
RAVEN: Stateless Rapid IP Address Variation for Enterprise
Networks

Liang Wang
Princeton University
lw19@princeton.edu

Hyojoon Kim
Princeton University

hyojoonk@cs.princeton.edu

Prateek Mittal
Princeton University

pmittal@princeton.edu

Jennifer Rexford
Princeton University
jrex@cs.princeton.edu

ABSTRACT
Enterprise networks face increasing threats against the privacy
of their clients. Existing enterprise services like Network Address
Translation (NAT) offer limited privacy protection, at the cost of
requiring per-flow state. In this paper, we introduce RAVEN (Rapid
Address Variation for Enterprise Networks), a network-based pri-
vacy solution that is complementary to application-layer defenses.
RAVEN protects privacy by frequently changing the client’s public
IP address. With RAVEN, a client is not limited to using a single
IP address at a given time, or even for a given connection. RAVEN
goes further, breaking the association between packets that belong
to the same connection by frequently changing the client’s IP ad-
dress within a single connection. RAVEN achieves this through a
novel division of labor: the client uses a transport protocol, like
QUIC, that supports seamless connection migration, and decides
when to switch its IP address, while the enterprise network actually
changes the client’s IP address in a stateless manner at line rate and
ensures end-to-end packet delivery. We implement RAVEN using
QUIC and off-the-shelf programmable switches. We deploy RAVEN
in a test IPv6 network and evaluate its defense against webpage
fingerprinting attacks. Even with a strong adversary, the average
precision of the best adaptive attacks drops from 0.96 to 0.84, with
a 0.5% degradation in client throughput. When RAVEN changes
IP addresses at unpredictable frequency, the precision of the best
attacks falls to 0.78—the same effectiveness as WTF-PAD.

KEYWORDS
privacy, traffic analysis, programmable data plane, P4, QUIC

1 INTRODUCTION
Clients in an enterprise network (e.g., campus, corporate, or access
network) are exposed to many attacks that threaten their privacy
in today’s connected world. For example, an Internet Protocol (IP)
address can be used to identify a client and device communicating
on the Internet, enabling client activity and location tracking [13,
27, 42, 48, 53, 69–71, 73]. The problem will become more severe
as enterprise networks adopt IPv6, where each client may get a

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(3), 194–210
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0077

persistent, publicly-routable IPv6 address that makes it easier for
an adversary to locate a client and analyze its traffic [13, 27, 53].

How can an enterprise network protect the privacy of its clients?
Most solutions today are client-driven. For example, clients can use
services like Tor [16]. Apple also launched the iCloud Private Relay
service [3], enabling Apple device users to protect their privacy by
directing their traffic through two or more private relays. However,
Private Relay cannot be applied to clients that do not allow much
customization or control, such as Internet-of-Things devices.

Can an enterprise network play a more active role and provide
a fundamental solution that is less client- or device-dependent? A
common practice is Network Address Translation (NAT) which can
change IPs per client (or even per flow). Address Hiding Protocol
(AHP) [49] and Lightweight Anonymity and Privacy (LAP) [32]
improve on NAT by encrypting the IP (instead of mapping) per flow
in more efficient ways. However, breaking the association between
the flows belonging to the same client is not enough. In fact, many
advanced traffic-analysis attacks remain viable by grouping enough
packets of a single connection together. For instance, adversaries can
also find out what specific webpages the clients visit (i.e., webpage
fingerprinting) by analyzing traffic patterns [28, 31, 47, 50, 57, 67],
even if the server IP addresses appear to be the same to the adver-
saries. A corporate enterprise, for example, would want to prevent
adversaries from fingerprinting which webpages the company’s
employees are accessing, to avoid leaking sensitive information
about its current business. As another example, an access network
provider would want to prevent adversaries from inferring that the
customers in a geographic region belong to a particular minority
group based on the webpages they disproportionately access.

