
Virtualizing the Data Plane Through Source Code Merging

Eric Keller
Princeton University, Princeton, NJ, USA

ekeller@princeton.edu

Evan Green
Princeton University, Princeton, NJ, USA

eagreen@princeton.edu

ABSTRACT
Virtualization is a key technology that enables multiple re-
search groups to test new protocols simultaneously on the
same physical network and also allows service providers to
incrementally add new services. In this paper we focus on
virtualization of the data plane, allowing for customized
packet handling in each virtual network.

Much work has been done on virtualization technology.
However, this has been focused on the user application expe-
rience or on a fixed networking stack. Rather than running
custom data planes in user space or running separate guest
operating systems, both of which come at a performance hit,
we propose running a single kernel-level custom data-plane
by synthesizing the configuration of the per-virtual-network
data planes.

In this paper we present this idea using Click, where packet
processing is specified as an interconnection of fixed net-
working tasks. We then demonstrate the idea using an un-
virtualized Linux kernel as the target platform, showing how
we provided isolation between the customized data plane.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design; C.2.6 [Computer Communica-
tion Networks]: Internetworking

General Terms
Design, Experimentation, Performance, Languages

Keywords
Virtualization, architecture, routing, virtual router

1. INTRODUCTION
Virtualization provides a means to run multiple virtual

networks on a shared physical infrastructure. Each virtual
network is logically separated and can be tuned to the spe-
cific needs of the applications running on it. Each applica-
tion can run its own protocols and services, ideally, without

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’08, August 22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-181-1/08/08 ...$5.00.

disturbance from traffic on other virtual networks. This is a
key technology for future experimental platforms and service
deployment.

In this paper we focus on enabling the customization of
data plane functionality. The challenge of this is the need to
support (i) customization of the packet-handling function-
ality, (ii) packet forwarding at high rates, and (iii) multiple
virtual networks running in parallel. Furthering point (iii),
not only is it necessary to have a mechanism to share the
physical machine, but it is required that each virtual network
be isolated from one another. In this way, one experiment
or service cannot interfere with the network of an unrelated
experiment.

Existing virtualization techniques focus primarily on sep-
aration of execution environments, e.g. separating user envi-
ronments through containers [17] or running separate guest
operating systems [1]. However, this amount of flexibility
and isolation comes at a price. First, the techniques are lim-
ited to software and therefore cannot be applied to special-
ized devices, such as FPGAs or network processors. Second,
networking has higher demands, both in throughput and la-
tency. Adding an extra layer, as virtualization technologies
do, adds a significant amount of unnecessary overhead.

There has also been work on virtualizing fixed network-
ing stacks [15] [5]. Here, each of the data structures in, for
example, the Linux networking stack are duplicated and iso-
lated in a container. This approach provides little in terms
of flexibility as it is limited to what the fixed network stack
provides, e.g. IPv4 forwarding.

These approaches sacrifice performance or flexibility in
order to enable virtual data planes. Instead, we argue that
networking is a specific task and does not require general
virtualization to enable running multiple data planes on a
shared resource.

We propose that when using a language where packet han-
dling is specifies as a graph of common networking functions
interconnected to indicate packet flow, source code based
virtualization is an approach that does not concede either
flexibility or performance. By this, we mean that the func-
tionality of the data plane can be specified for each virtual
network. Then at the source code level, the data planes can
be combined. From the source code, important meaning can
be inferred, including which networking specific operations
are being performed and in what order.

Alone, this is not sufficient, but it does lower the bar-
rier for providing an isolated environment for an unvirtu-
alized resource such as the operating system kernel or pro-
grammable hardware. This is because we can inspect the

source code and ensure that the virtual networks are not in-
terfering with each other or doing anything illegal. Further,
by using a language based on specifying a graph of com-
mon functions as the source code, we restrict functionality
to what is needed in networking and therefore do not have
to provide protection against general code from interfering
with another virtual network or the entire system.

