bugs can interfere with this goal. Before a router can for-
ward packets after a crash, the crash must be detected (which
may require manual intervention), the router must reload its
routing table from all of its neighbors, and the network-wide
routing protocol must reconverge. Worse still, if the router
does not crash but produces incorrect output, long-term or
perhaps even persistent outages may be triggered.
Large configuration space: Much of an Internet router’s
operation can be customized viaconfiguration languages.
These languages allow a network operator to balance traf-
fic load across links, filter malicious traffic, and prefer more
desirable routes. The highly flexible nature of routing pro-
tocols leads to a vast number of execution paths. Unfortu-
nately, these execution paths are only executed under certain
configurations and hence are extremely difficult to fully test
and debug.
Concurrency: By their very nature, network components
coordinate via distributed mechanisms. Hence in order to
perform an operation, such as setting up a path or forward-
ing a packet, multiple routers must be involved, and a fault

2



at any intermediate router may interfere with the packet’s
delivery. In addition, to achieve high performance, paral-
lel techniques are often used in architecture of individual
routers. In software, multiple processes/threads are usedto
simultaneously perform multiple operations. Unfortunately,
building and programming concurrent systems has been a
long-standing research challenge [30]. This increases the
likelihood of router bugs, and also increases the difficultyof
localizing the problem.

2.2 SDD opportunities for routing software
While network routing has several differences from envi-

ronments in which SDD has been previously applied, there
are also several aspects of network routing that may make it
particularly well-suited tocustomizedversions of SDD:
Small dependence on past history: Most typically,
the computation a router performs only depends on the
set of routes currently advertised by its neighbors. This
makes it easy to detect and repair bugs “after-the-fact”: if
a router advertises incorrect information due to a bug, it
can later simply send a routing update to “overwrite” the
incorrect information, which means bug detection does not
have to take place instantaneously. This also simplifies cre-
ation/migration/deletion of existing router instances. For ex-
ample, cloning an existing router instance need not involve
storing and replaying every routing update received by the
original router, but may instead be done by only replaying
the set of currently advertised routes.
Modular construction and well-defined interfaces:
Routers are often composed of multiple self-contained
units which can be easily decoupled from each other. The
interfaces between these modules form a natural place
where their outputs may be reconciled or voted between.
For example, separation often occurs along protocol bound-
aries (XORPmodulesand Quaggadaemons) as well as
functional boundaries (XORP/Quagga control-plane vs.
Click/kernel data plane). This allows SDD to be applied
separately to each component. For example, if the control
plane encounters a bug, it can be restarted without affecting
the data plane. Also, several control planes may coordinate
(perhaps by voting) to populate a single data plane.
Well-structured input and output: The operation of
routing protocols is well-defined by specifications such as
RFCs [31]. This has several benefits. First, this means
that alternate implementations of the protocol can be built
to these specifications (N-version programming [15]). This
has lead to multiple open-source implementations of routing
protocols existing today which are expected to be interoper-
able. Second, protocol behavior can sometimes be captured
by models [32, 33], which provide formal notions of cor-
rectness. These models can be used to check correctness
and detect faults that don’t cause routers to crash. More-
over, several tools exist which take protocol specifications
and generation functional code, which can be used to gen-
erate additional versions. Finally, a router’s computation
can be expected to complete after a certain period of time,

which may simplify detection of bugs that prevent termina-
tion (hangs/looping).
Multiple ways to achieve the same objective: The flexi-
bility in building and configuring networks often allows mul-
tiple ways to achieve the same goal. First, multiple protocols
exist that perform the same operation (e.g., OSPF and IS-
IS). Second, the flexibility in configuration languages lead
to a wide space of semantically-equivalent configurations
for routers. While these configurations should lead to the
same outputs, each one may trigger different bugs and fail-
ure modes. Finally, routes to different destinations are often
independent, and delays within reason affect only timing and
not the final answer. Hence, artificially reordering or delay-
ing certain updates will not change the steady-state outcome
of route selection.
Can survive brief outages: Decades of dealing with faulty
networks has led network architects and networked applica-
tion designers to plan for short outages and variable delays
in their code. Routing protocols such as BGP and OSPF re-
transmit and probe for liveness. Many routers can survive
a short control-plane outage without interrupting forwarding
in the data plane. Even if a short data-plane outage does
occur, end-to-end Internet protocols retransmit or otherwise
gracefully deal with loss. This allows us to use techniques
that quicklyrecoverfrom bugs, as opposed to more heavy-
weightprevention-based methods.