An even stronger mitigation strategy is to break the association
between the packets belonging to the same flow or connection. This
not only prevents an adversary from learning about clients, but
also makes it learn less information from a connection, which can
thwart various traffic-analysis attacks. MIMIQ [25] tries to realize
this idea using QUIC’s connection migration feature, but does not
provide a complete system (see § 2.3 for more details). Inspired by
MIMIQ, we present RAVEN (Rapid Address Variation for Enterprise
Networks), a new privacy primitive for an enterprise network to
protect all of its clients. RAVEN is a network-based solution that
can run independently, or be combined with application-layer so-
lutions. RAVEN improves on existing enterprise privacy solutions
(e.g., NAT and MIMIQ) by providing packet-level unlinkability in
a stateless way. RAVEN uses a unique technique for breaking the
link between transport connections (or flows) and clients: rapid

194

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0077

RAVEN: Stateless Rapid IP Address Variation for Enterprise Networks Proceedings on Privacy Enhancing Technologies 2023(3)

address variation. The core idea is to rapidly rotate a client’s
public metadata fields in packets, such as an IP address, in an un-
predictable way to the adversary, even within a single flow. Such
ephemeral IP addresses would leave a short time window for the
adversary, making it difficult to associate a flow to a client or to
analyze traffic content.

However, such a mechanism is hard to realize either by the client
or the network alone. First of all, if the client rotates its IP address
without the network’s support, end-to-end packet delivery is no
longer guaranteed. Secondly, if the network rotates the client’s
IP address rapidly, it might break the client’s connectivity with
conventional Internet services, which would dramatically degrade
performance and user experience. To address this, RAVEN proposes
a new division of labor between clients and the network. In RAVEN
the client decides when to change IP addresses, while the network
actually changes the IP addresses and ensures that return traffic is
delivered. This enables the client to strike its own balance between
privacy and performance, while the network ensures efficient end-
to-end packet delivery.

By refactoring the relationship between clients and the network,
RAVEN can be implemented and deployed in practice with good
performance. The time is ripe, with three emerging trends coming
together to enable our system:
• Servers that allow client IP addresses to change: Transport
protocols like QUIC [35] have a connection migration capability—
initially designed for seamless mobility—that allows the client’s
IP address to change within the life of a connection.

• Network devices that can encrypt and decrypt IP addresses:
Programmable data planes parse and manipulate packets at line
rate, allowing an enterprise network to encrypt and decrypt IP
addresses at the packet level.

• Core networks that support large IPv6 addresses: Many
transit networks already deliver IPv6 traffic. The 128-bit IPv6
addresses give us plenty of room to encode an encrypted client
IP address.

Using encryption and decryption for IP address translation, RAVEN
does not require the switches to maintain per-connection state. The
stateless design makes RAVEN naturally robust to asymmetric
routing and routing changes. In addition, RAVEN obviates the need
for the enterprise to run a NAT or stateful firewall, by having the
border switches translate client IP addresses and detect (and drop)
unsolicited server traffic.

We implement RAVEN using the QUIC protocol [24] and an
off-the-shelf Intel Tofino switch [34]. RAVEN can be deployed in-
crementally. For an unmodified client and server, the RAVEN switch
can rotate the client IP address per-connection or even every few
packets. To further enhance privacy, we modify the QUIC client to
rotate transport-layer metadata, such as port numbers and QUIC
connection IDs, which could otherwise be used to group related
packets in a traffic-analysis attack. With a small modification to the
QUIC server software, we can avoid the server unnecessarily reset-
ting the connection’s congestion-control state after an IP rotation
and path validation, leading to improved performance.

We deploy RAVEN in a publicly-reachable /64 network testbed.
We validate that RAVEN can successfully perform client IP rotation
at a high frequency to thwart IP-based attacks. We evaluate state-of-
the-art webpage fingerprinting (WF) attacks against RAVEN under

Enterprise IPv6
Network

…

Client

Moving
path

Server

Internet

DNS

WWW

IP"
Activity"�
Location"
Website?

Figure 1: Enterprise network and privacy threats.

adaptive attack strategies. 1 Even with a strong adaptive adversary
that could identify a large portion of the packets in a protected con-
nection, the (average) precision of the best-performing WF attacks
drops from 0.96 to 0.84, with a 0.5% client throughput degradation.
By changing the migration strategy, RAVEN can achieve similar
efficiency as an application-layer WF defense WTF-PAD [38]. Com-
bining RAVEN with WTF-PAD, the precision drops further to 0.64.
When used alone, RAVEN can also reduce the precision of the
best adaptive attacks down to 0.65, with a cost of 20% throughput
degradation.