In this paper we present this idea using the Click modular
router. Click is a software architecture for building flexi-
ble and configurable routers. It uses a textual language to
specify how packets flow between a set of networking tasks,
called elements. When Click is executed in the kernel using
polling it achieves packet forwarding rates comparable to
native Linux. Both [10] and the more recent [9] show that
Click’s IPv4 forwarding rate is actually greater than Linux,
so it is reasonable to assume in kernel mode Click is high
performance.

As a simple example to illustrate how virtualization can be
simplified and kept lightweight, consider a situation where
only a predefined set of existing Click elements are allowed
to be used in the custom data planes. For this, it can be
seen that virtualization can be reduced to simple resource ac-
counting and ensuring the traffic goes through the elements
for the correct virtual network. The virtualization layer only
has to allocate each of the virtual networks a share of the
physical resources and provide a run-time accounting mech-
anism.

We demonstrate the idea of source code based virtual-
izating by allowing multiple Click configurations to run in a
single Click instance in the Linux kernel. First, we provide
a coordinating process that combines each of the Click con-
figurations. This coordinating process also performs a set of
checks on each configuration, ensuring each configuration is
legal. Second, we use Linux-VServer [17], a container based
virtualization layer, to provide resource accounting and lim-
iting.

The paper is organized as follows. In section 2 we discuss
the architecture of the system and the general idea of source
code based virtualization. In section 3 we discuss our proto-
type implementation based on the Click modular router and
Linux-VServer. Then, in section 4 we discuss two challenges
that arise in our implementation from executing in the Linux
kernel. In particular, we discuss how these challenges relate
to the issue of safety. We then discuss alternate techniques
in section 5. We wrap up with a discussion of future work
in section 6 and conclusions in section 7.

2. LIGHTWEIGHT VIRTUALIZATION
In this paper we argue that a lightweight mechanism, com-

bining source code, can be used for supporting virtual net-
working. In particular, enabling multiple concurrent cus-
tomized data planes to run together on a shared platform.

From the virtual network’s perspective a single node in its
network would appear as shown in Figure 1. This includes
a user environment to run control software, a forwarding
path for processing packets, and an interface between the
control and forwarding for configuration. As the physical
node is shared, to achieve isolation, each virtual network is
allocated a share of the physical resources. This includes,
for example, CPU cycles, memory, and bandwidth.

The packet processing is expressed using a language that
specifies a graph of common networking functions intercon-
nected to indicate packet flow. This graph specifies the com-

Figure 1: View of a single virtual network device.

Figure 2: High-level view of a combination of two
custom data planes

plete packet processing functionality from input to output
for that particular virtual network.

Considering this setup, the idea behind source code based
virtualization is relatively simple. There are multiple virtual
networks that are to be run on a single physical machine.
Each virtual network’s data plane functionality is specified
using a language representing the graph. The graph for
each virtual network is given to a central controlling pro-
cess which then combines the graphs into a single graph.

Simply combining the graphs is not sufficient. Additional
processing needs to be added by the coordinating process
to direct packets from input of the master graph (i.e. a
physical interface) to the input of the correct sub-graph. A
high-level view of this can be seen in Figure 2 which shows
the combination of two custom data planes from two virtual
networks.

As each of the virtual networks have been allocated a par-
ticular share of resources, some run-time resource accounting
and limiting is also needed. This is to ensure that one vir-
tual network does not consume excess resources and exert
influence on the performance of other virtual network. Each
virtual network is allocated a share of the resources, such
as CPU cycles, for the particular physical machine. This
allocation is then used by a scheduler to determine whether
the code for a given sub-graph can be run.

In this paper we assume that there exists a library of com-
mon packet processing functions that can be used. Each of
the functions in this library would be considered safe. Mean-
ing that it is bounded in terms of resource usage and does
not access or corrupt memory that is not its own. Ideally,
the collection of elements is complete in that new protocols
can be built exclusively from this library. However, there
will be cases when custom functionality will be needed. We
discuss the problems related to this as it pertains to our
particular implementation in Section 4.

Using source code based virtualization, the overhead is
minimized by ensuring isolation at compile time where possi-
ble. The extra overhead comes from (i) sharing the network
interfaces and (ii) performing the resource accounting, both
of which can be minimal and will be needed for any virtu-
alization solution. There are proposals to add functionality

Figure 3: System Architecture

for performing the mux/demux functionality directly on the
network interface card [19], removing that overhead com-
pletely.