3. System architecture
We present our system architecture in three phases. First,

we describe the architecture of abug-tolerantrouter that
leverages virtualization to run multiple diverse instances of
router software in parallel. Then, we describe how to de-
crease the likelihood that these virtual routers encounterthe
same software bugs at the same time. Last, we consider ex-
tensions that run multiple routing daemons, or entire virtual
networks, in parallel to increase the opportunities for soft-
ware diversity.

3.1 Voting among multiple virtual routers
In this section we propose the design of abug-tolerant

router. While it is possible to apply SDD to improve bug-
resilience in both the control and data planes, we focus
primarily on improving the resilience of the control plane.
There are two key reasons for this. First, we would like our
architecture to be implementable as a software upgrade to
existing routers, without requiring extensions or redesigns
of router hardware. Secondly, the packet lookup and for-
warding algorithms used in the data plane are typically sim-
pler than the distributed protocols used in the control plane.
This fact, coupled with the widespread success of hardware
modeling and validation, substantially reduces the number
of bugs in the data plane.

Our design consists of a replicated control plane con-
nected to a single data plane, as shown in Figure 1. In par-
ticular, we create multiple diverse, functionally equivalent
copies of control-plane software running in parallel. Since
each copy is diverse (different layout in memory, different

3



Figure 1: Architecture of a bug-tolerant router.

ordering/timing of updates, different code bases, etc.), the
multiple copies are unlikely to fail at the same time. Col-
lectively, these multiple instances of the control plane must
work together to appear as a single control plane, to the data
plane as well as external routers. This is achieved through
the use of ahypervisor. The hypervisor is responsible for
monitoring the health of virtual router instances, rebooting
and re-syncing failed instances, diversifying their inputs, and
mediating between their outputs.

The hypervisor is composed of three components to per-
form these functions: output mediation is performed with a
voter, replicating and diversifying inputs is done with amux,
and maintaining and monitoring health of the virtual routers
is done with acontroller.
Mediating output with a voter: In our design, multiple
control plane instances need to collectively maintain a sin-
gle FIB. This is done with avoter, which accepts a route
from each instance, and decides which one to populate in
the FIB. One simple way to do this would be to perform
majority voting: if an instance begins to perform incor-
rectly, its output will differ form the outputs of the other
instances. However, this requires that all virtual routers
respond with their outputs before the result is sent to the
FIB. This slows reaction (e.g., to failures) to the speed of
the slowest instance. Given some approaches to increas-
ing diversity may substantially slow computation time, such
as compiling with optimizations disabled, or instrumenting
code with correctness/model-checking tools, this approach
may be undesirable. Worse still, voting cannot be applied
immediately, as transient routing decisions may differ across
instances, and hence voting can only be done after instances
reach their steady-state outputs.

Hence, our voter instead works by letting a single instance
“drive” the route selection. That is, one virtual router is as-
signed as themaster, and the others asstandbys. If the mas-
ter begins producing outputs that differ from the standbys,
or crashes, then one of the standbys is chosen as the master.
However, the downside of this approach is that an “incor-
rect” route may be written to the FIB. To ensure these routes
are quickly overwritten with correct entries, when failing
over from a master to a standby, the FIB entries that dif-
fer from the standby’s table are immediately overwritten. To
reduce failure probability even further, our architectureal-
lows a hybrid approach, here voting is performed across the
first k of N virtual routers to finish computation. In addition,
this voting must only be performed after routes reach steady
state. To ensure that happens, all router instances are pe-

riodically cloned (using copy-on-write techniques to speed
reaction) at certain fixed intervals and allowed to converge,
and voting takes place only over the clones. In addition to
computing which routes are sent to the FIB, we use a similar
approach to decide which routing updates are sent to neigh-
boring routers.
Replicating and diversifying input with a mux: Internet
routers formpeering sessionswith their neighbors, on which
they receive routing updates. These routing updates are then
forwarded to the daemon responsible for processing the cor-
responding protocol. Since our bug-tolerant router must ap-
pear as a single router to its neighbors, we need some way
for routing updates to be transparently “multicast” to eachof
the virtual router instances. In addition, configuration files
and operator vty (terminal) input need to be sent to each vir-
tual router, to ensure configuration changes are applied to
each instance. These functions are also done with aninput
mux. The input mux is also responsible for increasing di-
versity of these inputs, to increase the chance that different
instances fail at different times, as discussed in more detail
in Section 3.2.
Maintaining and monitoring health with a controller:
Since bugs may cause router instances to enter incorrect
states, or crash, our architecture needs to ensure these fail-
ure conditions can be detected and repaired. This is handled
by thecontroller. The controller interfaces with the voter
and mux modules, and monitors the inputs and outputs of
routers. Instances that crash, or leak excessive memory, or
appear to be infinite-looping, or repeatedly give incorrectan-
swers, are assumed to be behaving improperly and restarted.
In traditional software, determining whether a piece of code
is running correctly, or whether computation will terminate
is a hard problem [34]. However, a routing protocol’s com-
putation is well-defined, and can be reliably assumed to re-
turn after a reasonable amount of time has passed. After
restarting an instance, its state may be refreshed by cloning
the memory segment of another virtual process (if the two
instances share the same binary) or by reloading the routing
information (if they don’t).

