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Path-Quality Monitoring in the Presence of
Adversaries: The Secure Sketch Protocols
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ABSTRACT

Edge networks connected to the Internet need effective
monitoring techniques to inform routing decisions and detect
violations of Service Level Agreements (SLAs). However,
existing measurement tools, like ping, traceroute, and tra-
jectory sampling, are vulnerable to attacks that can make
a path look better than it really is. Here we design and
analyze a lightweight path-quality monitoring protocol that
reliably raises an alarm when the packet-loss rate exceed a
threshold, even when an adversary tries to bias monitoring
results by selectively delaying, dropping, modifying, injecting,
or preferentially treating packets. Our protocol is based on
sublinear algorithms for sketching the second moment of
stream of items, and can monitor billions of packets using
only 250–600 bytes of storage and the periodic transmission
of a comparably sized IP packet. We also show how this
protocol can be used to construct a more sophisticated protocol
that allows the sender to localize the link responsible for
the dropped packets. We prove that our protocols satisfy a
precise definition of security, analyze their performance using
numerical experiments, and derive analytic expressions for the
trade-off between statistical accuracy and system overhead.
This paper contains a deeper treatment of results from earlier
conference papers [11], [24], and several new results.

I. INTRODUCTION

Path-quality monitoring is a crucial component of flexi-
ble routing techniques (e.g., intelligent route control, source
routing, and overlay routing) that give edge networks greater
control over path selection. Monitoring is also necessary to
verify that service providers deliver the performance specified
in Service-Level Agreements (SLAs). In both applications,
edge networks need to determine when path quality degrades
beyond some threshold, in order to switch from one path to
another or report an SLA violation. The problem is com-
plicated by the presence of nodes along the path who try
to interfere with the measurement process, out of greed,
malice, or just misconfiguration. In this paper, we design and
analyze light-weight path-quality monitoring (PQM) protocols
that detect when packet loss exceeds a threshold, even when
adversaries try to bias monitoring results. We also study failure
localization techniques that allow a sender to localize the
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specific links along a path where packets were dropped or
modified; while protocols for this task are available today (e.g.,
traceroute), they can easily be gamed in the adversarial setting
we consider here. Our PQM protocol require surprisingly little
storage and communication, and are intended to run at line rate
at the network layer on high-speed routers at the edge and core
of the Internet.

A. The presence of adversaries

Today, path-quality monitoring relies on active measurement
techniques, like ping and traceroute, that inject special probe
packets into the network. In addition to imparting extra load on
the network, active measurements are vulnerable to adversaries
that bias the results by correctly transmitting and responding
to probe packets while dropping and damaging normal net-
work traffic. Here we design protocols that provide accurate
information even when intermediate nodes adversarially delay,
drop, modify, inject or preferentially treat packets in order
to confound measurement. Our motivations for studying this
adversarial threat model are threefold:
1. It covers active attacks. Our strong threat model covers a
broad class of malicious behavior. Malicious adversaries can
attack routing in order to draw packets to (or through) a node
of their choosing [17], or compromise a routers along an exist-
ing path through the Internet [22], [27]. Biasing path-quality
measurements allows the adversaries to evade detection, while
continuing to degrade performance or impersonate the legit-
imate destination at will. In addition, ISPs have both the
economic incentive and the technical means to preferentially
handle probe packets, to hide discrimination against unwanted
traffic like Skype [39] or BitTorrent [48], and evade detection
of SLA violations. (In fact, commercial monitoring services,
like Keynote, claim to employ “anti-gaming” techniques to
prevent providers from biasing measurement results [30].)
Finally, adversaries controlling arbitrary end hosts can add
spoofed packets to the stream of traffic from one edge network
to another, to confound simplistic measurement techniques
(e.g., maintaining a counter of received packets).
2. It covers all possible benign failures. In the adversarial
setting, we avoid making ad hoc assumptions about the
nature of failures caused by normal congestion, malfunction
or misconfiguration. Even benign modification of packets may
take place in a seemingly adversarial manner. For example,
an MTU mismatch may cause a router to drop large packets
while continuing to forward the small probe packets sent by
ping or traceroute [34]. As another example, link-level CRC
checks are surprisingly ineffective at detecting the kinds of
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errors that corrupt IP packets [45]. Since the adversarial model
is the strongest possible model, any protocol that is robust in
this setting is automatically robust to all other kind of failures.
3. It is challenging to satisfy in high-speed routers. We choose
to work in a difficult space, where we assume the strongest
possible adversarial model, and yet design solutions for high-
speed routers on multi-Gbit/sec links, where computation and
storage resources are extremely limited. We view it as an
important research goal to understand what can and cannot
be done in this setting, to inform practical decisions about
what level of threats future networks should be designed
to withstand. Furthermore, designing protocols for this ad-
versarial setting is not simply a matter of adding standard
cryptographic tools to existing non-adversarial measurement
protocols. Indeed, naive ways of combining such protocols
with cryptographic tools may be either insecure or less effi-
cient (e.g., encrypting and authenticating all traffic).

B. Our results

Secure sketch PQM. Despite this strong threat model, we
present a secure PQM protocol that is competitive, in terms
of storage and communication, with solutions designed for
significantly weaker threat models [16], [21]. Our secure
sketch PQM protocol, presented in Section III-B, allows a pair
of cooperating sender and receiver routers to detect when the
fraction of packet delivery failures on a path between them
rises above a certain rate β (say β = 0.01). Our protocol
achieves its low overhead by combining sublinear algorithms
for sketching the second moment of a stream of items [1], [3],
[15], [47] with simple cryptographic primitives like message
authentication codes and pseudorandom functions.

The protocol, which is run by a sender and receiver sharing
a symmetric secret key, only requires the transmission of two
small control messages for every T data packets sent, while
its storage overhead is limited to a single sketch (i.e., an array
of counters) of size O(log T ) bits. If T = 107 packets are
sent during an 100ms interval, our protocol requires between
250–600 bytes of storage at the source and destination, and
control messages that can easily fit into a single IP packet.
Moreover, our protocol does not mark, modify or authenticate
data packets in any way, and so it may be implemented off
the critical packet-processing path in the router. Not marking
packets also makes our protocol backwards compatible with
IP, minimizes latency at the router, allows the parties to turn
on/off PQM protocols without the need to coordinate with
each other, and avoids problems with increasing packet size
and possibly exceeding the MTU. As such, we believe that this
protocol is strong candidate for deployment in future networks,
even in networks where our strong security guarantees are not
be essential.

The performance and cost of any particular implementation
of protocol would depend on memory speed and the particular
choice of cryptographic primitives. As such, we analytically
bound the different resources consumed —computation, stor-
age and communication— (Section III-D), and also show
somewhat better bounds through numerical experiments (Sec-
tion III-E). In the course of this analysis we also present

a new analysis of [15]’s sketching scheme that may be of
independent interest (Theorem III.2). Moreover, the security
of our protocol is based on the computation of cryptographic
hash over the contents of every packet send during an interval.
Fortunately, our protocols use cryptographic hash functions in
an online setting, where an adversary has very limited time to
break the security before the hash parameters are refreshed; in
Section III-F we discuss exploiting this for fast packet hashing.
Composing sketches for secure FL. Next, we use the secure
sketching protocol to construct a secure fault localization (FL)
protocol (Section V-A). Our FL protocol is designed for a
trusted sender and receiver that send traffic over a symmetric
path of K nodes, where

√
K nodes may be adversarial; if the

rate of packet-delivery failures exceeds β, the sender can local-
ize the responsible link. (Depending on the application, nodes
could represent routers (and thus K < 20) or Autonomous
Systems (and thus K ≈ 4 on average).) The protocol requires
each node on the path to share a symmetric key with the
sender, and requires each node to store an O(K2 log T )-sized
sketch. The communication overhead of the protocol is still
only two control messages for every T packets sent, and no
modifications to data packets are required.
Precise definitions of security. Evaluating the security of a
protocol is often challenging. In many problem domains, e.g.,
intrusion detection, the only viable approach is to enumerate a
set of possible attacks, and then show how the protocol defends
against these specific attacks. Fortunately, in our problem
domain, a more comprehensive security evaluation is possible;
we can give a precise definition of the functionality we require
from the protocol, and then guarantee that the protocol can
carry out these functions even in the face of all possible
attacks by an adversary with a specific set of powers. Thus,
we precisely define the powers that we give to the adversary
and our requirements for secure PQM and FL protocols
(Sections II-A, IV-A). To evaluate security, we prove that our
protocols achieve their required functionalities, no matter what
the adversary does, short of breaking the security of the basic
cryptographic primitives (e.g., message authentication codes
and hash functions) from which the protocol is constructed
(Section III-C, V-B). Due to space limitations, we defer some
proofs to a technical report [25].

C. Bibliographic note and omitted results

This paper is a deeper treatment of a subset of results that
appeared in earlier conference papers [11], [24]. Specifically,
the security definitions we present here are the same as
those used in these earlier papers. The secure sketch PQM
protocol we discuss here was mentioned in [24], but the
earlier paper concentrated on showing generic reduction from
PQM to second moment estimation. Here we deepen and
simplify the presentation by focusing on an instantiation of
the secure sketch protocol using [15]’s sketching scheme, and
present new results on fast packet hashing (Section III-F) and
stronger versions of theorems from [24] (Theorem III.2 and
Theorem E.1 in our technical report [25]). We also present
completely new results showing the secure sketch PQM can
be composed to create an FL protocol (Section V).
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In focusing on the construction of efficient protocols, we
have chosen to omit a number of negative results that we
developed in [11], [24]. These negative results indicate that
any secure PQM or FL protocol would need to employ the
same basic security machinery (secret keys and cryptographic
operations) used by our protocols. Specifically:

1. In [24] we showed that any PQM protocol satisfying
Definition II.1 requires (1) Alice and Bob to have some form
of shared secret (e.g., shared symmetric secret keys), and (2)
the shared secret must be used in a “cryptographically-strong”
manner. To prove the latter, we used a reduction that shows
that any secure PQM protocol is at least as complex as a secure
keyed identification scheme (KIS). Because KIS are equivalent
to cryptographic tasks like encryption and message authenti-
cation [28], this proves that cryptographic computations are
necessary for the security of any PQM protocol.

2. In [11] we show that any FL protocol satisfying Defi-
nition IV-A requires a key infrastructure, or more precisely,
that intermediate nodes and Alice and Bob must all share
some secret information. We also used block-box separation
techniques from cryptography [29] to give evidence that a
secure FL protocol must use these keys in a cryptographically-
strong manner at every node on the path.

In addition to these lower bounds, we also omitted a number
of protocols from in [11], [24], that are less efficient in terms
of storage and communication that the ones presented here,
including (1) secure PQM and FL protocols that use PRF-
based packet sampling, (2) PQM protocols that use public-
key cryptography and timed information release to remove
the need for symmetric shared secrets between Alice and Bob,
and (3) FL protocols that are designed to detect and localize
failures on a per-packet basis.

Online Appendices. Due to space limitations, we have had to
defer the appendices of this paper to our technical report [25].

II. THREAT MODEL FOR PATH QUALITY MONITORING

We first define security for path quality monitoring.

A. Security definition for path-quality monitoring (PQM)

In our model, a source Alice sends packets to a trusted
destination Bob over a path through the Internet. Fix a set of T
consecutive packets sent by Alice, which we call an interval,
we define a packet delivery failure to be any instance where
a packet that was sent by Alice during the interval fails to
arrive unmodified at Bob (before the last packet in the interval
arrives at Bob). An adversary Eve can sit anywhere on the
path between Alice and Bob, and we empower Eve to drop,
modify, or delay every packet, or to add her own packets.
A path quality monitoring (PQM) protocol is a protocol that
Alice and Bob run to detect whether the number of failures
during the interval exceeds a certain fraction of total packets
transmitted.

Definition II.1. Given parameters 0 < α < β < 1 and 0 <
δ < 1, we say a protocol is a (α, β, δ) secure PQM protocol
if, letting T be the number of packets sent during the interval:

1) (Few false negatives.) In the malicious case, where an
adversary Eve can drop, modify, delay, or add packets, the
protocol must raise an alarm with probability at least 1− δ if
more than βT packet-delivery failures occur.
2) (Few false positives.) In the benign case, where no
intermediate node is adversarial (i.e., no packets are added or
modified on the path, but packets may be reordered / dropped
due to congestion), the protocol must alarm with probability
at most δ if at most αT packet-delivery failures occur.