3. PROTOTYPE IMPLEMENTATION
To realize the architecture discussed in Section 2 we use

the Click modular router and Linux-VServer, as shown in
Figure 3. Linux-VServer is realized as a patch to the Linux
kernel, and forms our kernel environment. Running on top of
the shared kernel are several contexts which corresponds to
a collection of user space processes grouped together to pro-
vide namespace isolation and collectively have their resource
usage accounted for. The user’s working environment, which
corresponds to the management interface of the virtual net-
work device, is the user space context that Linux-VServer
provides. In this use, Linux-VServer is providing the role of
isolation of the user environments.

The rest of this section discusses the isolation of the cus-
tom, per virtual network, data planes. In Section 3.1 we dis-
cuss how we combine multiple Click configurations. Then, in
Section 3.2 we discuss how we used Linux-VServer to provide
us with the resource accounting that we require as part of
the run-time management that source based virtualization
needs.

3.1 Combining Graphs of Click Elements
We argue that source based virtualization is possible given

a language which can specify packet processing functional-
ity as a graph of common functions. For this, we chose to
use Click [10]. Click is widely used to build custom data
planes, both for researchers doing experiments [8][4] and for
building real systems (e.g., deploying software routers and
services) [13]. This makes it a natural choice for network
virtualization.

In Click, a router is assembled by connecting together ba-
sic packet processing modules called elements. Elements in-
clude common processing tasks such as classification, lookup,
and queueing. As an example, the following configuration
describes a system that reads a packet from device eth1,
passes the packet to the EtherMirror element which swaps
the source and destination MAC addresses, puts the packet
in a Queue, and then sends the packet out device eth1.

FromDevice(eth1) -> EtherMirror

-> Queue

-> ToDevice(eth1);

In our system, each virtual network can have a Click con-
figuration loaded into the kernel. However, this is not imme-

diately possible with the original implementation of Click.
While it would be possible to modify the Click kernel mod-
ule to accept multiple configurations through system calls,
it is unnecessary. Instead we chose the less complex solution
of adding an extra layer on top of Click, running in user
space, that combines multiple graphs into a single master
Click configuration.

To call the coordinating process and install a graph, an
installer program running in each user context replaces the
standard “click-install” program, as shown in Figure 3. It
installs the Click configuration in the kernel using socket
based communication with the coordinating process, pass-
ing the Click configuration for that virtual network. The
coordinating process will then install the configuration.

In addition to combining multiple Click configurations
into one, the coordinating process will also add elements to
demultiplex and multiplex the traffic. In our setup, we as-
sume physical interfaces can be shared. To enable classifying
packets according to which virtual network it belongs to, we
make use of generic routing encapsulation (GRE) tunnels.
A GRE header is composed of a source and destination IP
address along with a type field. The type indicates the in-
ner packet type, for example IP, and the destination address
is used for classification in our system. A system configura-
tion file specifies the source and destination IP address of the
GRE tunnels, the physical devices used, the virtual devices
assigned to each virtual network, and the internal IP address
of each of the virtual devices. From this, the coordinating
process can add elements to the master Click configuration
for the purpose of multiplexing and demultiplexing.

Referring back to Figure 2, showing the combined master
graph, each sub-graph shown is a Click configuration in our
implementation. On the ingress side, the master Click con-
figuration will use classification based on the GRE header
to direct the packet toward the correct portion of the graph.
After classifying which virtual network a packet belongs in,
elements the coordinating process added to the master Click
graph will strip the GRE header and deliver the packet to
the virtual network’s Click elements.

At the egress side, packets from each of the virtual net-
work’s set of elements are encapsulated in a GRE header
and multiplexed onto the physical devices. It is envisioned
that traffic shaping elements could be added to the master
Click configuration as a means of resource accounting the
allocated bandwidth.