The dataset forWF evaluation contains 12,000 traces, which were
collected by repeatedly visiting 100 monitored webpages twenty
times and 10,000 unmonitored webpages on GitHub Pages, and
the traffic was split by RAVEN. We make this dataset and RAVEN
source code publicly available [63].
Ethics statement: In our RAVEN deployment, only synthetic
clients that we control use RAVEN. We analyzed packet traces from
MAWI [12], which are publicly available and anonymized. We also
analyzed network traffic captured on a large campus network. A
network operator has inspected and sanitized all packet traces to
remove all personal data and payload before being accessed by
researchers. We have acquired all necessary approvals from the
institute beforehand, including its Institutional Review Board (IRB).

2 RAVEN PROBLEM SETTING
As shown in Figure 1, we consider an enterprise IPv6 network that
has the incentives to protect client privacy. It could be a corporation
that wants to hide which web resources the employees are access-
ing from adversaries outside of the network to protect sensitive
information, or a network provider that provides a value-added
service to privacy-savvy users. Clients may or may not fully trust
the organization running the network, and can use client-based
anonymity techniques (e.g., Tor and VPNs) to hide destinations
from the network. However, the clients, who want to fully leverage
the privacy benefits provided by the network, are still willing (or
required in certain settings) to make necessary changes to cooper-
ate with the network. Clients can be stationary or mobile across
different subnets. The network may have multiple border switches,
subject to asymmetric routing and routing changes; in particular,
the outgoing and incoming traffic could go through different border
switches at different times.
1RAVEN may not work effectively against website fingerprinting because RAVEN
does not hide server IPs (and ports). It could be trivial to distinguish different websites
based on server IPs. In webpage fingerprinting, all webpages share the same server IP.

195

Proceedings on Privacy Enhancing Technologies 2023(3) Wang et al.

In this section, we first present our threat model and design
goals, followed by a comparison of RAVEN with existing solutions.

2.1 Threat model
We consider two types of passive adversaries: (A1) on-path eaves-
droppers (i.e., any network element between the network and the
server, such as an AS or an Internet exchange point) and (A2) ma-
licious servers that clients communicate with.We do not consider
attacks that leverage non-public information such as a username,
password, or cookies. Depending on their capabilities, adversaries
are able to perform different attacks.
IP-basedfingerprinting and tracking attacks (A1, A2)A client’s
IP address could serve as a pseudonym for the client, even behind
a NAT [42]. Analyzing the traffic pattern between the client and
servers may allow an eavesdropper (A1) to fingerprint the client
or infer client activity [48]. The adversary may also discover com-
promised clients or hosts (by worms, viruses, etc.) based on traffic
patterns [69, 70] and select targets for future attacks. An A2 ad-
versary can profile clients and track their activity only based on
IP [42, 71, 73], even without cookies or when privacy browsing is
being used.

Another threat is location tracking. Though geopositioning based
on IPv4 addresses sometimes has poor accuracy [55], the situation
may change in IPv6. RIPE’s best current practice for IPv6 prefix
assignment [52] suggests that customer premise equipment, such
as an access point, is able to get a dedicated, up to /64 IPv6 prefix.
Such a prefix can be treated as a location ID, and an adversary can
geolocate a client with high accuracy with auxiliary data from loca-
tion services (e.g., the client is attached to a certain access point or
subnet within a network). Furthermore, the lowest 64 bits of an IPv6
addressmay remain constant evenwhen the clientmoves among dif-
ferent networks, as it could be generated based on the client’s MAC
address by Stateless Address Auto Configuration (SLAAC) [62].
This allows an adversary to pinpoint the victim’s locations and also
track the client moving across different networks [13, 27, 53].
Traffic-analysis attacks on the enterprise network (A1). A
variety of traffic-analysis attacks leverage statistics extracted from
network flows and do not need to know the true IP address of each
client. An adversary may perform traffic-analysis attacks to learn
sensitive information about the client’s enterprise network. For
example, the adversary may try to figure out the web page/resource
of interest to the majority of clients during a time period. Obfus-
cating an IP address and port number is not sufficient for such
fingerprinting attacks [28, 31, 47, 50, 57, 67].

Specially, we focus on webpage fingerprinting attacks in the
paper in which the resources to fingerprint are behind the same IPs,
e.g., resources on the CDNs. An analysis of campus traffic (Table 1)
suggests that major CDNs support QUIC and a single CDN IP
address can be associated with multiple concurrent connections,
providing a reasonable anonymity set. § 6.4 provides a more detailed
analysis of the anonymity set.

2.2 Design goals
Motivated by our threat model, we want to design a system that
achieves the following privacy properties in an enterprise network
setting.