We assume that the T packets sent during an interval are
distinct, because of natural variation in packet contents, and
the fact that even successive packets sent by the same host
have different ID fields in the IP header [21] (note that
even retransmissions of the same TCP segment correspond
to distinct IP packets, because of the IP ID field).

B. Properties of our security definition

Our definition is motivated by our intended application of
enabling routing decisions or detecting SLA violations. It’s
most important security guarantee is that, regardless of Eve’s
actions, Eve cannot prevent Alice from raising an alarm when
the failure rate for packets that Alice sent to Bob exceeds
β. As such, our definition encompasses attacks by nodes on
the data path that include (but of course are not limited to):
colluding nodes that work together to hide packet loss, an
adversarial node that intelligently injects packets based on
timing observations or deep packet inspection, a node that
preferentially treats packets that it knows are part of the PQM
protocol, and a node that masks packet loss by injecting
an equal number of nonsense packets onto the data path.
We emphasize that we never make any assumptions on the
distribution of packet loss on the path; our model allows for
any possible failure model, including one where, say, packet
loss is correlated across different packets.

On the other hand, we only require PQM protocols to detect
failures (so that SLA violations can be confirmed, or packets
can be rerouted) but not to prevent them. Moreover, PQM
protocols must only detect if the number of failures exceeds
a certain threshold, rather than determining exactly how many
failures occurred. (While solutions that exactly count failures
certainly exist, they typically require cryptographically authen-
ticating and/or encrypting all traffic, which we wish to avoid
here.) Third, we do not require our protocols to distinguish
between packet failures occurring due to adversarial tampering
or due to benign congestion or malfunction.

Next, while our security definition requires that our pro-
tocols do not raise a (false) alarm when the one-way failure
rate is less than α for the benign setting, we do allow for the
possibility of raising an alarm due to adversarial tampering
even when fewer than an α-fraction of failures occur. This is
because Eve can always make a path look worse by selectively
dropping all PQM protocol messages (e.g., acknowledgments,
report messages) that Bob sends to Alice, even if all the orig-
inal packets that Alice sent to Bob were actually delivered.1

1We will assume that any acknowledgment or report messages that Bob
sends to Alice are sent repeatedly to ensure that, with high probability, they
are not dropped due to normal congestion.
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In such cases, the PQM protocol will raise an alarm, and
the router should look for a different path. We also do not
model denial of service attacks, where an adversary exhausts
capacity by flooding the path with packets; these attacks can
be addressed using standard techniques, e.g., rate limiting.
Choosing α, β. In principle α, β > 0 can be chosen arbitrarily.
However, several practical issues constrain the choice of these
parameters. In Section III-D we find that the communication
and storage overhead of our protocols is related to the ratio
α
β ; a smaller ratio leads to less overhead. The value of α is
also constrained by issues related to interval synchronization;
we discuss this in Appendix A.

III. SECURE SKETCH PQM

In our secure sketch PQM protocol, Alice and Bob aggre-
gate traffic Alice sends to Bob into a short data structure called
a sketch. At the end of the interval, Bob sends his sketch to
Alice and she compares the sketches to decide whether the
failure rate exceeded β. We first discuss notation and the cryp-
tographic building blocks used in our protocol (Section III-A),
and then describe the protocol (Section III-B). Next, we
discuss its security (Section III-C) and derive analytic bounds
that explain the relationship between the protocol’s security
its storage and communication overhead (Section III-D). We
further analyze this relationship using numerical experiments
(Section III-E) and conclude by discussing techniques for fast
packet hashing (Section III-F).

A. Preliminaries

Notation. We use the notation [κ] to represent the set of
integers {1, ...κ}. v is a vector, and its ith entry is vi. The
second moment of a vector v is ‖v‖2

2
=

∑
i(vi)

2, and the
first moment of a vector is |v|1 =

∑
i |vi|. We say that a

quantity w (ε, δ)-estimates a quantity v if

Pr[(1− ε)v ≤ w ≤ (1 + ε)v] ≥ 1− δ

We also use the following cryptographic building blocks:
Pseudorandom Function (PRF). A PRF is a keyed function
PRFk(·) that maps an arbitrary length string to an n-bit string
using a key k [26]. If the key k is chosen uniformly at
random, then to an adversary with no knowledge of k, the
output of the function PRFk(·) looks totally unpredictable
and cannot be distinguished (except with an insignificant
probability) from a truly random function, where each input
is mapped to a independent uniformly-random output. Hence,
in our analysis we may treat PRFk(·) as if it is truly random.
PRFs are typically realized via a full-fledged cryptographic
hash functions such as SHA-512 in HMAC mode [31], or
with a block cipher like AES in a MAC mode of operation.
Keyed packet-hashing function. All our protocols require
a hash computation on the invariant contents of every sent
packet;2 and all subsequent processing of the packet relies only

2Whenever the packet-hashing function is applied to a packet, the non-
invariant fields of the packet header are discarded from the input. In the
case of IPv4, this means excluding the ToS, TTL and IP checksum (see [21,
SectionII.A]).

on this hash value. Our packet-hashing function will always
be keyed with an ephemeral interval key ku, which is used
only for the duration of single interval consisting of T packets
(typically T = 107 and an interval lasts for about 100ms).
Once the interval ends, ku no longer needs to be kept secret
(because Bob has already received the packets sent during the
interval). In Sections III-D, III-F we consider instantiating the
keyed-packet hashing function model with both a PRF and a 4-
wise independent hash function [14]. In either case, our keyed
packet-hashing function should be (a) fast enough to keep up
with multi-Gbit/sec packet streams, (b) remain secure for the
duration of an interval, i.e., after about T = 107 applications
and/or for about 100ms.

Message Authentication Code (MAC) is a basic cryptographic
primitive that can be realized using a PRF: using a shared
key k, for a message m, one party will send (m,PRFk(m))
and the other party can verify that a pair (m, t) satisfies
t = PRFk(m). The value t cannot be feasibly forged by an
adversary that does not know k. We use the notation [m]k to
denote (m,PRFk(m)), a message m MAC’d with key k.

B. Description of the secure sketch protocol

Our protocol works in intervals. We assume Alice and Bob
share a secret master keys (k1, k2), and derive an ephemeral
interval key ku for each interval u. Pairwise master keys
are be derived via e.g., authenticated Diffie-Hellman key
exchange (as used in TLS/SSL [19]) or some other out-of-
band secure channel. Interval keys are computed by using a
pseudorandom function PRF keyed with master key k2 (i.e.,
let ku = PRFk2(u)), and Appendix Adetails how intervals
can synchronized. Alice and Bob also store a sketch, or an
array of N counters, each of which can count from [−κ,+κ].
Within interval u, our secure sketch protocol proceeds in four
phases:

(Sketch.) Alice runs a sketching algorithm, using a keyed
packet-hashing function hku(·) keyed with secret interval key
ku to incrementally compute a sketch wA of the set of
packet she sends during the interval. hku(·) may be a 4-
wise independent hash function, or a PRF (see Section III-D).
For each packet d that Alice sends, she (a) computes hku(d)
to obtain a (pseudorandom or 4-wise independent) pair of
numbers (i, b) where i ∈ [N ] and b ∈ {−1,+1}, and (b)
adds b to the ith counter in the sketch wA. Bob similarly
uses hku(·) to compute a sketch wB of the set of packets he
receives.

(Interval End.) After sending the T th packet in the interval,
Alice sends an ‘Interval End’ message to Bob containing her
sketch wA and the next interval number u+1, which she signs
with a message authentication code (MAC) keyed with k1. She
then refreshes her sketch (i.e., sets wB = 0 ) and computes the
next interval key using a pseudorandom function PRF keyed
with master key k2 (i.e., lets ku+1 = PRFk2(u+ 1)).

(Report.) Upon receiving the ‘Interval End’ message and
verifying the correctness of its MAC, Bob computes the
difference sketch wA−wB. Bob then sends a ‘Report’ message
to Alice, containing the difference sketch and the current
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interval number u, which he signs with a MAC keyed with
k2. Bob then refreshes his sketch and computes the interval
key for the next interval u+ 1.

(Security Check.) Upon verifying the MAC on the ‘Report’
message, Alice uses the difference sketch wA − wB to raise
an alarm if

‖wA −wB‖22 > Γ = 2
αβT

β + α

or if the ‘Report’ message is missing or has an invalid MAC.
We call ‖wA −wB‖22 the estimator and Γ the threshold.

Our protocol has a few attractive properties. First, we need
only transmit two control messages (‘Interval End’, and ‘Re-
port’) per interval; we require no other packet modifications.
Second, the ‘Security Check’ phase can be computed offline.
Thirdly, Alice and Bob need only store single sketch at any
given time; at the end of each interval, Alice and Bob im-
mediately transmit their sketches as control messages, refresh
their sketches, and begin monitoring a new interval. Finally,
our protocol has low storage and communication requirement;
in Section III-D we show that the sketch is not much larger
than an ordinary counter, having size O(log T ) where T is
the number of packets sent during the interval. In fact, the
number of counters N in the sketch depends only on security
parameters α, β, δ but not on T , while the size of each counter
log κ is O(log T ).

A performance optimization. To reduce resource consumption,
a router can ‘turn off’ the secure sketching protocol during
certain intervals. However, to prevent an adversary from ex-
ploiting this to bias monitoring results (e.g., by selectively
dropping packets when the protocol is ‘off’, and behaving
itself while the protocol is ‘on’), intervals when the protocol
is ‘off’ must be indistinguishable from intervals when the
protocol is ‘on’. Fortunately, the only indication that the
protocol is ‘on’ are the two control messages (‘Interval End’
and ‘Report’). Thus, while Alice and Bob need not compute
hashes over packet contents or to maintain sketches in an ‘off’
interval, we still require (a) Alice to count the number of
packets she sends to Bob and send a dummy ‘Interval End’
message each time the counter reaches T , and (b) Bob to
respond with a dummy ‘Report’ packet. To make the dummy
control messages indistinguishable from real control messages,
we will also require (c) that all information fields in the control
messages sent by the protocol are encrypted and padded to
a fixed length (and subsequently authenticated). Selection of
‘on’ intervals should also be random, to prevent an adversary
from selectively attacking the ‘off’ intervals by using side-
channel information (e.g., observing if the sender switches to
a new path) to distinguish between ‘on’ or ‘off’ intervals.

C. Security analysis

We now prove the security of our protocol by explaining
the connection between PQM, and sketches that can be used
to estimate the second moment of a set of items. To do this,
we explain why the process of sketching can be viewed as a
linear transformation that preserves second moment, and then
show why this suffices to satisfy our security definition.

Packet streams as vectors. We can think of the stream of pack-
ets sent by Alice during a given interval as vector. Let U be the
“universe” of all possible packets sent by Alice (e.g., if packets
are 1500 bytes long then |U | ≈ 21500·8). Let the characteristic
vector of a stream of packets be a |U |-dimensional vector that
has integer c in the position corresponding to packet x if packet
x appears in the stream c times (e.g., for the stream 1,2,4,2,2
of packets drawn from universe U = [4], the characteristic
vector is [1 3 0 1].) Naturally, a characteristic vector is too
long (e.g., 21500·8) to be represented explicitly; we will use it
only as a tool for analyzing the security of our protocol. Let
vA be the characteristic vector for the stream of packets sent
by Alice during a given interval, and analogously vB for the
stream of packets received by Bob.
Sketching as matrix multiplication. The sketch we use in
our protocol was first proposed by [15]. While Section III-B
presented sketching as an incremental streaming process ap-
plied individually to each packet, we now view sketching as a
single linear transformation applied to a characteristic vector.
Specifically, for a sketch w computed from the packet stream
represented by characteristic vector v per the description in
Section III-B, we can write

w = Rv (1)

where R is a N × |U | matrix that is completely determined
by the keyed packet-hashing function hku(·); specifically, for
every packet d ∈ U , the dth column of matrix R has its ith

row equal to b, where (i, b) = hku(d) for i ∈ [N ] and b ∈
{−1,+1}, and all its other rows are zero.