In addition to its basic responsibility of installing indi-
vidual Click configurations, the coordinating process also
provides some form of isolation. Click is a flexible language
and as such can be used to specify a wide variety of con-
figurations. The coordinating process verifies the validity
of the Click configuration. It will ensure that the devices
the virtual network is accessing are the virtual devices ac-
tually assigned to it. The naming of devices can be shared
(e.g. two virtual networks can have eth1), but virtual net-
works cannot access devices that are not assigned to it (e.g.
eth3, if it was not assigned an eth3). Through the use of the
multiplexing/demultiplexing elements, previously discussed,
the coordinating process performs the mapping between the
virtual network’s devices and the physical devices. Further
checks may become necessary in the future, and having this
coordinating process will enable these checks to be easily
added later.

3.2 Resource Accounting with Linux-VServer
The basic mechanism for isolation of the actual packet

processing is done through resource accounting. Through
resource accounting each user context can be given guaran-
tees on the amount of a particular resource, such as CPU
cycles or memory, that it will receive. This enables a virtual
network to be unaffected by the configuration of other vir-
tual networks. Linux-VServer uses a token bucket extension
to the Linux scheduler to count CPU cycles and limit each
thread’s ability to run if its context does not have enough
tokens. The challenge here is to associate specific elements
with a particular user context.

To achieve this, the Click configuration for each virtual
network is run in a separate kernel thread. In Click, packet
processing is essentially a series of function calls passing a
packet down the pipeline. Upon hitting an element such
as a Queue, the function calls return. It is impossible to
associate an individual element with a particular thread.
Instead, Click has particular elements that are considered
schedulable. Such elements run at scheduled times and are
the start of a series of function calls. Through the Static-
ThreadSched element available in Click, these elements can
be assigned to a particular thread. The thread consists of
the starting element plus the entire pipeline of elements up
to the next Queue element.

Each of these threads now handles a single virtual net-
work’s Click configuration. As such, resources such as CPU
cycles and memory used by this thread need to get ac-
counted for and billed to each particular virtual network. To
achieve this we created an element called VSStaticThread-
Sched. Similar to the StaticThreadSched element that as-
signs schedulable elements to threads, the VSStaticThread-
Sched element assigns a thread to a user context. The con-
figuration string it takes in is a list of pairs consisting of the
thread and context IDs.

Through the mechanism we provide, we are able to com-
bine multiple Click configurations into a single graph, asso-
ciating each of the original graphs with a particular virtual
context. This allows Linux-VServer to account and control
the resources each context can use to forward packets. Ad-
ditionally, this accounting is system wide, meaning it is a
single mechanism covering both user-space control and ker-
nel mode packet forwarding.

4. KERNEL EXECUTION CHALLENGES
The ability to execute packet forwarding in kernel mode

is beneficial given that packet forwarding is between six and
ten times faster when compared to packet forwarding in user
space. However, this capability does not come without chal-
lenges. In this section we discuss two issues that arise with
execution in the kernel: unyielding threads and pointers. We
then discuss the challenge of verifying the safety of elements,
in particular as it relates to these two issues.

4.1 Unyielding Threads
The first issue found with executing in the kernel is that

of unyielding threads. The Linux kernel is a cooperative
environment where kernel threads yield to one another or
where execution changes when a kernel thread blocks or re-
turns from a system call. In our implementation we im-
plemented each virtual network’s configuration in its own
kernel thread, with each thread allowed to execute a certain
number of tasks before yielding. Here, a task corresponds

to the execution of one or more elements, roughly a pipeline
of elements between queues. A single long running task can
result in both a short term disruption as well as possibly
leading to long term unfairness.