P1. Lightweight sender anonymity. An adversary outside the
enterprise network cannot discover the IP address of the client
(sender). Note that we do not try to hide the Autonomous System
(AS) of the client. This is the same goal as AHP [49].
P2. Flow unlinkability. Here, we define flow as a connection in
TCP or UDP. We define flow unlinkability as the following: given
a set of flows, the adversary cannot determine whether the flows
are associated with the same client based on observed public meta-
data. This property helps protect clients against tracking attacks
that exploit the information from multiple flows, such as IP-based
webpage identification attacks proposed by Patil and Borisov [48].
P3. Subflow unlinkability. In this work, we propose a novel pri-
vacy property called subflow unlinkability. With subflow unlinkabil-
ity, given segments of a flow (i.e., subflows), the adversary cannot
reliably determine whether the subflows belong to the same flow
or are associated with the same client based on the observed pub-
lic metadata. Much stronger than flow unlinkability, fulfilling this
property enables a more robust defense against advanced traffic-
analysis attacks, as it restricts the information the adversary can
learn from traffic. Though prior work on traffic-splitting-based web-
page fingerprinting defenses [29, 39, 65] achieves this property to
some extent, it has not been fully conceptualized in the context of
webpage fingerprinting. We demonstrate the effectiveness of this
property against webpage fingerprinting attacks in § 6.

We also set several key operational (O) goals:
O1. No connectivity disruption. The rotation of metadata, partic-
ularly IP addresses, shall not disrupt ongoing connections. Clients
shall not suffer from packet drops, retransmissions, or connection
reestablishment during metadata rotation.
O2. No client application modification. For greater compatibil-
ity, the solution shall not require modifications to existing applica-
tions used by the client.
O3. Robust to routing changes and asymmetry. Outgoing traf-
fic and return traffic may take different routing paths, and these
paths may change over time. The solution shall gracefully handle
asymmetric routing and routing changes.
O4. Minimal performance impact. The solution shall incur mini-
mal performance degradation, like reduced throughput or increased
latency, for the client.
O5. Low deployment and maintenance overhead. The solution
shall minimize the deployment and maintenance overhead, like
extra state (e.g., stateful NAT) or servers (e.g., VPN) required for
running a solution.

2.3 Comparison with existing solutions
It is challenging to achieve these privacy properties while still
fulfilling the operational goals. We make this point by discussing
how existing enterprise solutions work (Table 2).
NAT. Although not its primary goal, a NAT device could provide
some privacy benefits: sender anonymity and flow unlinkability
(with NAT oversubscription). However, NATs cannot provide sub-
flow unlinkability (P3) without disrupting ongoing connections.
Also, NAT devices need to maintain state (O5); and syncing con-
nection state between multiple NATs at the border is a challenge
for O3.

196

RAVEN: Stateless Rapid IP Address Variation for Enterprise Networks Proceedings on Privacy Enhancing Technologies 2023(3)

ASN Provider # Flows (%) # Server IP

AS15169 Google 27,264,590 (81.37) 7,538
AS32934 Facebook 1,926,463 (5.75) 356
AS8075 Microsoft 1,863,316 (5.56) 649
AS13335 Cloudflare 908,982 (2.71) 18,252
AS36183 Akamai 726,661 (2.17) 110
AS396982 Google Cloud 601,520 (1.8) 1,304

AS16509 Amazon
(CloudFront) 68,144 (0.20) 3,794

AS54113 Fastly 45,003 (0.13) 220
AS714 Apple 30,255 (0.09) 302
AS20940 Akamai 8,816 (0.03) 803

Table 1: Top 10 destination ASes associated with the most
QUIC connections. A total of 33.5M QUIC connections were
observed in two weeks. Note that more than 99% of the ob-
served destination IPs belonging to AS16509 are used by
CloudFront.