A sufficiently large sketch w can (ε, δ)-estimate the second
moment of v. That is, for a sketch with N counters that counts
from [−κ, κ], where the packet hashing function is either a
PRF or a 4-wise independent hash function that is chosen
independently of the characteristic vector v, then

(1− ε)‖v‖2
2
< ‖w‖2

2
= ‖Rv‖2

2
< (1 + ε)‖v‖2

2
(2)

with probability 1 − δ as long as N and κ are sufficiently
large [15], [47]. In Section III-D, we show how to size N and
κ so that (2) holds.
PQM as second moment estimation. We are now ready to see
how PQM can be derived from second moment estimation.
Observe that characteristic vector vA−vB can be decomposed
into two vectors d−a. Vector d is the characteristic vector of
packets dropped on the path from Alice to Bob, and contains
the non-negative components of vB − vA. Vector a is the
characteristic vector of packets added on the path from Alice
to Bob, and corresponds to the non-positive components of
vB − vA. (Note that a packet modification amounts to a
dropped packet plus an added packet.) Also notice that the
non-zero coordinates of d and a are disjoint. Now let D be
the number of packets dropped on the path from Alice to Bob
during the interval, and let A be the number of packets added
during the interval. Thus, we have the following simple and
very useful identity:

||vA − vB||pp = ||d||pp + ||a||pp = D + ||a||pp ≥ D +A (3)

The identity tells us that, for any integer p ≥ 1, the pth

moment of the characteristic vector vA−vB overestimates the
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number of packets that are added and dropped during a given
interval. The first equality in (3) follows because the non-
zero coordinates of d and a are disjoint. The second equality
follows because every packet that Alice send is unique, so that
that d is a {0, 1}-vector. Finally, the last inequality follows
because a is an integer vector, so that for any p ≥ 1, it follows
that ‖a‖2

2
≥ |a|

1
= A with equality when p = 1.

We are now ready to prove security. Set ε = β−α
β+α .

1) Few false positives. To satisfy this condition we need to
consider the benign case in which at most ‖d‖2

2
= D ≤ αT

packets are dropped during the interval, and there is no adver-
sary Eve on the path. Because Eve is absent, we can assume
that no packets are added, so that ‖a‖2

2
= 0. Equation 3 gives

‖vA − vB‖22 = ‖a‖2
2

+ ‖d‖2
2
≤ αT (4)

Next, we observe that in the benign case, the keyed-packet
hashing function hku(·) is chosen independently of vA and
vB. Thus, for an appropriately-sized sketch (where the number
of counters N and the size of each counter κ is sufficiently
large), we know that equation (2) holds with probability 1−δ.
Thus we have:

‖wA −wB‖22 = ‖RvA −RvB‖22 (From (1))

= ‖R(vA − vB)‖2
2

≤ (1 + ε)‖vA − vB‖22 (From (2))
≤ (1 + ε)αT (From (4))

= 2αβTβ+αT = Γ (Since ε = β−α
β+α )

Thus, Alice will not raise an alarm in the benign case, with
probability 1− δ, if N,κ are sufficiently large.
2) Few false negatives. To satisfy this condition, we need to
consider the malicious case. First observe that in this case, Eve
cannot forge the ‘Interval End’ or ‘Report’ control messages,
since the control messages are authenticated using a secure
MAC (and dropping the report will only cause Alice to raise
an alarm). Thus, we can suppose that Alice correctly receives
the difference sketch wA−wB from the ‘Report’ message. In
the malicious case, Eve drops D ≥ βT packets, and adds an
arbitrary number of (potentially non-unique) packets A ≥ 0.
In this case, (3) tell us that

‖vA − vB‖22 = ‖a‖2
2

+ ‖d‖2
2
≥ βT (5)

Now, observe that (b) ku is chosen independently of the
packets sent by Alice vA, and (b) ku is kept secret from
Eve until packets reach Bob at the end of the interval. ku
is therefore independent or the packets received by Bob vB

(some of which may have been sent by Eve). We can therefore
assume equation (2) holds with probability 1− δ for a sketch
with an appropriately-sized N and κ. Thus

‖wA −wB‖22 = ‖R(vA − vB)‖2
2

(From (1))

≥ (1− ε)‖vA − vB‖22 (From (2))
≥ (1− ε)βT (From (5))

= 2βα
β+αT = Γ (Since ε = β−α

β+α )

with probability 1− δ Alice will thus alarm in the malicious
case, with probability 1− δ, if N,κ are sufficiently large.

This concludes our argument, since Alice can use the deci-
sion threshold Γ to decide between the benign and malicious
cases with probability 1 − δ, as long as the sketch is sized
appropriately.

D. Sizing the sketch

We now move on to determining the parameters N (number
of counters in the sketch) and κ (the size of each counter)
when the keyed packet-hashing function hk(·) is (a) 4-wise
independent hash function, and (b) it is a PRF. In both cases,
however, we shall show that N depends only on α, β, δ, while
κ = O(log T ).
Sizing each counter. Each counter holds integers in [−κ,+κ].
We therefore set

log2(2κ) = 1 + 1
2 log2

(
4 TN ln( 200N

δ )
)

bits / counter (6)

to ensure that the probability that each counter overflows is
at most δ

N
1

100 ; it follows from the union bound that, with
probability 1 − δ/100, no counter will overflow. To see how
we obtained (6), observe that if Xi is a random variable
that equals 1 with probability 1

2N , −1 with probability 1
2N ,

and 0 otherwise, then the count in each bin is the random
variable X =

∑T
i=1Xi. Then, adapting the Chernoff bound

that appears in [33], we have that

Pr [ |X| ≥ κ ] ≤ 2 exp(− κ2

4TVAR[Xi]
) ≤ δ

100N

Finally, we get (6) since VAR[Xi] = 1/N .
Sizing the number of counters N . While N depends only
on α, β, δ, its exact value depends on the instantiation of the
keyed-packet hashing function. We first consider its instantia-
tion with a 4-wise independent hash, and then with a PRF.
Packet-hashing with 4-wise independent hashes. A 4-wise in-
dependent hash is a function h : {0, 1}|ku|×{0, 1}∗ → {0, 1}n
that guarantees that for any four distinct inputs x1, x2, x3, x4
and (possibly non-distinct) outputs y1, y2, y3, y4, then

Pr [hku(xi) = y,∀i = 1...4] =
(

1
2n

)4
(7)

where the probability is over the choice of ku used to key h.
A 4-wise independent hash can be realized using polynomials
of degree 3 [14]. For example, to compute hku(x) set key
ku = (a0, a1, a2, a3) and output a3x3 + a2x

2 + a1x+ a0; this
can be done in three multiplications with Horner’s rule.

Thorup and Zhang [47] showed that 4-wise independent
hashing suffices to realize second moment estimation using
[15]’s sketching algorithm:

Theorem III.1 (From [47]). If we construct sketch w using
two 4-wise independent packet hashing functions h : U → [N ]
and b : U → {−1, 1} then

E[‖w‖2
2
] = ‖v‖2

2
(8)

VAR[‖w‖2
2
] = 2

N (‖v‖4
2
− ‖v‖4

4
) (9)

And ‖w‖2
2

(ε, δ)-estimates ‖v‖2
2

as long as N > 2
ε2δ .

Since ε = β−α
β+α , it suffices to take

N ≥ 2
ε20.99δ = 2.02

δ
(β+α)2

(β−α)2 (10)
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counters in our sketch. What is remarkable about this result
is the fact that N , the number of counters in our sketch,
is completely independent of the number of packets T sent
during the interval! We shall see in Section III-E that this
means that our sketches can monitor a large number of packets
using a very limited amount of space.
Packet-hashing with a PRF. Since every PRF is also indistin-
guishable from a 4-wise independent hash function, choosing
N as in (7) also suffices when the keyed packet-hashing
function is instantiated with a PRF. However, we can do better
when the packet hashing function is a PRF. Specifically, can
take N = O

(
1
ε2 log 1

δ

)
by exploiting a few special properties

of our PQM setting, including (a) the assumption that Alice
sends unique packets, and (b) the fact that we only care about
deciding whether ‖v‖2

2
lies above or below a threshold, rather

than getting an accurate estimate of ‖v‖2
2
.

The following theorem, which may be of independent
interest, supposes that packet hashing uses two independent
random functions: one to chose i ∈ [N ] and another to choose
b ∈ {−1, 1}. We can therefore think of the sketching matrix R
as chosen uniformly at random from set of matrices S, where
S is the set of N × |U | matrices where each column contains
a single ±1 entry in one row, and zeros in all other rows. We
prove the following in Appendix E of [25]:

Theorem III.2. For any vector v ∈ ZU , choose the N × |U |
sketching matrix R uniformly at random from S. If w = Rv,
then for all ε ∈ [0, 1) and η such that(

1−η
1+η

)2
= max

(
1+

ε
2

1+ε ,
1− 3ε

4
1− ε2

)
(11)

the following two items occur with probability at least 1− δ:
1) If v ∈ {−1, 0, 1}U , and ‖v‖2

2
≤ q, then ‖w‖2

2
< (1 +

ε)q.
2) The number of non-zero entries in v is r, then ‖w‖2

2
>

(1− ε)r.
as long as

N ≥ 24
ε2 ln 2

δ (12)

q, r ≥ 3N
η2 ln 4N

δ (13)

To apply the theorem into our setting, we plug ε = β−α
β+α and

δ into (12) to obtain a bound on N , the number of counters
in our sketch. Then, we plug ε in (11) to determine η. Finally,
we set q = αT and r = βT in (13) to obtain a lower bound on
T , the minimum number of packets sent in an interval. (This
lower bound on T is awkward, and we believe that it is an
artifact of our proof technique; indeed, numerical experiments
in Section III-E suggest that this bound on T is not tight.)

We show why these parameters guarantee security. First,
assume that the PRF used for packet hashing is indistinguish-
able from a random function. Then, using the language of
Section III-C, the false positive condition is satisfied because
in the benign case we have vA − vB ∈ {0, 1}U (since
packets may only be dropped, and all packets are distinct)
and ‖vA − vB‖22 = D ≤ αT = q, so with probability 1 − δ,
the first item in Theorem III.2 gives

‖wA−wB‖22 ≤ (1+ε)‖vA−vB‖22 ≤ (1+ε)αT = 2αβ
α+βT = Γ
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 = β T, A

 
 = (β−α)T unique packets

D
 
 = β T, A

 
= (β−α)T each duplicated twice

Fig. 1. Distribution of estimator ‖wA −wB‖2 using packet-hashing with a
PRF and with N = 300, T = 106, β = 2α = 1% and threshold Γ = 6667,
computed via numerical experiments.

The false negative condition is satisfied because in the mali-
cious case, we have ‖vB −vA‖22 = ‖d‖2

2
+ ‖a‖2

2
where ‖d‖2

2

is a {0, 1}-vector (since all dropped packets are distinct) that
has at least r = βT non-zero entries. So, with probability
1− δ, the second item in Theorem III.2 gives

‖wA−wB‖22 ≥ (1−ε)‖vA−vB‖22 ≥ (1−ε)r ≥ (1−ε)βT = 2αβ
α+βT = Γ.

E. Some sample parameters and experiments

We now compute the size of our sketch, using both our
analytic results and numerical experiments, for the following
sample parameters: We suppose the detection threshold is β =
0.01, the false alarm threshold is α = β/2 and about T =
107 packets are sent during an interval. We will require a
confidence of 1− δ = 99%.
Analytic results. We plug these parameters into our analytic
results. When 4-wise independent hashing is used with these
parameters, equation (10) indicates that we require N = 1800
counters, and equation (6) requires 10 bits/counter; the total
size of the sketch is therefore 2.25KB. Storage become even
smaller when we use a PRF; applying the refined version of
Theorem III.2 in Appendix E of our technical report [25] to
obtain bounds on N , we find that we can use N = 300
counters if there are at least Tmin = 1.2 × 1010 packets in
the interval, for a total sketch size of only 375B!
Numerical experiments. We preformed a number of numerical
experiments of the case where keyed-packet hashing function
is instantiated with PRF. In each numerical experiment, we
operate on synthetic traffic, where we model every distinct
packet sent during the interval with fresh pair of uniformly-
independent random numbers (i, b) where i ∈ [N ] and b ∈
{−1, 1}, and use these numbers to create the difference sketch
wA−wB in the natural way (incrementing the ith counter by b
every time that packet appeared in the stream); the final output
of the numerical experiment is the estimator ‖wA−wB‖22 . For
a given stream of packets, we can repeat this process multiple
times to obtain the distribution of the estimator ‖wA−wB‖22 .
Figure 1. Figure 1 shows the resulting distribution of the
‖wA − wB‖22 for a number of cases. From left to right, we
have: The benign case where D = αT (here we want the
estimator to be below the threshold Γ so that Alice does not
raise an alarm), and three cases where D = βT (here we
want Alice to raise an alarm): a case where Eve does not add
any packets, a case where Eve adds A = (β − α)T distinct
packets, and a case where Eve adds a total of A = (β − α)T
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Sketch Size (in bytes)
β/α N T = 104 T = 105 T = 106 T = 107 T = 108

2 128 128B 144B 176B 208B 208B
4 64 64B 88B 88B 104B 104B
8 32 36B 48B 48B 52B 52B
16 32 36B 48B 48B 52B 52B
32 32 36B 48B 48B 52B 52B
64 32 36B 48B 48B 52B 52B

Fig. 2. Minimum number of counters N in the sketch when N is taken as a
power of 2, computed via numerical experiments where keyed packet hashing
is performed using a PRF. The number of bits per counter is obtained from
(6). We fix β = δ = 1%.

packets where each packet is duplicated twice. The figure
reveals that the threshold Γ = 2αβTα+β clearly distinguishes
between cases where D = βT and the benign cases where
D = αT . Moreover, when Eve adds packets to the link, she
only increases the probability that Alice raises an alarm, as
predicted by equation (3). Figure 1 also suggests that taking
N = 300 suffices even if we have shorter interval lengths
of T = 106, suggesting that the awkward bound of T in
Theorem III.2 is an artifact of our proof technique.