3.2 Increasing diversity among virtual routers
In order to maximize the benefit of software redundancy,

it is imperative that the individual virtual routers are as di-
verse as possible. Increasing software diversity has been a
long-standing challenge in the software-engineering litera-
ture [15, 16, 17, 18]. However, the unique features of routing
protocols mentioned in Section 2.2 allow us to take several
unique approaches towards increasing diversity1:
Different code bases:The instances could each be devel-
oped by different implementers. For example, Quagga [11],
XORP [12] and OpenBGPd [27] could be run in parallel.
Different software versions:The instances could be differ-
ent versions of the same router. For example, Quagga v0.96,

1To be functionally equivalent, sources of non-determinismsuch as age-
based tie-breaking and non-deterministic MED must be disabled. This is
often done by operators anyway because they lead to unpredictable output.

4



Quagga v0.97, and Quagga v0.99 could be run in parallel.
Different configurations: The instances could be the same
code base, but be configured in different yet semantically-
equivalent ways. That is, unspecified preferences between
routes could be randomized, or multiple configuration files
could be used, each written by a different human operator.
Different messages timing and ordering:The timings and
orderings of update messages received from peers could be
randomized, and some update messages may be dropped
completely (for example, by forcibly withdrawing a route).
Different subsets of address blocks:The routers may be
identical, but may run for different overlapping subsets of
the network. For example, we may run one Quagga instance
that ignores routes not between 0.0.0.0/8 to 160.0.0.0/8, and
a second Quagga instance that ignores routes not between
100.0.0.0/8 to 255.0.0.0/8. In this case, the arbitrator must
be configured to perform voting for a particular route only
across instances that handle that route.
Different execution environments:The execution environ-
ment of each instance may be modified by the operating sys-
tem. For example, the layout in memory, or the ordering of
threads/process execution may be randomized.

In addition to comparing results across multiple virtual
routers in parallel, routing decisions could be validated
against formal models of the route-selection process. For ex-
ample, models can be used to compute the “best routes” each
router should ultimately pick, based on the topology, routing
configuration, and externally-learned routes [32]. Similarly,
network operators can specify certain invariants they expect
to hold in steady state, such as exporting the same set of IP
prefixes via each BGP session with a particular neighboring
network. Applying these checks to the actual RIBs (com-
puted by the routing protocols in a distributed and dynamic
fashion) can detect a variety of subtle bugs in the routing
software or routing configuration.

3.3 Diversity at the process and network level
The principle of SDD works by running multiple instances

of a piece of code in parallel. The modular nature of net-
works presents the opportunity to apply SDD at multiple
locations and at varying levels of granularity. Our discus-
sion so far has implicitly assumedrouter-levelredundancy,
i.e., that the code running in parallel would be the operating
system and entire protocol suite of a single router. How-
ever, our architecture also enables two additional forms of
redundancy:network-levelredundancy, where entire virtual
networks are run in parallel, andprocess-levelredundancy,
where individual routing processes and threads running in-
side a router implementation are replicated. While any one
of these approaches may be used in isolation, we believe
building bug-tolerant networks should take advantage of and
use all three if possible, since they are non-conflicting and
hence may be done simultaneously in our architecture.
Network-level redundancy: Instead of running individual
routers in parallel, ensembles of routers may collectivelyrun
multiple entirevirtual networksin parallel. In this approach,