Standard IP reassign.An enterprise network may seek to reassign
IPv6 addresses to clients via SLAAC very frequently to achieve P1,
P2, or even P3. Indeed, several practices are recommended for
IPv6 (RFC 4941 [44], prefix rotation [53], and others [13, 19–21]),
which focus on generating frequently-changing “temporary” IPv6
addresses. However, to avoid disrupting ongoing connections, the
rotation frequency is still low—typically 24 hours or more, which
undermines the potential privacy benefits. Besides, such solutions
do not even achieve flow unlinkability (P2) in practice because a
client only gets a single IP address at a time.
AHP. In Address Hiding Protocol (AHP) [49], a trusted network
changes a client’s IP address to another one in the network’s own
IPv4 address space through encryption. This conceals the client’s
identity without any client participation. Different flows have dif-
ferent source IP addresses, thus AHP can provide sender anonymity
and flow unlinkability. However, AHP is not designed to provide
subflow unlinkability (P3). Moreover, AHP performs expensive
cryptographic operations that are difficult to run at line rate in
the network, and needs to maintain flow state to avoid breaking
ongoing TCP connections, which makes it difficult to scale to IPv6
networks (O4, O5).
MIMIQ.ThoughMIMIQ [25] pioneered the idea of leveragingQUIC
connection migration to hide client IP addresses, it does not provide
subflow unlinkability (P3): MIMIQ did not change the associated
connection ID field, which could be used to trivially link multiple
packets of the same connection together. MIMIQ also relied on a
DHCP-like allocation server to remember the IP address mapping,
introducing state (O5). When migrating at a high frequency, the
client throughput drops significantly in MIMIQ (O4).

We discuss other network-based privacy solutions (e.g., network-
layer anonymity systems) and client-based traffic splitting in § 8.
Key takeaways:
• To achieve subflow unlinkability (P3), we need to change the
source IP address of packets within a flow. Yet, this disrupts the
ongoing connectivity (i.e., disrupts O1). A promising approach is
to leverage protocols that support mobility, TCPMigrate, MPTCP,
QUIC andWireGuard, etc., as demonstrated in prior work [25, 39,

P1 P2 P3 O1 O2 O3 O4 O5

NAT * *
Standard
IP reassign
AHP
MIMIQ
RAVEN

Table 2: Comparison of existing solutions."*" indicates the
goal is achieved conditionally depending on solutions.

58, 64, 65]. However, we must avoid privacy leakage from non-IP
identifiers, which are used in these protocols as an alternative
for IP address (e.g., QUIC’s connection ID).

• P2 requires the client to (a) use different IPs for different flows, or
(b) in the reverse direction all flows share the same set of client
IPs, like in NAT.

3 RAVEN DESIGN
RAVEN leverages the division of labor between the client transport
protocol and the network switches to rotate public traffic metadata
(§ 3.1). In RAVEN, a modified transport protocol frequently rotates
transport-layer metadata, like QUIC’s connection ID (§ 3.2), while
the network reactively generates encrypted IP addresses and port
numbers on-the-fly and assigns them to packets (§ 3.3).

3.1 RAVEN’s division of labor
With a client-oriented approach, the network assigns multiple IP
addresses to a client and lets the client proactively rotate the IP ad-
dress, port number, and public identifiers in a connection. However,
this requires a special client setup and does not scale with a client
that has a large number of connections. With a network-oriented
approach, the network controls the metadata rotation on behalf of
the client. In this case, IP rotation is easy via NAT-like techniques.
Yet, transport-layer identifier rotation is difficult to achieve as the
network has no visibility into the identifier management due to end-
to-end encryption. Therefore, our design chooses a middle ground
between the two. In RAVEN, the client takes charge of transport-
layer metadata rotation without worrying about the IP layer, and
the network manages IP addresses and port numbers based on
public information in packets without peeking into the encrypted
data. Labor is divided to minimize the required modifications to the
system’s components and also to improve performance.

3.2 Clients with seamless migration
RAVEN leverages the rising popularity of transport protocols like
QUIC that support connection migration. Using such transport
protocols, remote Internet services allow the client’s IP address to
change even within the life of a connection. With RAVEN, clients
using these transport protocols (instead of TCP) can automatically
gain enhanced privacy. While we focus on QUIC as our trans-
port protocol, we note that there can be many alternatives. We
chose QUIC as it has been standardized and is the foundation of
HTTP3 [35]. We also expect to see widespread adoption of QUIC
going forward.

197

Proceedings on Privacy Enhancing Technologies 2023(3) Wang et al.

Ciphertext

IPv6 Prefix (64) Reserved (32) Client ID (32)
Original

IPv6 Address + Port

Encrypted

IPv6 Address + Port

Port (16)

Padding

(16)

Client

group

Key

version #

Key

Control

(16)

+

+

IPv6 Prefix (64)
Encrypted

Client ID (48)
Encrypted

Port (16)

random bits

or f(CID)

Figure 2: RAVEN IPv6 source address encoding.