Figure 2. We preformed more numerical experiments to
determine N , the number of bins in the sketch, for a given
choice of α, β, δ. Recall from Section III-C that threshold
Γ = 2αβTα+β must be able to distinguish between ‖wA −wB‖22
in the benign case vs. the malicious case, with probability
1 − δ. We therefore need to compare the extremes of the
benign and the malicious cases. In the malicious case, the
expected value of ‖wA−wB‖22 is minimized when the number
of dropped packets D = βT and the number of added packets
is A = 0. Meanwhile, in the benign case, the expected value
of ‖wA −wB‖22 is maximized when D = αT . (This follows
from equations (8) and (3) and is confirmed by Figure 1.) We
therefore preform numerical experiments (as in Figure 1) to
obtain the distribution of ‖wA −wB‖22 in these two extreme
cases. We do this for various values of N that are powers of
2,3and then find the smallest value of N for which threshold
Γ is able to distinguish between the two extreme cases with
probability at least 1− δ.

Our results are presented in Figure 2. We see that N varies
with the ratio β/α. Meanwhile, as long as there are T > 1/α
packets/interval, the choice of T does not impact the value of
N ; for a given β/α ratio, the minimum choice of N as power
of 2 was the same for any value of T ranging from 104 to 108,
which suggests that the lower bound on T in Theorem III.2
is not tight. Moreover, Figure 2 also confirms that since total
sketch size grows logarithmically with T (per (6)), the total
storage required by our sketching scheme remain modest.

F. Implementation issues and fast packet hashing.

As we see it, two main barriers stand in the way of the
deployment of our secure sketch PQM protocol.

The first is establishing shared (symmetric) cryptographic
keys between Alice and Bob; unfortunately, this overhead is
unavoidable, since our lower bound in [24] establishes that

3We take N to be a power of two because this makes packet hashing more
convenient. That is, if N = 2q and we use PRF that produces q pseudorandom
bits, then the binary representation of these q bits is a uniformly chosen
element of [N ]; if N is not a power of 2, a more complicated mapping is
required to uniformly choose an element of [N ], so we avoid this.

keys are necessary for any secure PQM scheme satisfying our
definition. However, shared keys can always be established
in an enterprise setting, where e.g., a central office (Alice)
wants to monitor its connection to a branch office or datacenter
(Bob) over the public Internet. Moreover, if a public-key
infrastructure is in place (either localized within the enterprise,
or just using the SSL/TLS PKI) a key-exchange protocol [19]
could always be used to establish the shared keys.

The second barrier is computational overhead. The most
expensive part of our sketching protocol is the computation of
the per-packet hash, which must be computed over the contents
of the entire packet.4 However, we now discuss several hashing
techniques that can be used to speed this computation up, and
estimate its computational overhead by citing recent results on
the implementation of fash hash functions.

For speedy packet hashing, we suggest first hashing packets
using εg-almost universal hash function to obtain a short n1
bit string, and then applying a fast PRF.

εg-almost universal hash function is a keyed hash function
g : {0, 1}|ku| × {0, 1}∗ → {0, 1}n that maps variable-length
inputs to n-bit outputs, and guarantees that for any pair of
distinct inputs x, x′ that

Pr [gku(x) = gku(x′)] ≤ ε (14)

where the probability is over the choice of ku keying g.

There are many practical realizations of εg-almost universal
hash functions that are significantly faster than PRFs and 4-
wise independent hashes [12]. The value of εg depend on the
parameters of the hash; Bernstein has a nice survey of these
functions and their parameters [12].

We prove that we can reduce the complexity of packet-hash
computation by first hashing each packet using a fast εg-almost
universal hash function (converting a packet of length ` bits to
a string of length n1 bits), and then hashing the resulting n1-
bit string using a PRF or 4-wise independent hash (to obtain
the pair of values (i, b) for i ∈ [N ] and b ∈ {−1, 1} used for
sketching). Appendix B proves that it suffices to take:

εg <
δ

103T

β − α
α+ β

(15)

We consider using GHASH [35] as our εg-almost 2-wise
independent hash function. Suppose GHASH produces outputs
of length n1, and each packet is at most 1500B long, and
block lengths are m, where m is taken as a power of two.
Since εg = 1500·8

m 2−n1 , for T = 107 packets/interval, and
δ = β = 2α = 1%, applying (15) we find that it suffices
to choose GHASH with n1 = m = 64 bits. Smaller block
sizes lead to faster implementations, and this choice of m
and n1 is quite short! (For typical applications, GHASH uses
block lengths of m = 128 bits [35].) Moreover, because n1 is
shorter than standard hashing block lengths (i.e., 128, 256, or
512 bits), we only requires a single invocation of a fixed-input-
length PRF (or 4-wise independent hash function) to hash the
final n1-bit GHASH output.

4Hashing just the packet header won’t work, because then the protocol
could not detect an adversary that tampers with the payload of the packet but
keeps the header intact.
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RA (Alice) � R1 � R2 � . . .� RK � RB (Bob)

Fig. 3. A path from Alice to Bob via K intermediate nodes.

Our next task is to determine how the n1-bit string be
hashed. Is it faster to use a PRF or a 4-wise independent hash?
Our answer is very counterintuitive — we find that a PRF
is actually faster in practice. This is quite surprising, given
that a PRF provides a strictly stronger theoretical guarantees
that a 4-wise independent hash function (since every PRF is
indistinguishable from a 4-wise independent hash function). To
explain this, we observe that 4-wise independent hash func-
tions are typically based on constructions with rigorous proofs
of correctness (e.g., polynomials of degree 3 [14]). Meanwhile,
practical PRFs come with only heuristic guarantees (e.g.,
GHASH-AES [35] is a PRF under the heuristic assumption
that AES is a fixed-input-length PRF). Moreover, significantly
more research effort has been expended on developing fast
implementations of PRFs in software and hardware.
Sample implementation numbers. Since the task of evaluating
the performance of a hash function on the different platforms
that be used in high-speed Internet routers (software, FPGA,
ASICS) is a entire research project in itself, here we only
mention some performance numbers from other published
work. We follow the literature [35] by assuming that AES is
a fixed-input length PRF. In 2007, Krovetz and Dai found that
VMAC instantiated with AES allows for hashing in software
at a speeds of between 1-10 cycles per message byte [32]. In
2004, the designers of GHASH found that it could process
127 bits per clock cycle in hardware and 2666 bits per clock
cycle in software, assuming 1500 byte packets and 128-bit
block lengths [35]. There have been various efforts to improve
the performance of GHASH. In 2014, for example, a new
FGPA implementation of GHASH claims a throughput of
43.32Gbps [10]. (Note that [10] used 128-bit blocks lengths;
recall that we can use even short block lengths of 64-bits.)

Before we conclude, we note that the security of our
PRF need not be especially high. Our PQM adversary is
presented with an online problem: Eve must break the security
of the PRF only during the short time interval before the
ephemeral interval key ku is refreshed. Thus, while a full-
fledged block-cipher (e.g., AES) could be used to realize the
PRF, performance could further be improved by the replacing
AES with a weaker block cipher like DES, or by reducing
the number of rounds of AES [18]; an adversary would still
require enormous resources to break the PRF’s security within
the short time limit (≈100ms) imposed by our online setting.

IV. THREAT MODEL FOR FAILURE LOCALIZATION (FL)
We now move on to showing how secure sketch PQM can

be composed to create a secure failure localization protocol. In
this section, we present a security definition for fault localiza-
tion (Section IV-A), and discuss its properties (Section IV-B).
We then present our FL protocol in Section V.

A. Security definition for failure localization (FL)

In a failure localization (FL) protocol, Alice learns if the
packets she sent to a trusted destination Bob arrived correctly;

if they did not, Alice learns at least one link along the path
where the failures occurred.

We work in a model where Alice knows the identities
of all the nodes on the path to Bob, and all traffic travels
on symmetric paths as in Figure 3 (i.e., intermediate nodes
R1, ..., RK , have bi-directional communication links with their
neighbors, and messages that sender Alice sends to receiver
Bob traverse the same path as the messages that Bob sends
back to Alice). We let K be the number of nodes on the
path between Alice and Bob. We say that messages traveling
towards Alice are going upstream, and messages traveling
towards Bob are going downstream. As in Section II-A, we fix
a set of T consecutive packets sent by Alice to be an interval,
and define a failure to be any instance where a packet that was
sent by Alice during the interval fails to arrive unmodified at
Bob (before the last packet of interval arrives at Bob).

We suppose that an adversary Eve can occupy any subset
of nodes R1, ..., RK on the network path between Alice and
Bob; Eve will remain at those nodes for the duration of the
interval. Eve can add, drop, or modify messages sent on the
links adjacent to any of the nodes she controls. She can also
use timing information to attack the protocol. Because packet
loss occurs naturally in the network layer, even in the absence
of adversarial behavior, FL protocols should also be able to
deal with packet failures that do not results from Eve’s actions.
Therefore, we model congestion by supposing that each link
can randomly and independently drop each packet transmitted
over that link with probability ρ > 0.

A failure localization (FL) protocol allows Alice to detect
(1) whether the number of failures during the interval exceeds
a certain fraction of total packets transmitted, and (2) if it
does, Alice can localize the failures to a link on the path. At
the end of each interval of an FL protocol, Alice either (a)
decides not to alarm and outputs

√
, or (b) or raises an alarms

and outputs a link ` to which she localized the failures.

Definition IV.1 ((α, β, δ)-security for FL). Given parameters
0 < α < β < 1 and 0 < δ < 1, an FL protocol is (α, β, δ)-
secure if, letting T be the number of packets sent during the
interval:

1) (Secure localization). Consider the malicious case,
where the adversary Eve can drop, modify, delay, or add
packets. We require that if more that βT failures occur,
then Alice raises alarm for a link ` that is adjacent to
a node occupied by Eve, or a link ` whose failure rate
exceeds α

K+1 , with probability 1− δ.
2) (Few false positives). In the benign case, where no

intermediate node behaves adversarially (i.e., no packets
are added or modified on the path, but packets may be
reordered or dropped due to congestion) and the failure
rate on each link is below the (per-link) false alarm
threshold α

K+1 , then the probability that Alice outputs√
is at least 1− δ.

As in Section II-A, we assume that the T packets sent during
an interval are distinct.

B. Properties of our FL security definition
We discuss a few properties of our security definition.
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Localizing links, not nodes. It is well known (see e.g., [24])
that an FL protocol can only pinpoint a link where a failure
occurred, rather than the node responsible for the failure.
Benign and malicious failures. Our definition requires Alice
to accurately localize failures, but these failures may be caused
by Eve, or may be the result of benign causes, such as
congestion. We do not require Alice to distinguish between
benign or malicious (i.e., due to Eve) failures, because Eve
can always drop packets in a way that “looks like” congestion.
Modeling congestion. An important feature of our definition
is that it accounts for messages that are dropped naturally for
benign reasons like congestion. If we had not included this
in our model, then we would end up with a model where
Eve causes every packet delivery. This is problematic because
such a definition would admit protocols that work to only
localize a single packet failure (rather than the overall packet
loss rate) since this link would necessarily be adjacent to Eve.
Indeed, previous work has fallen into this trap. For example,
[9] implements FL using a binary search through the path,
where a single step of the binary search is initiated each time
a packet is dropped; this search can be confounded by natural
congestion-related packet loss that causes the binary search
algorithm to search for Eve in the wrong part of the path.
Movements of the adversary. Our model does not allow Eve to
move from node to node in a single interval. This assumption
does not significantly limit the practicality of our protocols
for a number of reasons. Firstly, when Eve models a Internet
service provider (ISP) that tries to bias the results of FL
protocol for business reasons, it is reasonable to assume that
she may only occupy nodes owned by her ISP. Furthermore,
when Eve is an external attacker or malware that compromises
a router, “leaving” a router means that the legitimate owner
of the router removed the attacker from the router, e.g., by
refreshing its keys. We model key refresh as a re-start of
the security game. Furthermore, “movements” to a new router
happen infrequently, since an external attacker is likely to need
a different strategy each time it compromises a router owned
by a different business entity.