the outputs of a single router are not merged into a single
FIB, or as a single RIB advertised to its neighbors. Instead,
routers maintain a separate FIB for each virtual network, and
voting is used at border routers to decide which virtual net-
work will be used to forward packets. Data packets arriving
at a border router are encapsulated with an identifier of that
virtual network. This approach offers several advantages in
increasing software diversity:
Diverse routing protocols:Different virtual networks could
employ multiple independent network-wide configurations.
For example, one virtual network may run OSPF, while an-
other may run IS-IS, which may be difficult (if not impossi-
ble) to do with just router-level redundancy.
Faster convergence: Running multiple virtual networks
may lead to faster routing-protocol convergence, since indi-
vidual physical routers do not have to wait for their internal
virtual routers to vote and agree on a result before forward-
ing an update.
However, deployment may become more challenging, since
this approach relies on network-wide deployment. That said,
it is possible to use tunnels to traverse routers that are not
instrumented with our virtualization technology. In addi-
tion, the network-wide approach may introduce more control
overhead, as updates must be separately exchanged for each
virtual network. In general, the routing-protocol traffic is a
small fraction of the total load in most high-speed networks,
making this a relatively minor concern. Still, it should be
possible to reduce overhead by suppressing redundant up-
date messages, or just transmitting deltas of their contents.
Process-level redundancy: In addition, SDD may be
applied at a finer granularity, by creating redundant yet di-
verse executions of individual router processes or threads.
For example, rather than voting among virtual routers just
before installing forwarding-table entries in the FIB, voting
could be performed amongst multiplerouting daemonsto
construct a singleRIB. This approach offers several advan-
tages:
Lightweight operation: Cloning and restarting only indi-
vidual processes or threads may speed reaction, and reduce
memory usage and computational requirements.
Finer-grained control: During times of load, only mission-
critical components may be cloned to reduce resource usage.
Also, voting could be more tightly integrated into process-
ing, for example, by voting at the end of the decision process.

However, code development may become more challeng-
ing, since this approach relies on knowing which parts of the
code are functionally equivalent, and under what conditions
this holds true. Unlike “router-wide” or “network-wide” ap-
proaches, the execution environment is often unaware of in-
ternal interfaces between blocks of router code, and which
may be replicated in a functionally equivalent way. That
said, router code is often designed in a modular fashion, be-
ing composed of well-isolated processes and daemons. For
example, in XORP multiplerib modules, and in Quagga
multiplebgpd daemons, may be run in parallel.

Modifying router software to conform to a common API

5



would enable replication and composition of modules from
different code bases. This API would define a collection of
modules within a router, how they interact, and how outputs
from multiple instances of each can be combined with vot-
ers. Though practically challenging, there are some promis-
ing initial signs in this direction. For example, common
APIs like libvirt are beginning to emerge in the area of host
virtualization [35]. In addition, existing routers already have
a clear separation between the control and data planes, and
some general APIs exist for populating the data plane [36].
Also, the Quagga routing software [11] has its own open
API that defines how individual routing processes commu-
nicate in the context of a single router. In addition, having
a common “router hypervisor” would be useful for support-
ing other advanced features, such as the migration of virtual
routers from one physical platform to another [22]. Com-
mercial router vendors may be understandably reticent to in-
terface their router software with other vendors, but it is still
possible for a single vendor to benefit from these techniques,
for example by running multiple BGP processes within a
single instance of Cisco IOS. In addition, the move toward
supporting third-party software on commercial routers [7,8]
relies on having clearly-specified APIs.

4. Conclusions
In this paper, we described how to improve resilience of

networks to bugs by applying Software and Data Diversity
(SDD) techniques to router design. We presented an early
architecture which may be tenable in practice. Our approach
is amenable to incremental deployment, and can be run only
within a single ISP, a single subnet, or even a single router.

We are currently implementing and deploying a prototype
of our system in the context of the VINI [21] testbed. In
this environment, we first plan to taxonomize and study the
behavior of bugs in networked software. Secondly, we plan
to develop and evaluate an efficient hypervisor implementa-
tion, and study the behavior of different voting algorithms.
We also plan to study other software engineering techniques
to avoid bugs, for example by incorporatingrollback oper-
ations, or by replaying/reordering state changes to localize
the bug. Finally, we plan to extend our testbed to study bugs
in commercial, closed-source routers, by leveraging freely
available tools to run Cisco/Juniper operating system code
directly on Linux workstations [13, 14].

5. References
[1] T. Akin, “Cisco router forensics,” inBlackhat Briefings, July 2002.

www.blackhat.com/presentations/bh-usa-02/
bh-us-02-akin-cisco/bh-us-02-akin-cisco.ppt.

[2] J. Evers, “Trio of Cisco flaws may threaten networks,” inCNET
News, January 2007.