Privacy-enhanced QUIC that rotates the connection ID. Yet,
unmodified QUIC is still vulnerable to attacks that link packets
to a connection, even when an IP address cannot tie packets to a
connection. In particular, QUIC uses a connection ID (CID) to locate
the per-connection decryption keys for further payload processing
upon receiving a packet. Packets from the same connection usually
share the same CID, which breaks subflow unlinkability (P3).

In RAVEN, we extend QUIC so that a connection can actively
rotate connection IDs frequently based on fine-grained metrics (e.g.,
packet counter). The client and the server negotiate a set of CIDs
and periodically update the valid CID set. When setting the CID in a
packet (or a group of packets), the client selects a random CID from
the valid CID set (with or without reusing). CIDs are generated and
exchanged in an encrypted way, so a passive adversary cannot learn
the set of valid CIDs. By using a randomly-selected CID among a
set, and even rotating the set of valid CIDs periodically, the CID
itself can no longer be used for identifying all packets that belong
to the same connection. This lays the foundation for P3.
The client controls the rotation timing: The client is in com-
plete control of how often to change its transport layer’s connection
ID and when to change it. For example, a client can even change the
CID at gaps in the stream of packets, defending against an adver-
sary that tries to identify and group packets with small inter-arrival
times as part of the same connection. Of course, the client has to
strike a good balance between privacy and performance.

3.3 A network that encrypts and encodes
In this section, we explain how the network encrypts client IPs. To
simplify our discussion, we consider a simple, flat IPv6 networkwith
no subnets. As in Figure 2, the network adopts a special addressing
scheme: the non-prefix bits of an IPv6 address assigned to a client
is divided into (i) reserved bits and (ii) the client bits (or client
ID). The client bits are used for identifying each client while the
reserved bits can be any fixed value. For the sake of discussion, we
will assume a 64-bit network prefix, a 32-bit reserved, and a 32-bit
client ID in our running example.
Encryption using the client ID, port number, and padding bits.
First, RAVEN needs to hide the raw network and transport layer
metadata in a client’s packet, i.e., the client’s raw IP address and port
number. To achieve this, a RAVEN switch first extracts the client
ID bits (from the original client’s IP address) and the client’s source
port. Then a special padding is added, which plays an important
role later in rotating the address and port number. After that, the

RAVEN switch performs symmetric encryption, which produces
an encrypted ciphertext. The last 16 bits of this ciphertext are used
as the encrypted port while the remaining bits are encoded into
the new encrypted IP address, acting as a unique (but temporary)
identifier for the client. For now, we defer the discussion about our
encryption scheme until § 3.4.

Instead of encryption, onemay hide IPs bymapping an IP address
to another address in the same address space. Such a mechanism
shares the same limitations as NATs: it requires maintenance of
state which makes it difficult to scale to large IPv6 networks and
handle routing changes and asymmetric routing.
Rapid rotation of the ciphertext. RAVEN’s main goal is to break
the association between the packets belonging to the same connec-
tion. Thus, the network and transport layer metadata in a packet,
i.e., the client’s IP address and port number, need to be rotated
rapidly even after they are encrypted. This is where the padding
becomes important. RAVEN supports multiple ways to generate
the padding, and we introduce two here:
(1) Random generation per packet. In this case, every packet has a

different combination of source IP address and port number.
(2) As a function of connection ID. In other words, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =

𝑓 (𝐶𝐼𝐷). In this case, the padding would change each time the
connection ID changes.

Option (1) is ideal for connectionless applications, like DNS and
NTP (see further discussions in §A.6), while option (2) is better for
connection-oriented applications running over QUIC, like YouTube
streaming with a Chrome browser. By taking the connection ID
(CID) as part of the encryption input, the resulting encrypted source
IP and port number change accordingly as the CID changes. This
is where RAVEN’s division of labor is highlighted: the client’s
transport-layer metadata rotation directs the rotation of the public
IP address and source port number assigned to the client. Mean-
while, it is the network that actually changes the public IP address
and source port number in the client’s packet.