V. FROM SECURE SKETCH PQM TO FL

We show how to compose the secure sketch PQM protocol
of Section III-B to obtain a efficient FL protocol with about
O(K2 log T + n) storage overhead at each node and only
two control messages. Our composition of secure sketch PQM
to statistical FL will have Alice run K simultaneous secure
sketch PQM protocols with each of the intermediate nodes
in Figure 3, and use the statistics from each protocol to
infer behavior at each link. We first describe the protocol
(Section V-A) and then prove its security (Section V-B).

A. Description of the secure sketch FL protocol

As usual, the protocol works in intervals. Every node Ri
shares pairwise symmetric master keys ki, k′i with Alice. In
interval u, the protocol proceeds as follows:
(Sketch.) Using k′i, each intermediate node runs a secure
sketch PQM protocol with Alice, so that Alice will keep a

sketch wA
i for every i ∈ [K] and every other node Ri will keep

a single sketch wi. Sketching is accomplished as described in
the (Sketch) phase of the PQM protocol of Section III-B.
(Interval End.) At the end of interval u, Alice sends a single
control ‘Interval End’ control message formatted as an onion
report. Using notation [m]k to denote message m authenticate
by a MAC with k, the ‘Interval End’ message contains a series
of nested MAC’d messages as follows:

q = [(u, 1,wA
1 )[(u, 2,wA

2 )...[(u,B,wA
B)]kB ...]k2 ]k1

The ‘Interval End’ control message is sent upstream along
the path from Alice to Bob. Upon receiving a validly-MAC’d
‘Interval End’ message, intermediate node Ri (a) extracts the
sketch wA

i , (b) strips off his portion of the message (u, i,wA
i )

and its associated MAC, (c) passes what remains to Ri+1, and
(d) finally initializes a local timer. Ri must drop the ‘Interval
End’ message if the MAC is invalid.
(Report.) Bob initiates reporting, by forming an ‘Onion Re-
port’ message θB = [u,B, VB ]kB and sending it downstream.
Upon receipt of the ‘Onion Report’, each node Ri appends
his own information as θi = [u, i, Vi, θi+1]ki and passes θi
downstream to Ri−1 until it eventually reaches Alice. Here,
Vi is node Ri’s estimator computed as

Vi = ‖wA
i −wi‖22

If a node Ri’s local timer expires before it receives θi from its
upstream neighbor Ri+1, then Ri constructs his own Report
θi as above, but setting θi+1 = ⊥ to indicate his upstream
neighbor failed to send his report.
(Security Check.) Letting α, β be the false alarm and detection
thresholds, when Alice receives the final onion report θ1, she
computes

F` = Vi − Vi+1

for each link ` = (i, i + 1), and outputs ` if ` = (i, i + 1) is
the upstream-most link where

F` >
T

K+1
β(2α+β)
α+2β = Γ

or the onion report θi+1 refers to the wrong interval, is
missing, or is invalidly MAC’d. If there is no such link, she
outputs

√
.

B. Security analysis for secure sketch FL

To prove that this scheme is secure, we need to assume that
interval length T is long enough, the sketches are big enough,
and the congestion rate ρ is small enough. Our proof also relies
on limiting the number of links occupied by Eve to O(

√
K).

Theorem V.1. The composition of secure sketch PQM de-
scribed above satisfies (α, β, δ)-statistical security if the con-
gestion rate satisfies ρK2 ≤ β, Eve occupies

M ≤
√

(K + 1)(1− ρ
βK

2) (16)

links, each interval contains at least T > K+1
α packets, and

for each i ∈ [K], sketches wi,w
A
i have

Ni = 32
δ

(
i(K + 1) 2β+α

β−α

)2
(17)
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counters, each of size 1 + 1
2 log2

(
4 TN ln( 200N

δ )
)

bits.

We remark that, for a given interval of length T , this
protocol requires O(K2 log T ) storage overhead at Bob and
each intermediate node, while the storage overhead at Alice is
O(K3 log T ). The communication overhead of the protocol is
two control messages of length O(K3 log T ) each for every
T packets sent.

Proof. First, the probability that any efficient adversary Eve
successfully forges the interval end message or onion report of
an honest node (by forging the MAC) is negligible. We argue
that Eve does not tamper with the control messages:

Claim V.2. If Eve tampers with the ‘Interval End’ message or
any θi in the ‘Onion Report’ message, then Alice will localize
a node adjacent to Eve.

Proof. Let RE be the upstream-most node where Eve tam-
pered with either the ‘Interval End’ message or the ‘Onion
Report’. Let Rj be the first honest node that is downstream
of node RE (we know such a node exists because Eve
cannot occupy Bob’s node). Since all the R1, ..., RE−1 behave
honestly, their all reports θ1, ..., θE−1 will be present and valid.
Also, conditioned on Eve not forging Rj’s MAC, θj will either
be invalid (e.g., if Eve tampered with some θ` for ` > j,
since θ` is nested inside θj) or missing (e.g., if Eve dropped
the ‘Interval End’ message). It follows that the upstream-most
invalid report θx occurs on some link between RE−1 and Rj ,
so that Alice will output a link adjacent to Eve.

We may now suppose that Alice receives correct reports
from all honest nodes. We next present some notation.

Notation. Let Di be a count of the number of failures that
occurred on the path between Alice and Ri. Let vA be the
characteristic vector of the stream of packets that Alice sends
and let vi for i ∈ [K + 1] be the characteristic vector of the
stream of data packets that Ri receives. Let xi = vA − vi.
As in equation (3), we can decompose xi into two vectors
xi = di + ai, where di is the characteristic vector of packets
dropped on the path from Alice to Ri, and contains the non-
negative components of xi. The vector a is the characteristic
vector of packets added on the path from Alice to Ri, and
contains the non-positive components of xi.

The following lemma, proved in Appendix C of [25], proves
the “few false positives” and “secure localization” conditions
of Definition IV.1:

Lemma V.3. Let Γ = T
K+1

β(2α+β)
α+2β and εi = 1

2i
β−α
2β+α . For

every i ∈ [K], assume that Ri computes an estimate Vi that
(εi, δ

′)-estimates ‖xi‖22 . Suppose also that ‖xi‖22 ≤
βi
K+1 .

Then with probability at least 1− 2δ′ it follows that:
1) If “link (i, i + 1) is good” so that ‖xi+1‖22 − ‖xi‖

2
2
≤

α
K+1T then Vi+1 − Vi ≤ Γ.

2) If “link (i, i + 1) is bad” so that ‖xi+1‖22 − ‖xi‖
2
2
≥

β
K+1T then Vi+1 − Vi ≥ Γ.

Few false positives: To prove this, we consider an interval
where all the nodes on the path behave honestly. During this
interval, we know that no packets were added anywhere on

the path (so that ‖ai‖22 = 0 for each i ∈ [K + 1]) and less
than α

K+1 packets were dropped at each link. We can apply
equation (3) to find that for each link (i, i+ 1) we have

‖xi+1‖22 − ‖xi‖
2
2

= (Di+1 + 0)− (Di + 0) ≤ α
K+1 (18)

and the telescoping nature of (18) gives us that

‖xi‖22 = (‖xi‖22−‖xi−1‖
2
2
)+...+(‖x2‖22−‖x1‖22)+‖x1‖22 ≤

αi
K+1

(19)
We can now apply Lemma V.3 to show that, with probability
at least 1 − 2δ′ we have that Vi+1 − Vi ≤ Γ so that Alice
will not output link (i, i+ 1). A union bound over the K + 1
links gives us that Alice will output

√
during this interval

with probability at least 1− 2(K + 1)δ′.
Secure localization: We now show that if Eve causes
more than a β fraction of failures in the interval, then with
probability at least 1−δ, Alice will either catch Eve or output
a link with more than α

K+1 failures. Recall that Alice outputs
the upstream-most link ` = (i, i + 1) for which there is an
“alarm”, i.e., where Vi+1 − Vi ≥ Γ. We need the following
simple observation:

Lemma V.4. Define event Ei as the event that ‖xi‖22 ≤
βi
K+1

.For each i ∈ [K+1], if Alice does not raise an alarm for any
link upstream of link i, then Ei holds with probability 1−2iδ′.

Proof. Suppose that Alice does not raise an alarm for all links
upstream of node Ri. Lemma V.3 implies that ‖xj+1‖22 −
‖xj‖22 ≤

β
K+1 with probability 1−2δ′, for each link (j, j+1)

where j ∈ [i − 1]. The lemma follows from a union bound
over these links and a telescoping sum as in (19).

First we show that the with high probability Alice will not
output an honest link. Let link (i, i+1) be “honest”, i.e., have
a fewer than α

K+1 failures, and assume that Alice does not
raise alarm for any links upstream of Ri. Now, Lemma V.3
shows that, conditioned on Ei, Alice will not raise an alarm
for link (i, i+ 1) with probability at least 1−2δ′. Since Alice
does not alarm for any links upstream of Ri, we can apply
Lemma V.4 to remove the conditioning on Ei. It follows that
Alice will not output honest link (i, i + 1) with probability
at least 1− 2(i+ 1)δ′. Taking a union bound over all honest
links gives that Alice will not alarm for any honest link with
probability at least 1 − 2(K + 1)2δ′. Next, we need to show
that Alice either will raise an alarm for a link adjacent to Eve
or link with more than α

K+1 failures. The proof hinges on
the following technical lemma, proved in Appendix D of our
technical report [25]:

Lemma V.5. If Eve occupies M ≤
√

(K + 1)(1− ρ
βK

2)

links and causes a β-fraction of failures in the interval, then
there must be a link (i, i+ 1) that is adjacent to Eve with

‖xi+1‖22 − ‖xi‖
2
2
≥ β

K+1T (20)

Now let link (i, i + 1) be the upstream-most link that is
adjacent to Eve such that (20) holds. (Lemma V.5 guarantees
the existence of such a link.) We have two cases:
1. Suppose Alice did not raise an alarm for a link upstream
of Ri. Combining Lemma V.4 and Lemma V.3 it follows
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that Alice will alarm for link (i, i + 1) adjacent to Eve with
probability 1− 2(i+ 1)δ′.

2. Suppose Alice did raise an alarm for a link upstream of Ri.
It follows from Lemma V.3 that there is some link (j, j + 1)
for j ≤ [i− 1] where, with probability 1− 2δ′,

α
K+1 ≤ ‖xj+1‖22 − ‖xj‖

2
2

= Dj+1 −Dj + ‖aj+1‖22 − ‖aj‖
2
2

where the equality comes from applying equation (3). Now if
link (j, j + 1) is adjacent to Eve, it follows that Alice alarms
for a link adjacent to Eve, and we are done. Thus, suppose
that link (j, j+1) is not adjacent to Eve. Then, it follows that
no new packets could have been added to this link, and so
we have that ‖aj+1‖22 = ‖aj‖22 . Thus, if link (j, j + 1) is not
adjacent to Eve, then Alice must have raised an alarm for a
link with Dj+1 −Dj ≥ α

K+1 failures, as required.
Combining these cases, we see that with probability at least

1 − 2(K + 1)δ′, Alice will either raise an alarm for a link
that is either (a) adjacent to Eve, or (b) has more than α

K+1
failures, as required.

Sizing the sketches. To ensure that (α, β, δ)-statistical security
holds, we take δ′ = δ/4(K+1)2. Next, recall that Lemma V.3
requires sketches that (εi, δ

′)-estimate the pth moment with
εi = 1

2i
β−α
2β+α . For simplicity, we now suppose that the sketches

are constructed using 4-wise independent hashing functions, so
we plug εi, δ in Theorem III.1 to find that for i ∈ [K + 1]
it suffices to take sketches wi, wA

i of with Ni > 2
ε2i δ

, where
the number of bits per counter is as in (6). Substituting in the
values for εi, δ′ gives us (17) as required.