The short term disruption comes from the simple fact that
when sharing a single processor, one thread executing means
another thread is not. Therefore a single long task for one
virtual network can cause extra delay for the other virtual
networks. However, this problem can be solved. From the
guarantees made by the platform to the virtual networks in
terms of minimum delay and jitter, a maximum allowable
execution time for a single thread can be calculated. Also,
as the elements in the provided library can be profiled to
determine a bounded execution time, the execution time of
each task can be calculated. From this, if a task is deter-
mined to be too long, the pipeline of elements forming that
task can be broken up into two tasks using a Queue element.
However, when an element in the task does not have known
characteristics, e.g. a custom element, then we propose ex-
ecuting that portion of the pipeline in user space inside of a
container, isolating it from the rest of the system. This solu-
tion also holds for the situation where a single element has a
known long execution time and the pipeline cannot be bro-
ken up enough. In this case, the performance degradation
from executing in user space is not as big of a concern given
the forwarding rate with that element will be low anyway.
An area for future consideration is to (i) determine a set of
elements that form a complete library and (ii) determine a
process to enable custom elements to be fully characterized
so they can be used in kernel mode.

There are also long term issues with unyielding threads in
our particular implementation. In particular, Linux-VServer
makes use of a token bucket scheduler that adds tokens at a
particular rate and consumes them when running. However,
the token bucked does not go negative. Therefore, the time
from when a particular context runs out of tokens until when
it yields is not accounted for. This can lead to the context
getting a share of the CPU in excess of its allotment. The
solution to this is the same as the short term disruption.
In particular, calculating the length of a particular task and
either breaking it up if the execution time can be determined
or executing in user space if it cannot.

4.2 Pointers
A second issue with executing in the kernel comes from the

fact that custom elements are written in C++, a language
with pointers. Click is a shared environment and because
of this there are global variables accessible to elements that
can affect the behavior of the entire router. For example,
the router configuration is made globally available, which
would allow any element to see the entire configuration, in-
cluding the configuration of other virtual networks. While
some system elements may require the use of these variables,
in general they should not be accessed as it would enable a
virtual network to interfere with, or observe, another virtual
network.

In addition to the global state in Click, there is the system
wide state made available by Linux. Kernel modules are
given access to internal state and functions that affect the
entire machine. As elements are run in the kernel, this is a
concern.

One possible solution can involve compiler tricks. Here,
before allowing an element to be added for use, the element

could be (1) compiled in user mode and (2) compiled using
restricted versions of various header files. Compiling in user
mode ensures that new Click elements are not calling ker-
nel functions or accessing kernel data structures. Compiling
with restricted header files ensures that Click global state
cannot be accessed.

However, since the elements are written in C++, this ap-
proach is not sufficient. Pointers can allow elements to ac-
cess and modify memory that belongs to other applications.
Because this code is running in kernel mode, pointers allow
an element to potentially corrupt data of another user, or
damage the entire machine. Because of this, any custom
elements are to be run within a container in user space to
fully isolate it from the rest of the system.

Ideally, the elements that end up being executed in user
space are not on the fast path of the network device. How-
ever, it is possible that they will be. As with the issue of
unyielding thread, future work will be needed to allow cus-
tom elements to run in kernel mode.

4.3 Verifying Safety of Elements
While considering both of the issues discussed in the pre-

ceding sections, it is important to note that safety guaran-
tees can be maintained. First, in situations where safety
has the potential of being compromised, we trade the per-
formance of executing in the kernel for the isolation of exe-
cuting in a container in user space.

However, a goal is to make this an uncommon situation
or one that does not hurt the system performance. This is
where the use of a safe library becomes important. When
using elements from the library, the execution can occur in
the kernel and safety guarantees can be maintained. Ele-
ments in the library would have bounded execution time,
leading to the ability to verify that a given task would yield
in the maximum allowable amount of time. Path analysis
with bounds on loops can be used in conjunction with mod-
els of the architecture to determine estimates of execution
time [12]. In addition to executing in a bounded amount
of time, elements in the library would also have been well
tested to ensure that they are not accessing memory that
is not their own or have any other bugs that can affect the
system. Static analysis has been shown to be able to find
many bugs in complex systems [7].

Currently, Click has a library of approximately 450 ele-
ments, some of which are commonly used and well behaved
and many of which are experimental or not for packet pro-
cessing in the kernel. As a prototype in our environment,
this is sufficient. However, for real use, a more thorough
analysis of the library will be needed. Additionally, while
the current library of elements may not be complete in terms
of being able to specify any protocol, it does include many
common functions such as queueing and lookup. Additional
elements that are parameterizable can be added to fill the
gaps and make the library more complete.