The public IP address and port number of a client observed
on the Internet change frequently, achieving sender anonymity
(P1). Different connections will have different source IP addresses
because of the difference in CIDs, achieving flow unlinkability
(P2). Lastly, the rotation of connection ID even within the life of
a connection will split a connection into seemingly-independent
connections, achieving subflow unlinkability (P3).
Stateless cipher operations. All the ciphertext bits are stored in
the source IP and port number, so RAVEN does not need to main-
tain any extra state for decryption. In addition, all RAVEN switches
deployed in the network use the same set of keys to perform encryp-
tion and decryption as packets traverse the switches. Thus, with
RAVEN, the switches at the border do not have to continuously
maintain or synchronize per-client or per-connection state among
them, which is a significant overhead for stateful firewalls and NAT
devices.
Dynamic key rotation and assignment. In our running example
in Figure 2, note that there are 16 bits remaining in the encrypted
IP address, denoted as control bits. We utilize these bits to further
enhance security:

(1) Key rotation to limit the number of encryptions per key. Encryp-
tion keys are updated periodically, say every 𝑡 seconds, to limit the

198

RAVEN: Stateless Rapid IP Address Variation for Enterprise Networks Proceedings on Privacy Enhancing Technologies 2023(3)

number of plaintext-ciphertext pairs an adversary can collect for
each key. Key rotation reduces the attack success probability and
minimizes the damage caused by a compromised key. One issue
caused by key rotation is inconsistent keys during encryption and
decryption, i.e., the key may be updated when the return packets
are still in transit. To address this issue, we maintain multiple ver-
sions of a key, and rotate the key sets in the same way as SPINE [14].
Without keeping a record of the keys used over time, the network
will not be able to decrypt older traffic, which gives the network
plausible deniability.

(2) Client group to isolate client traffic. RAVEN can group the
clients based on certain criteria and use a different key for each
client group. This has two potential benefits. First, if a key gets
compromised for whatever reason, it will only impact the client
group that was using that particular key. Second, it is possible to run
differentiated services for clients by having a different key rotation
rate per client group. Each group has a group ID, which will be
used for locating the corresponding encryption keys. Similar to
the key version, the group ID can also be stored in the control bits.
Currently, control bits are only used for identifying three types of
clients (§ 3.5).

Both the key rotation and assignment per client group in the
control bits can be orchestrated by a logically centralized controller
that interacts with all participating switches.
IPv6 metadata obfuscation. Certain IPv6 header fields may serve
as flow identifiers to help the adversary reconstruct original flows.
One is flow label, a 20-bit random string in the IPv6 header for traf-
fic classification [1, 15]. Another one is the IPv6 flexible extension
headers, which may contain much auxiliary information [15]. Simi-
lar to the TLS ciphersuite, the combination of extension headers
may serve as a “fingerprint” to identify a flow. The cooperative
client will use zero-value flow labels and fixed extension headers.
In fact, zero-value flow labels are very common, and extension
headers are rarely used in IPv6. We present a detailed measurement
on the usage of the two fields, and discuss other potential identifiers
(QUIC packet number, IP ID, etc.) in Appendix §A.1.
IP address collision. In RAVEN, client IP addresses (port numbers)
encrypted by the same key will not have collisions because the
encryption is a pseudorandom permutation (1-to-1 mapping). The
active keys all have different version numbers that will be set in
the reversed bits, which can ensure the addresses encrypted by
different keys are different.
Extensions of RAVEN.We have discussed the scenario that the
IPv6 network has no subnets. RAVEN can also be applied to protect
hierarchical IPv6 addresses from leaking internal routing details,
and be extended to protect IPv4 networks or other protocols such
as DNS and WireGuard. See more details in §A.6.

3.4 Efficient encryption in the data plane
To achieve the operational goals in § 2.2, RAVEN leverages high-
speed programmable switches to perform encryption at line rate.
Commodity programmable switches can process terabytes of traffic
per second (e.g., Tofino [34]). RAVEN uses the two-round Even-
Mansour (2EM) encryption developed in PINOT [64] for line-rate
encryption. With 2EM, RAVEN can encrypt a packet in a single

Unmod.
QUIC

QUIC Client: Modified
QUIC Server: Unmod.

QUIC Client: Modified
QUIC Server: Modified

P1
P2
P3
O4 *

Table 3: Incremental deployability of RAVEN. With certain
modifications to the QUIC protocol, RAVEN can offer all
three privacy properties at low performance overhead.

pass through the packet-processing pipeline. We refer the inter-
ested readers to [7, 64] for security analysis on 2EM. Using next-
generation programmable switches, RAVEN could also run standard
lightweight ciphers, e.g., SIMON/SPECK, that support 64-bit en-
cryption [5].