A note on Eve’s strategy. While Theorem V.1 guarantees
that our protocol accommodates all possible strategies by Eve
(as long as they satisfy the conditions in the theorem), the
curious reader might wonder what is strategy is best from
Eve’s perspective. Should she drop all βT packets on just one
link, or spread her βT packet drops over multiple links? It
turns out the latter case is better for Eve. This follows because
the estimator Vi−1−Vi is proportional to the number of packets
dropped/modified on link (i− 1, i); thus, if fewer packets are
dropped on each link, the estimator is smaller and therefore
closer to Γ, which makes it more likely that Alice will not
alarm (and thus fail to catch Eve).

C. Sample parameters and experiments

We now use determine the size of our sketch for the
following sample parameters: There are K = 4 nodes between
Alice and Bob (for a total of 5 links). We suppose the detection
threshold is β = 0.01, the false alarm threshold is α = β/2
and about T = 106 packets are sent during an interval. We will
require a confidence of 1− δ = 99%. Applying Theorem V.1,
we find that the ith node needs a sketch with Ni = 2× 106i2

counters and 5 − log2 i bits per counter. This sketch is quite
large, but recall that Theorem V.1 assumes packet hashing
uses a 4-wise independent hash function. Per Theorem III.2,
however, we already know that sketches can be smaller when
a PRF is used for packet hashing. Indeed, our numerical
experiments confirm this. We find that it suffices for node i to
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Fig. 4. Distribution of estimator Vi−1 − Vi for each link (i − 1, i) using
packet-hashing with a PRF and with Ni = 800i2, T = 106, δ = β = 2α =
1% and threshold Γ = 1333, computed via numerical experiments. K = 4
nodes. (Top) The benign case, where each link drops exactly α/(K + 1)
packets. (Bottom) The malicious case. There is a congestion of rate ρ =
β/K2 randomly dropping packets on each link, and Eve drops β/K − ρ
packets on every link except the (4,5) link.

use a sketch with 800i2 counters, so that the ith node requires
a sketch of size i2(10− log2 i)× 100B.

Numerical experiments. We preformed numerical experiments
for the case where keyed-packet hashing function is instanti-
ated with PRF. We assumed that and each node uses a sketch
of size Ni = 800i2. Our numerical experiments operates on
synthetic traffic, similar to the experiments in Section III-E;
this time, however, we need to simulate packet dropping on
each individual link, not just on the entire path. To do this,
we model every distinct packet sent during the interval on a
given link (i− 1, i) with fresh pair of uniformly-independent
random numbers (j, b) where j ∈ [Ni] and b ∈ {−1, 1}, and
use the same technique used in Section III-E to compute the
estimator Vi−1 − Vi on link (i − 1, i). The distributions of
the resulting estimators are shown in Figure 4, along with the
alarm threshold Γ. We present two cases.

Benign case (Figure 4 (Top)). We suppose each link drops
exactly α/(K + 1) packets. As required, the distribution of
the estimator as the Vi−1−Vi for each link (i− 1, i) is below
the threshold Γ, and Alice will not raise an alarm.

Malicious case (Figure 4 (Bottom)). We suppose that there
is a congestion of ρ = β/K2 randomly dropping packets on
each link (per Theorem V.1), and that Eve drops β/K − ρ
packets on every link except the (4,5) link. As required, the
distribution of the estimators for all links except (4,5) are
above the threshold Γ, while the estimator for the (4,5) link
is well below the threshold Γ. Thus, Alice will correctly raise
an alarm and localize all links except the (4,5) links.

D. Implementation issues.

We discuss a few limitations of our secure sketch FL
protocol, beyond those related to the computational overhead
of packet hashing per Section III-F. First, the protocol requires
all traffic being monitored to flow along the same symmetric
path. Load balancers, that could split traffic across different
paths, complicate its operation; to deal with this, nodes would
need to ensure that each sets of flows that take the same path
are monitored by a single instance secure sketch FL protocol.
Another limitation is that secure sketch FL requires symmetric
keys between all nodes on the path and Alice. We do not deny
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that this is a heavy overhead, but we do note that such keys
are necessary for any FL protocol that satisfies our security
definition (per our lower bounds in [11]), and note that these
keys could be established on the fly using traditional key-
exchange schemes [19]. Other works in the FL space have also
had to grapple with these two important limitations; see [38]
for more ideas on how to address them.

VI. RELATED WORK

The literature on path-quality monitoring typically deals
only with the benign setting; most approaches either have
the destination return a count of the number packets he
receives from the source, or are based on active probing (ping,
traceroute, [42]–[44] and others). However, both approaches
fail to satisfy our security definition. The counter approach is
vulnerable to attack by an adversary who hides packet loss by
adding new, nonsense packets to the data path. Active probing
fails when an adversary preferentially treats probe packets
while degrading performance for regular traffic, or when an
adversary sends forged reports or acknowledgments to mask
packet loss. Even known passive measurement techniques,
where normal data packets are marked as probes, either explic-
itly as in IPPM [44] or implicitly as in Trajectory Sampling
[21] and PSAMP [16], are vulnerable to the same attacks as
active probing techniques if the adversary can distinguish the
probe packets from the non-probe packets (e.g., see [23]).

To obtain path-quality monitoring protocols that work in the
adversarial setting, we have developed protocols that are more
closely related to those used for traffic characterization (see
[50] for a survey). On one hand, our protocols are less compu-
tationally efficient because they necessarily require the use of
keys and cryptographic hash functions to prevent adversaries
from biasing measurement results (see [24] for the proof).
On the other hand, we used the special structure of PQM
to prove new analytical bounds, resulting in provably lower
communication and storage requirements than those typically
needed in traffic characterization applications (Theorem III.2).

In concurrent work, [36] considered a setting which Alice
and Bob are required to sketch adversarially-chosen sets, and
then compute metrics on their sets after exchanging sketches
over a secure channel; their model maps directly to our PQM
model, where Alice and Bob’s sets (i.e., packet streams) may
be chosen adversarially, and then sketches are exchanged via
an authenticated channel. Our work deals with the fact that
streams are chosen adversarially by requiring Alice and Bob
to compute their sketches using shared secret keys. However,
[36] require that sketching is performed without any shared
randomness.5 The main advantage of their approach is the
reduced key-management overhead. However, this comes at
a significant cost; [36] show that any moment estimation
protocol for sets of size T requires at least Ω(

√
T ) storage

at Alice and Bob. Thus, these protocols are less efficient than
our O(log T )-storage keyed sketches.

5In [24], we argued that PQM protocols require shared randomness; the
existence of [36]’s protocol does not contradict this. If we used [36]’s
sketching results in a PQM protocol, we would require shared randomness to
cryptographically authenticate the report messages (containing the sketches)
sent from Bob to Alice.

Our results are also related to work in the cryptography and
security literature. Early work in this space, e.g., [20], [41],
focused on providing availability guarantees on a per-packet
basis, resulting in schemes with very high overhead. Later
proposals for secure PQM designed to detect when the packet-
loss rate becomes too high [8], [37], [46], but ours was the
first work in this area to provide a formal security model and
to prove the security of our protocols in this model. Indeed,
one of [37]’s PQM approaches is based on a simple counter
(and is therefore vulnerable to the attack described above),
while Listen [46] does not use cryptographic operations, and is
thus vulnerable to attack by an intermediate node that injects
false acknowledgments onto the path. Another earlier work,
Stealth Probing [8], is secure in our model but incurs the extra
overhead of encrypting all traffic.

Prior to the publication of our work [11], there were a
number of proposals for secure FL [6], [7], [9], [37], [40],
[49]. The protocol presented here, however, is the only one
to exploit the storage and communication savings created by
sublinear sketching algorithms; moreover, [6], [9], [40] had a
number security flaws that we discussed in detail in [11].

Subsequent to the publication of our work [11], [51] con-
sidered FL protocols that are more closely related to the
sampling-based FL protocols that we presented in [11] (but
omitted from this paper), focusing on optimizing the tradeoffs
between communication/storage overhead and the protocol’s
detection rate (i.e., the number of packets in an interval). In
another interesting work, [52] use a small trusted computing
base and remote code attestation to circumvent our lower
bounds from [11], that argued that in any secure FL protocol,
the intermediate nodes and Alice and Bob must all share some
secret information. Also subsequently to our work, [4], [13],
[53] considered FL in a more stringent setting of multiple
paths, similar to the SMT framework; in these protocols, a
sender must not only localize a faulty node that is dropping
packets, but must also find a path through the network that
is guaranteed to deliver its packets. Finally, ICING [38] is
a cryptographic network primitive that ensures that packets
traverse a known path, selected by the source, in an adversarial
setting similar to ours.

VII. CONCLUSION

We have designed and analyzed an efficient protocol that
give accurate estimates of path quality in a challenging
environment where adversaries may drop, delay, modify, or
inject packets. Our protocols have reasonable overhead, even
when compared to previous solutions designed for the non-
adversarial settings. We combine techniques from sublinear
streaming algorithms with simple cryptographic primitives to
obtain a protocol that can monitor millions of packets using
less than a single kilobyte of storage, and only two small con-
trol messages. We have also showed how to compose multiple
instances of our PQM protocols to localize the adversary to
particular links on a data path. We believe that our secure
sketch protocols, and our associated models of their properties,
are valuable building blocks for the design of future networks
with predictable security and performance guarantees.
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APPENDIX A
INTERVAL SYNCHRONIZATION

In our secure sketch PQM protocol (Section III-B), the
‘Interval End’ and ‘Report’ control messages can be used
to synchronize the interval number between Alice and Bob,
even if the path between them is subject to variable latency.
However, even in the benign case, out-of-order packet delivery
at the network layer can cause packets in an interval u to arrive
after the ‘Interval End’ message u (and thus be interpreted by
Bob as part of interval u + 1). Note that out-of-order packet
delivery could also occur if Eve deliberately delays packets.
To avoid false alarms due to more than αT packets arriving
out-of-order before the ‘Interval End’ control message, we can
tune parameter α.

To ensure natural packet reordering does not cause a loss
of interval synchronization between the sender and receiver, a
good rule of thumb is to ensure that αT ≥ 99th percentile of
packet lag. Define the packet lag as the number of packets
that were sent by the sender after a reordered packet, but
were received at the receiver earlier than the reordered packet
itself (e.g., if a sender sends the stream 1,2,3,4,5,6,7,8 but
the received stream is 1,2,4,5,6,7,3,8, then packet 3 is the
reordered packet and packet lag is 4). The value of the packet
lag depends on the the class of packets monitored by the PQM
protocol. If the packets belong to the same network flow, we
can safely assume that packet lag is less than 128 packets,
because this is the assumption made in IPSec. Thus, it suffices
to take αT > 1280. In cases when multiple network flows are
monitored with the same PQM instance, then packet lag can
be very high (due to load balancing, ECMP, etc.); however, we
conjecture that even if there is a 10ms difference between the
“fast path” used by one group of flows and the “slow path”
used by another group of flows, for 1 Gbps flow of traffic,
packet lag should be on the order of 109 bps/64 bytes/packet
×0.01 sec = 1.6×105 packets, so we can use αT > 1.6×106.

APPENDIX B
FAST PACKET HASHING

Section III-F indicated that the computational cost of packet
hashing can be reduced by (1) first mapping packets from from
U to a short n1-bit string using an efficient εg-almost universal
hash function, and (2) then using a PRF or 4-wise independent
hash to map from this n1-bit string to the sketch. We show
this is possible via approaches based on [47].
Preliminaries. Return to the notation of Section III-C, and
recall that U is the universe of all possible packets, v is the
characteristic vector of the stream of packets, and w is the
sketch vector of length N . Let g : U → {0, 1}n1 be an εg-
almost universal hash function, as defined in Section III-F. The
hash function g maps the packet stream containing elements
in U to a new ‘intermediate’ stream where each element is an
n1-bit string. Let u be an ‘intermediate vector’ which is the
characteristic vector of this new stream of n1-bit strings.

Our approach amounts to using the εg-almost universal
hash g to hash v the ‘intermediate vector’ u, and then using
a a second-moment estimation scheme to hash u down to
the sketch w. Thus, the second-moment estimation scheme

estimates the second moment of u, rather than the real
characteristic vector v! We now show that, if εg is sufficiently
small, this does very little damage, since ‖u‖

2
≈ ‖v‖

2
.