5. RELATED WORK
There are other approaches to virtual networking in the

context of the data plane. Three high level considerations
for each of these are (i) flexibility, (ii) performance, (iii)
isolation.

In [2], the authors present the VINI system, a virtual net-
work infrastructure that allows experimentation in a realistic
environment and with a high degree of control over network

conditions. In an experiment the authors ran, Click was used
as the forwarding plane within the user space environment of
Linux-VServer, so therefore it suffers from poor performance
due to being restricted to running in user-space.

OpenVZ [15] is a container based virtualization technol-
ogy, meaning the kernel is shared and the user space environ-
ment is isolated. OpenVZ achieves good performance by us-
ing a virtualized networking stack allowing packets to be for-
warded in the shared kernel. Through the use of NetNS [5],
Linux-VServer has a similar mechanism as demonstrated
with Trellis [3]. However, both of these systems are lim-
ited to the functionality provided by the Linux networking
stack, namely IPv4 forwarding.

Another approach is to use a full or para virtual machine,
such as Xen [1], and run Click in kernel mode in the guest
operating system. This has the advantage of supporting
custom data planes. Performance of this has not been eval-
uated, but it has been shown that using the guest oper-
ating system (domU) for forwarding in Xen is significantly
slower (over 6x worse) than when doing the forwarding in
the shared dom0 [6]. Doing the forwarding in dom0 is es-
sentially the same as using OpenVZ, as this is then limited
to the fixed forwarding capabilities of Linux. So it can be
assumed that running Click in this environment would not
be efficient. This needs to be evaluated further.

While originally meant as a way to protect a system against
faulty drivers, the Nooks system [18] could be used as an ap-
proach to provide general virtualization of the kernel. For
this, Click would need to be modified to be run as multiple
kernel modules, and each module is a single Click configura-
tion. The Nooks system would provide protection, but does
not do resource accounting. It is something that should be
looked into more.

Scout [14] is a communication oriented operating system
that introduced the notion of the path abstraction. A path
specifies the flow of data through communication modules
from source I/O to sink I/O as well as the resources used.
The Scout operation system then schedules based on paths,
rather than threads. This provided an inspiration for the
high level architecture of our system which has similar con-
structs. However, they were creating a specialized operating
system customized for a given network devices, as opposed
to sharing a general platform across multiple custom (vir-
tual) network devices.

6. FUTURE WORK
There are two main directions for future work. First, there

is more to be done on the issue of safety. In particular we
have assumed an existence of a library of common function
that can be used to construct custom data planes. Further
work is needed to determine what would constitute a com-
plete library, where custom elements will not be needed in
most cases. To cover the situations when custom elements
are needed, we intend to investigate ways to either automat-
ically determine if an element is safe or monitor the element
at run time through, for example, automatically adding ex-
tra checks into the code.

A second direction is to provide support for specialized
devices, in particular we plan to look at FPGAs. As pre-
vious work has shown[11][16], it is possible to map Click
configurations to FPGAs. We plan to investigate the issues
with this in the context of source code based virtualization.
In software, we talk about resource accounting in terms of

CPU cycles. In FPGAs, execution is parallel, so chip area
is the limiting resource. Both environments require man-
agement over memory. There are additional complications
as well. For example, “hot-swapping” a portion (one virtual
network) of the master Click configuration is not trivial to
do in an FPGA whereas in software it is trivial. Extend-
ing into architectures beyond software based routers has the
potential for great performance benefit.

7. CONCLUSIONS
In this paper we presented our architecture for sharing

kernel-mode Click as an example of using a source code
based virtualization. Here, the source code is a language
where packet handling is specifies as a graph of common
networking functions interconnected to indicate packet flow.
By using this language, allowing users to create custom
data planes for programmable virtual networks can be very
lightweight. The overhead includes the muxing/demuxing
needed for sharing the network interfaces as well as perform-
ing resource accounting. Using Linux-VServer for resource
accounting allowed for a system wide accounting mechanism
to be used. By associating a thread with a virtual context,
the CPU usage for packets traveling through the user’s Click
configuration can be counted against that users context.