[3] B. Brenner, “Cisco IOS flaw prompts symantec to raise threat level,”
in Information Security Magazine, September 2005.

[4] W. Knight, “Router bug threatens ’Internet backbone’,”in New
Scientist Magazine, July 2003.

[5] J. Duffy, “BGP bug bites Juniper software,” inNetwork World,
December 2007.

[6] P. Roberts, “Cisco tries to quash vulnerability talk at Black Hat,” in
eWEEK (Ziff Davis Inc.), July 2005.

[7] “Cisco opening up IOS,” inNetwork World, December 2007.
[8] “Juniper networks delivers industry-first platform forcustomer and

partner application development on carrier-class networkoperating
system,” inJuniper Networks, Inc. (press release), December 2007.

[9] R. Tongia, “Connectivity and the digital divide: Technology, policy,
and design tradeoffs for developing regions,” inTelecommunications
Policy Research Conference, September 2006.

[10] A. Kuatse, R. Teixeira, and M. Meulle, “Characterizingnetwork
events and their impact on routing,” inProc. CoNEXT, December
2007.

[11] “Quagga software routing suite,”www.quagga.net.
[12] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov,

“Designing extensible IP router software,” inProc. NSDI, May 2005.
[13] “Cisco 7200 simulator,” (software to run Cisco IOS images on

desktop PCs)www.ipflow.utc.fr/index.php/Cisco_
7200_Simulator.

[14] “Olive,” (software to run Juniper OS images on desktop PCs)
juniper.cluepon.net/index.php/Olive.

[15] L. Chen and A. Avizienis, “N-version programming: A fault
tolerance approach to reliability of software operation,”in Proc.
Fault-Tolerant Computing Symposium, June 1978.

[16] E. Berger and B. Zorn, “DieHard: Probabilistic memory safety for
unsafe languages,” inProc. Programming Languages Design and
Implementation, June 2006.

[17] R. Rodrigues, M. Castro, and B. Liskov, “Base: Using abstraction to
improve fault tolerance,” inProc. ACM SOSP, October 2001.

[18] Y. Zhou, D. Marinov, W. Sanders, C. Zilles, M. d’Amorim,
S. Lauterburg, and R. Lefever, “Delta execution for software
reliability,” in Proc. Hot Topics in Dependibility, June 2007.

[19] T. Li, B. Cole, P. Morton, and D. Li, “Cisco hot standby router
protocol (HSRP).” RFC 2281, March 1998.

[20] R. Hinden, “Virtual router redundancy protocol (VRRP).” RFC 3768,
April 2004.

[21] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In
VINI veritas: Realistic and controlled network experimentation,” in
Proc. ACM SIGCOMM, August 2006.

[22] Y. Wang, J. van der Merwe, and J. Rexford, “VROOM: Virtual
ROuters On the Move,” inProc. HotNets, November 2007.

[23] N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in
your spare time,” inACM Computer Communication Review, January
2007.

[24] D. McPherson, C. Parker, R. Hartani, D. Ward, P. Agarwal,
S. Poretsky, and D. O’Leary, “Panel abstract: Core network design
and vendor prophecies,” February 2006.

[25] M. Kolon, “Intelligent logical router service,” inWhite Paper
(Juniper Networks, Inc.), October 2004.

[26] “Xen,” (hypervisor software),www.xen.org/.
[27] “Openbgpd,”www.openbgpd.org.
[28] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The

Click modular router,” inACM Trans. Comp. Sys., August 2000.
[29] R. Alimi, Y. Wang, and Y. R. Yang, “Shadow configuration as a

network management primitive,” inProc. ACM SIGCOMM, August
2008.

[30] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands,
K. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams, and
K. Yelick, “The landscape of parallel computing research: Aview
from Berkeley,” Tech. Rep. EECS-2006-183, UC Berkeley,
December 2006.

[31] J. Moy, “OSPF Version 2.” RFC 2328, April 1998.
[32] N. Feamster and J. Rexford, “Network-wide prediction of BGP

routes,” inIEEE/ACM Trans. Networking, April 2007.
[33] N. Feamster and H. Balakrishnan, “Detecting BGP configuration

faults with static analysis,” inProc. NSDI, May 2005.
[34] M. Sipser inIntroduction to the Theory of Computation, Section 4.1

(The Halting Problem), PWS Publishing, 1997.
[35] “The virtualization API.”libvirt.org/.
[36] “IETF forwarding and control element separation (ForCES),”

(software)www.ietf.org/html.charters/
forces-charter.html.

6