Theorem B.1. Given a vector v ∈ 2|U | and u ∈ R2n1 . Then
if g : U → {0, 1}n is an εg-almost 2-wise independent hash
function per equation (14), is used to map v to u according to
the algorithm ug(x)+ = vx (i.e., ∀ x ∈ v the g(x)th counter
in u is incremented with value vx) then

Pr [| ‖u‖2 − ‖v‖2 | > δ1‖v‖2 ] < δ2 (21)

as long as |v|1 > δ1δ2
εg

.

To apply this theorem, recall from Section III-C that |v|
1

=
A+D. Thus, for (α, β, δ)-secure PQM we would like (21) to
hold when D = αT and D = βT , with δ1 � ε = β−α

α+β . We
will conservatively take |v|

1
= T , and δ1 = ε

10 and set δ2 =
δ

100 . Then (α, β, δ)-secure PQM require the hash function g

to have εg as in (15) because εg < εδ
103T = δ

103T
β−α
α+β .

Proof of Theorem B.1. Let va be the ath entry of characteris-
tic vector v. Now, start with the observation that

‖u‖2
2

=
∑

g(a)=g(b)

vavb

=
∑
a

v2a +
∑

a6=b,g(a)=g(b)

vavb

= ‖v‖2
2

+
∑
a6=b

vavbYa,b (22)

where we define the random variable Ya,b as

Ya,b =

{
1 if g(a) = g(b), a 6= b,
0 else.

and from (22) we take the expectation over the randomness in
g and find that

E[ | ‖u‖2
2
− ‖v‖2

2
| ] ≤

∑
a,b

|vavb|E[|Ya,b|]

≤
∑
a,b

|vavb| · εg

= (|v|2
1
− ‖v‖2

2
) · εg (23)

where the first inequality follows from (22), the second
inequality follows because per equation (14) the collision
probability of g is εg .

Now, we would like to ensure that ‖u‖
2

provides a good
estimate of ‖v‖

2
. That is, we would like to satisfy (21). Using

Markov’s inequality, we have

Pr
[∣∣‖u‖2

2
− ‖v‖2

2

∣∣ > δ1‖v‖22
]
≤

E[ | ‖u‖2
2
− ‖v‖2

2
| ]

δ‖v2‖
2

≤
(|v|2

1
− ‖v‖2

2
)

‖v‖2
2

εg
δ1

(From (23))

≤ |v|1
εg
δ1

And rearranging the last inequality we know that (21) holds
as long as |v|1 > δ1δ2

εg
which completes the proof.
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APPENDIX C
PROOF OF LEMMA V.3

From the statement of the lemma, we have that Ri computes
an estimate Vi that (εi, δ

′)-estimates ‖xi‖22 for every i ∈ [K].
That is:

Pr
[∣∣Vi − ‖xi‖22 ∣∣ ≤ εi‖xi‖22] < 1− δ′ (24)

We now prove each item separately.
Link (i, i+ 1) is good. Since Vi (εi, δi)-approximates ‖xi‖22 ,
we can apply (24) to find, that with probability 1− 2δ′,

Vi+1 − Vi ≤ (1 + εi+1)‖xi+1‖22 + (1− εi)‖xi‖22
≤ (1 + εi+1)(‖xi+1‖22 − ‖xi‖

2
2
) + (εi+1 + εi)‖xi‖22

≤ (1 + εi+1) α
K+1T + (εi+1 + εi)

iβ
K+1T

= α
K+1T

(
1 + εi+1(1 + β

α i) + εii
β
α

)
≤ α

K+1T
(

1 + (i+ 1)εi+1(1 + β
α ) + iεi(1 + β

α )
)

= T
K+1

β(2α+β)
α+2β = Γ (25)

where we get the required inequality by putting εi = 1
2i

β−α
2β+α .

Link (i, i+ 1) is bad. Again, we apply (24) to find, that with
probability 1− 2δ′,

Vi+1 − Vi ≥ (1− εi+1)(‖xi+1‖22 − ‖xi‖
2
2
)− (εi+1 + εi)‖xi‖22

≥ (1− εi+1) β
K+1T − (εi+1 + εi)

iβ
K+1T

= T
K+1

β(2α+β)
α+2β = Γ (26)

where we again get the required inequality by putting εi =
1
2i

β−α
2β+α .

APPENDIX D
PROOF OF LEMMA V.5

Since Eve occupies M links and causes at least a β-fraction
failures, it immediately follows that there exists a link (i, i+1)
adjacent to Eve where at least β

M -fraction of failures, i.e.,
Di+1 −Di ≥ β

M . Now if the following holds

‖xi+1‖22 − ‖xi‖
2
2
> β

K+1T (27)

we are done, since link (i, i + 1) is adjacent to Eve. Thus,
suppose (27) do not hold. Then, applying identity (3), we have
that

β
K+1T ≥ ‖xi+1‖22 − ‖xi‖

2
2

= Di+1 −Di + ‖ai+1‖22 − ‖ai‖
2
2

rearranging and then using that fact that Di+1 −Di ≥ β
M we

get

‖ai‖22 ≥= βT ( 1
M −

1
K+1 ) (28)

Next, consider the next link (j, j+1) that is occupied by Eve
and is upstream of link (i, i+ 1). Now again, if the following
holds

‖xj+1‖22 − ‖xj‖
2
2
> β

K+1T (29)

then we are done, since link (j, j + 1) is adjacent to Eve.
So, we again suppose (29) does not hold. Since Eve does not

occupy any links between Rj+1 and Ri, and only congestion-
related loss could have occurred on the links between Rj+1

and Ri. It follows that ‖xj+1‖22 ≥ ‖xi‖
2
2

+ρ(i− j−1). Since
(29) does not hold, we can apply identity (3) and the fact that
‖xj+1‖22 ≥ ‖xi‖

2
2

+ ρ(i− j − 1) ≥ ‖ai‖22 + ρ(i− j − 1) and
the bound on ‖ai‖22 in (28) to get

‖xj‖22 > βT
(

1
M −

2
K+1 −

ρ
β (i− j − 1)

)
We continue this argument for all m ≤ M − 1 links that

are adjacent to Eve and upstream of link (i, i + 1). Finally,
arriving at the last such link, which we call link (e, e+ 1), we
have

‖xe+1‖22 > βT
(

1
M −

m
K+1 −

ρ
β (i− e− 1)

)
> βT

(
1
M −

M−1
K+1 −

ρ
βK
)

where the last inequality follows by putting m ≤M − 1 and
i− e ≤ K. Now since by definition Eve does not occupy any
links downstream of link (e, e+ 1), we immediately have that
‖xe‖22 = 0. It follows that link (e, e+ 1) has

‖xe+1‖22 − ‖xe‖
2
2
> βT ( 1

M −
M−1
K+1 −

ρ
βK) > β

K+1

where the last inequality follows because we put M ≤√
(K + 1)(1− ρ

βK
2). This concludes the proof of this

lemma, since link (e, e+ 1) is adjacent to Eve.
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APPENDIX E
SKETCHING WITH PRFS

We now prove Theorem III.2. To do this, we first prove Theorem E.1, and then show how to derive Theorem III.2 from
Theorem E.1. Recall from Section III-D that S is the set of N × |U | matrices where each column contains a single ±1 entry
in one row, and zeros in all other rows.

Theorem E.1. For any vector v ∈ ZU , choosing the N × U matrix S uniformly from S and setting w = Sv, we have that
for all ε ∈ [0, 1) and all q, r > N

1) If v ∈ {−1, 0, 1}U , and ‖v‖2
2
≤ q, then for η ∈ [0, 12

√
ε2 + 10ε+ 9− 1

2 (ε+ 3)) and y .
= (1+ε)(1−η)

(1+η)2 − 1 :

Pr
[
‖w‖2

2
> (1 + ε)q

]
≤ 2Ne−

η2q
3N + e−

N
2 (y2/2−y3/3) (30)

2) If the number of non-zero entries in v is r, then for η ∈
(

0, 1
2−ε (3− 2ε−

√
5ε2 − 14ε+ 9)

)
and y .

= (1−η)2
1+η (1− ε

2 )−
(1− ε) it follows that

Pr
[
‖w‖2

2
< (1− ε)r

]
≤ 2Ne−

η2r
3N + e

−N ε
3(1+η)y (31)

Proof of Theorem E.1. Our main observation is that, with high probability, the ±1 entries of v are distributed evenly among
the coordinates of w. Conditioned on this happening, we can then apply the analysis of [1].
Definitions. We need the following definitions.
• We write vx for the xth element in v.
• Define for i ∈ [N ] the set Qi = {x ∈ U | h(x) = i} where h is the pseudorandom hash function.
• Define Di as the number of non-zero entries in v that hash to the ith bin the sketch w. That is Di = |{vx|vx 6= 0, x ∈ Qi}|.
• Define Yx as an unbiased ±1 random variable for each x ∈ U .

Our proof proceeds as follows. We first obtain a bound on Di for each i. (Note: This bound on Di gives rise to the awkward
bound on T in Theorem III.2 of Section III-D.) When then use the bounds on Di to prove the first item (30), and then use
them to prove the second item (31).
Bounding Di. Let Ei denote the event that ∃i ∈ [N ] such that Di > (1 + η)q/N or Di < (1− η)q/N . Then, for η ∈ [0, 1),
we have that

Pr[E1] ≤ N
(
Pr[Di > (1 + η) qN ] + Pr[Di < (1− η) qN ]

)
≤ N

(
e−

η2

3
q
N + e−

η2

2
q
N

)
(32)

which is a straightforward application of a union bound followed by the Chernoff bound.6

Bounding the first item. Now we condition on ¬E1. Let γ = 1+ε
(1+η)2 and write:

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] = Pr[

N∑
i=1

D2
i

 1
Di

∑
x∈Qi

Yxvx

2

> (1 + ε)q | ¬E1]

= Pr[

N∑
i=1

 1
Di

∑
x∈Qi

Yxvx

2

> γN
2

q | ¬E1]

where first equality comes from expanding w as Sv and then multiplying by Di

Di
, and the second equality follows from the fact

that conditioning on ¬Ei implies that Di ≤ (1+η)q/N . Next, set Yi to be the vector of all Yx for each vx ∈ {−1, 1}, x ∈ Qi.
Set ui the vector with entries vx√

Di
for each vx ∈ {−1, 1}, x ∈ Qi. Notice that both Yi and ui have length Di, and ‖ui‖22 = 1

so ui is a unit vector. Now we write

= Pr[e
t
∑N

i=1〈
Yi√
Di

,ui〉2
> e

tγ
N2

q | ¬E1]

≤ e−tγ
N2

q

N∏
i=1

E[e
t〈 Yi√

Di
,ui〉2 | ¬E1]

6We use the following Chernoff bounds. Let Xi be i.i.d indicator variables with mean µ, and let

Pr

[
n∑
i=1

Xi ≤ (1− γ)Nµ

]
≤ e−γ

2Nµ/C1

Pr

[
n∑
i=1

Xi ≥ (1 + γ)Nµ

]
≤ e−γ

2Nµ/C2

If 0 < γ < 1 then [5, Fact 4] gives C1 = 2 and C2 = 3. If 0 < γ < 1
2

then [2, Thm. 19] gives C1 = C2 = 2 ln 2.



18

where the inequality follows from the Markov bound. Now we are ready to apply the result of [1]. We restate equation (2)
and Lemma 5.2 of [1] here, using our own terminology.

Lemma E.2 (From [1]). For t ∈ [0, Di/2], unit vector ui (i.e., ‖ui‖22 = 1) and Yi chosen uniformly from {1,−1}Di we have
that

E[e
t〈 Yi√

Di
,ui〉2

] ≤ 1√
1− 2t/Di

(33)

E[〈 Yi√
Di
,ui〉2] =

1

Di
(34)

E[〈 Yi√
Di
,ui〉4] =

3

D2
i

(35)

Now, using [1]’s result in (33) we write

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] ≤ e−tγ

N2

q

N∏
i=1

E[e
t〈 Yi√

Di
,ui〉2 | ¬E1]

≤ e−tγ
N2

q

N∏
i=1

1√
1− 2t/Di

≤ e−tγ
N2

q (1− 2t
(1−η)q/N )−

N
2
.
= v(t) (36)

where the last inequality (36) follows from conditioning on ¬Ei which implies that (1 − η)q/N < Di for all i ∈ [N ]. Note
that for the result of [1] in (33) to hold, we must have 0 ≤ t < Di/2 ≤ (1+η)q

2N where the last inequality here follows from
the fact that ¬Ei implies that Di < (1 + η)q/N .