We also discussed two challenges that arose from our im-
plementation of executing in the Linux kernel and how they
pertain to safety. In particular we discussed the problems
of unyielding threads and usage of pointers and discussed
potential solutions.

By using a language that specifies a graph of common
functions, we are able to simplify the task of providing a
virtual environment for the data plane and therefore make
it lightweight. It is due to the unique nature of networking
where the problem of virtualization can be constrained to
enable simplified solutions. Through virtualization of the
data plane, innovation in the network can occur.

8. ACKNOWLEDGMENTS
We would like to thank Michael Freedman, Jennifer Rex-

ford, Andy Bavier and Sapan Bhatia for their advice and
help throughout our work on this research.

9. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, 2003.

[2] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In VINI Veritas: Realistic and controlled
network experimentation. In Proc. ACM SIGCOMM,
Sept. 2006.

[3] S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius,
A. Bavier, N. Feamster, L. Peterson, , and J. Rexford.
Hosting virtual networks on commodity hardware.
Georgia Tech Computer Science Technical Report
GT-CS-07-10, January 2008.

[4] J. Bicket, D. Aguayo, S. Biswas, and R. Morris.
Architecture and evaluation of an unplanned 802.11b
mesh network. In MobiCom ’05: Proceedings of the
11th annual international conference on Mobile

computing and networking, pages 31–42, New York,
NY, USA, 2005. ACM.

[5] E. Biederman. Netns. https://lists.linux-
foundation.org/pipermail/containers/2007-
September/007097.html.

[6] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt,
L. Mathy, and T. Schooley. Evaluating xen for virtual
routers. In International Workshop on Performance
Modelling and Evaluation in Computer and
Telecommunications Networks (PMECT), 2007.

[7] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general
approach to inferring errors in systems code. In
Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, 2001.

[8] M. Handley, O. Hodson, and E. Kohler. XORP: An
Open Platform for Network Research. In First
Workshop on Hot Topics in Networks, Oct 2002.

[9] F. Huici. Measuring click’s forwarding performance.
Internal Technical Report University College London,
September 2005.

[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM
Transactions on Computer Systems, 18(3):263–297,
Aug. 2000.

[11] C. Kulkarni, G. Brebner, and G. Schelle. Mapping a
domain specific language to a platform fpga. In DAC
’04: Proceedings of the 41st annual conference on
Design automation, pages 924–927, 2004.

[12] Y.-T. S. Li and S. Malik. Performance analysis of
embedded software using implicit path enumeration.
In 32nd ACM/IEEE Design Automation Conference,
pages 456–461, June 1995.

[13] Mazu Networks, Cambridge, MA. Mazu Profiler
Datasheet, 2007.

[14] A. B. Montz, D. Mosberger, S. W. O’Mally, L. L.
Peterson, and T. A. Proebsting. Scout: a
communications-oriented operating system. In
HOTOS ’95: Proceedings of the Fifth Workshop on
Hot Topics in Operating Systems (HotOS-V), 1995.

[15] OpenVZ. http://openvz.org, 2007.

[16] G. Schelle and D. Grunwald. Cusp: a modular
framework for high speed network applications on
fpgas. In FPGA ’05: Proceedings of the 2005
ACM/SIGDA 13th international symposium on
Field-programmable gate arrays, pages 246–257, 2005.

[17] S. Soltesz, H. Pötzl, M. Fiuczynski, A. Bavier, and
L. Peterson. Container-based operating system
virtualization: A scalable, high-performance
alternative to hypervisors. In Proceedings of EuroSys
2007, Lisbon, Portugal, March 2007.

[18] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers.
Nooks: an architecture for reliable device drivers. In
EW10: Proceedings of the 10th workshop on ACM
SIGOPS European workshop, pages 102–107, 2002.

[19] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner,
A. L. Cox, and W. Zwaenepoel. Concurrent direct
network access for virtual machine monitors. In HPCA
’07: Proceedings of the 2007 IEEE 13th International
Symposium on High Performance Computer
Architecture, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