Optimizing and bounding t. Next, we optimize v(t) in (36), by finding t such that dv(t)
dt = 0.

dv(t)
dt = −γN

2

q v(t) + (−N2 )(− 2
(1−η)q/N )(1− 2t

(1−η)q/N )−1v(t) = 0

γN2

q (1− 2t
(1−η)q/N ) = N2

(1−η)q

t = q
2N

(
(1− η)− (1+η)2

1+ε

)
(37)

where the last equality uses the fact that γ .
= 1+ε

(1+η)2 . Now recall that for [1]’s result in (33) to hold, we need to ensure that

0 ≤ t < (1+η)q
2N . Using (37), we write

0 ≤ t

0 ≤ q
2N

(
(1− η)− (1+η)2

1+ε

)
(η2+3η)

1−η ≤ ε (38)

and we also need

t < (1+η)q
2N

q
2N

(
(1− η)− (1+η)2

1+ε

)
< (1+η)q

2N

−
(

1 + (1+η)2

2η

)
< ε (39)

Now, (39) holds for any η ∈ [0, 1). But, we will need to ensure that our choice of η ∈ [0, 1) satisfies (38).
Returning now to (36), plug (37) into (36) to get

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] ≤

(
e−y(1 + y)

)N
2 (40)

where we define

y
.
=

(1 + ε)(1− η)

(1 + η)2
− 1 (41)

and solving inequality (38), we find that (40) holds as long as η ∈ [0, 1) satisfies

0 < η < 1
2

(√
ε2 + 10ε+ 9− (ε+ 3)

)
(42)
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Notice from (41) that the bound in (42) this implies that (40) holds for the region y ∈ [0, ε). Now, [1] observes that e−y(1+y) ≤
e(−y

2/2+y3/3) for any y ∈ (0, 1). Since for us y ∈ (0, ε), and ε < 1 we finally have

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] ≤ e−

N
2 (y2/2−y3/3) (43)

which decays exponentially in N .
Bounding the second item. Let r be the number of non-zero entries in v. We will bound Pr[‖w‖2

2
< (1− ε)r]. Define E1 as

before, only this time use r instead of q. Again we condition on ¬E1.

Pr[‖w‖2
2
< (1− ε)r | ¬E1] = Pr[

N∑
i=1

D2
i

 1
Di

∑
x∈Qi

Yxvx

2

< (1− ε)r | ¬E1]

= Pr[

N∑
i=1

 1
Di

∑
x∈Qi

Yxvx

2

< (1−ε)
(1−η)2

N2

r | ¬E1]

where first equality comes from the expanding ‖w‖2
2
and then multiplying by Di

Di
, and the second equality follows from the fact

that conditioning on ¬Ei implies that (1−η)r/N < Di. Next, we let c2i =
∑
x∈Qi

v2x
Di

. Now observe that c2i = 1
Di

∑
x∈Qi

v2x ≥
1
Di
Di = 1 since the entries of v are integers ( and Di is the number of non-zero entries in v that are in Qi). We now multiply

by ci
ci

:

= Pr[

N∑
i=1

c2i

∑
x∈Qi

Yx
vx
Dici

2

< (1−ε)
(1−η)2

N2

r | ¬E1]

≤ Pr[

N∑
i=1

∑
x∈Qi

Yx
vx
Dici

2

< (1−ε)
(1−η)2

N2

r | ¬E1]

where the inequality follows from the fact that c2i ≥ 1. We now set Yi to be the vector of all Yx for each vx 6= 0, x ∈ Qi. Set
ui the vector with entries vx√

Dici
for each vx 6= 0, x ∈ Qi. Notice that both Yi and ui have length Di, and that ui is a unit

vector, since ‖ui‖22 = 1
Dic2i

∑
x∈Qi

vx =
c2i
c2i

= 1. We write

= Pr[

N∑
i=1

〈 Yi√
Di
,ui〉2 < (1−ε)

(1−η)2
N2

r | ¬E1]

≤ et
(1−ε)
(1−η)2

N2

r

N∏
i=1

E[e
−t〈 Yi√

Di
,ui〉2 | ¬E1]

where the first inequality follows from the Markov bound, and we require that t > 0. We now follow that analysis in Achiloptas,
and expand out the quantity inside the expectation to obtain:

≤ et
(1−ε)
(1−η)2

N2

r

N∏
i=1

E[1− t〈 Yi√
Di
,ui〉2 + t2

2 〈
Yi√
Di
,ui〉4 | ¬E1]

Now we can apply Achiloptas’s results from (34) and (35) to obtain:

≤ et
(1−ε)
(1−η)2

N2

r

N∏
i=1

(
1− t

Di
+ t2

2
3
D2

i

)
and conditioning on ¬E1 gives us:

≤ et
(1−ε)
(1−η)2

N2

r
(

1− 1
1+η

tN
r + 3

2(1−η)2 ( tNr )2
)N

For convience, we’ll now let τ = tN
r , and rewrite this as

=

(
e

(1−ε)
(1−η)2 τ

(
1− 1

1+η τ + 3
2(1−η)2 τ

2
))N

.
= ν(τ)N (44)



20

Bounding equation (44). We now need to find a choice of τ > 0 that causes (44) to decay with N . It will suffice to find τ
that causes ν(τ) to decay exponentially, i.e., we want ν(τ) ∼ e−χ for some χ > 0. To do this, we start by rewriting ν(τ) in
the following way:

ν(τ) =e
(1−ε)
(1−η)2 τ

(
1− 1

1+η τ ·
(

1− 3
2

(1+η)
(1−η)2 · τ

))
Notice that ν(τ) is the product of a polynomial and exponential with postive argument (that grows). Notice that the only way
we can hope to make ν(τ) decay, is if we require the polynomial to decay. To do this, we need to ensure that the expression
(1− 3

2
(1+η)
(1−η)2 · τ) is positive. Thus, we shall choose τ = ε

2 ( 3
2

(1+η)
(1−η)2 )−1. Subsituting in the value for τ gives us:

= e
1−ε
1+η

ε
3
(

1− ( 1−η
1+η )2 ε3 · (1−

ε
2 )
)

The series expansion of an exponential tell us that for any non-negative x we have the identity 1−x ≤ e−x. Since the quantity
( 1−η
1+η )2 ε3 · (1−

ε
2 ) is non-negative for every ε ∈ (0, 1), we can apply this identity here:

≤ exp
(

1−ε
1+η

ε
3 − ( 1−η

1+η )2 ε3 · (1−
ε
2 )
)

= e
− ε

3(1+η) exp
(

(1−η)2
1+η (1− ε

2 )− (1− ε)
)

(45)

It follows from (45) that proving that ν(τ) decays exponentially amounts to ensuring that

y(η, ε)
.
=

(1− η)2

1 + η
(1− ε

2 )− (1− ε) ≥ 0 (46)

and, recalling that η, ε ∈ (0, 1) some algebraic manipulation finds that (46) holds as long as η ∈ (0, c(ε)), where

c(ε) = 1
2−ε (3− 2ε−

√
5ε2 − 14ε+ 9) (47)

This bound on η, despite being ugly, makes sense. Notice that when ε = 0, we have that η = 0, and when ε = 1, we
have c(ε) = 1 so that η ∈ (0, 1). Also, we observe that y monotonically decreases in η, ranging from y(0, ε) = ε to
y((c(ε), ε) = 0.7 We also observe that y monotonically increase in ε, ranging from y(η, 0) = y(0, 0) = 0 (since η = 0 when
ε = 0), and y(η, 1) = 1

2
(1−η)2
1+η (and η ∈ (0, 1) when ε = 1). 8

Putting everything together, we finally have that as long as η ∈ (0, c(ε)) where c(ε) is given in (47), then y as given in (46)
is such that y > 0. Re-writing (44) using (45) and (46) as

Pr[‖w‖2
2
< (1− ε)r | ¬E1] ≤ e−N

ε
3(1+η)y (48)

we can see that the error decays exponentially in N , as required.

A simpler statement of the theorem. We now prove Theorem III.2 from Theorem E.1.

Proof of Theorem III.2. We show how to obtain the Theorem III.2 from Theorem E.1. To ensure that the error probability is
at most δ in (30) it suffices to set

2Ne−
η2q
3N ≤ δ

2 (49)

e−
N
2 (y21/2−y

3
1/3) ≤ δ

2 (50)

And to ensure that the error probability is at most δ in (31) we need to set

2Ne−
η2r
3N ≤ δ

2 (51)

e
−N ε

3(1+η)y ≤ δ
2 (52)

Bounding N . Referring to (50), we need to choose N > Nmin,1 where:

Nmin,1 =
4

y21(1− y1/6)
ln 2

δ (53)

7One can see that when η = 0, then y(0, ε) = ε, and a simple check in MATHEMATICA shows that when η = c(ε) as in (47), then y(c(ε), ε) = 0. By
inspection, it follows that y decreases in η.

8First consider the case where ε = 0. Now when ε = 0, c(ε) = 0, and the requirement that η ∈ (0, c(ε)) implies that η = 0. It follows that y = 0. Next
consider the case where ε = 1, which means that for η ∈ (0, 1), we have that y(η, 0) = 1

2
(1−η)2
1+η

. Now, since the derivative dy
dε

=
1+η(4−η)

1+η
> 0 for any

η ∈ (0, 1), we know that y grow monotonically in ε.
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Where recall that y1
.
= (1+ε)(1−η)

(1+η)2 − 1. One can verify that y1 ∈ (0, ε) for any η, ε ∈ (0, 1). To simplify (53), we will now
require that y1 ≥ ε/2, which means we can write:

≤ 4

y21(1− ε/6)
ln 2

δ

≤ 4

(ε/2)2(1− ε/6)
ln 2

δ

≤ 19.2

ε2
ln 2

δ

where the first inequality follows because y ≤ ε, the second follows from y ≥ ε/2, and the third follows from ε ≤ 1. Now,
instead of using the “ugly” expression for N > Nmin,1 in (53) to bound N , we have “nicer” bound on N that shows the
dependence of N on ε, δ as:

N ≥ 19.2

ε2
ln 2

δ (54)

Next, refer to (52), we need to choose N > Nmin,2 where:

Nmin,2 = 3(1+η)
εy2

ln 2
δ (55)

Where recall that y2 = (1−η)2
1+η (1 − ε

2 ) − (1 − ε). One can see that y2 ∈ (0, ε2 ) for any η ∈ (0, 1). To simplify (53), we will
now require that y2 ≥ ε/4 which means we can write:

≤ 12(1+η)
ε2 ln 2

δ

≤ 24
ε2 ln 2

δ

where the first inequality follows from our choice of y2 ≥ ε/4 and the second from η ≤ 1. Now we again have “nicer” bound
on N (showing it’s dependence of N on ε, δ) as:

N ≥ 24
ε2 ln 2

δ (56)

Comparing equations (54) and (56) we find that it suffices to choose N satisfying (56).
Bounding η. These nice bounds on N does not come free. To obtain (54), we need to ensure that y1 > ε/2. We write

ε
2 ≤ y1

.
= (1+ε)(1−η)

(1+η)2 − 1

1+
ε
2

1+ε ≤
1−η

(1+η)2 (57)

Now since
1+

ε
2

1+ε ≤
(

1−η
1+η

)2
≤ 1−η

(1+η)2 it follows that (57) holds if

1+
ε
2

1+ε ≤
(

1−η
1+η

)2
(58)

Next, to obtain (56) we need ensure that y2 > ε/4, so we write

ε
4 ≤ y2

.
= (1−η)2

1+η (1− ε
2 )− (1− ε) (59)

and a similar argument show that (59) holds as long as

1− 3ε
4

1− ε2
≤
(

1−η
1+η

)2
(60)

Bounding q, r. Referring to (49) and (51), we observe that is suffices to choose

q, r ≥ 3N
η2 ln 4N

δ (61)

Notice that this bound relies on both N , and η. We bounded N in (56). To minimize q, r, we want to chose η as large as
possible, subject to the constraints in (58) and (60). Thus, it suffices to chose η such that(

1−η
1+η

)2
= max

(
1+

ε
2

1+ε ,
1− 3ε

4
1− ε2

)
(62)

and this completes our proof of Theorem III.2.