3.5 Incremental deployability of RAVEN
We summarize the deployment scenarios in Table 3. RAVEN re-
quires no modification to QUIC or client/server software to achieve
lightweight sender anonymity (P1) and flow unlinkability (P2).
Client IPs are encrypted at line rate based on CIDs, and will be
different in each connection. Millisecond-level high-frequency key
rotation is not required for P1 and P2 so the performance overhead
is low.

To achieve P3, RAVEN requires the participating clients to use a
modified QUIC to actively perform CID rotation. The server may
remain unmodified, but frequent IP rotation may degrade the per-
formance. This is because (1) QUIC has a rate limit on migration
and (2) QUIC performs path validation and resets the congestion
window for each migration. To address (1), a minor QUIC configura-
tion change at the server can relax the rate limit. To address (2), we
propose a minor change to the QUIC server-side logic (discussed
in § 4.1). We argue that the changes we propose for addressing
(1) and (2) can benefit other applications with high mobility, e.g.,
5G-based vehicular networks. We envision that the changes can be
incorporated into the standard QUIC as an extension, which can
be enabled at the client’s will.

The network can use control groups to differentiate between
opt-in and opt-out RAVEN clients. For clients who do not want to
use RAVEN, RAVEN can route their traffic normally without doing
IP encryption. For clients who want to only use unmodified QUIC,
RAVEN can perform IP encryption with low-frequency key rotation
to provide P1 and P2 with minimized performance overhead.

Since RAVEN performs IP encryption/decryption at the border,
the middleboxes managed by the RAVEN-deploying network can
still work normally because they are placed inside the network and
only see the original (stationary) client IPs and connections. The
middleboxes outside the network (on the routing paths, managed
by other parties) may fail to track a connection due to IP migra-
tion. However, normal QUIC migrations can cause the same issue,
because current middleboxes are primarily designed for handling
TCP-based protocols, without taking mobility into consideration.

199

Proceedings on Privacy Enhancing Technologies 2023(3) Wang et al.

4 RAVEN PROTOTYPE IMPLEMENTATION
Our prototype implementation of RAVEN consists of two parts: a
modified QUIC protocol that performs CID rotation, and a data-
plane program that performs IP encryption.

4.1 QUIC∗: RAVEN-compatible QUIC
Standard IETF QUIC and known QUIC variants do not work effec-
tively with RAVEN. First, connection IDs are persistent per connec-
tion in existing QUIC implementations, which makes it trivial for
the adversary to link packets to connections. Second, connection
migration could incur high overhead: upon detecting a connection
migration, the QUIC server resets the congestion window, retrans-
mits all the “in-flight” packets based on the last ACKed packet,
and performs path validation [35]. In RAVEN, however, connec-
tion migration does not indicate a change in the network path or
conditions, making such a mechanism unnecessary. Therefore, we
extend the QUIC protocol, which we call QUIC∗. QUIC∗ remains
fully compatible with standard QUIC while having extra features:
(i) fast active connection ID rotation within a single connection and
(ii) maintaining the performance when the connection ID changes.
Actively rotating connection IDs. QUIC∗ is based on Google’s
production-ready QUIC implementation QUICHE, which is being
used by Chromium and Google’s servers [24]. QUIC∗ only adds
around 320 lines of code on top of QUICHE. For better unlinkability,
QUIC∗ provides built-in support for configurable, flexible connec-
tion ID rotation. In QUIC∗, the QUIC server will send 𝑛 connection
IDs to the client after handshakes, and the QUIC client changes
its in-use connection ID to an ID chosen randomly from the 𝑛 IDs
every 𝑘 (received or sent) packets. The rotation can also be time-
based. After 𝑝 migrations or exhausting all CIDs, the QUIC∗ client
requests a new set of 𝑛 IDs from the server. QUIC∗ also has an
interface to allow the client application to customize the migration
parameters ⟨𝑛, 𝑘, 𝑝⟩. Note that ID rotation only begins after a com-
plete handshake; otherwise, the connection cannot be established
successfully.
Identifying migrations caused by RAVEN CID rotation. The
migrations caused by RAVEN CID rotation should not trigger the
conventional mechanism (i.e., reset congestion window, retransmit
packets in-flight, and path validation). To make RAVEN migrations
distinguishable, we add a special migration event RAVEN_MIG in
QUIC∗. In our current implementation, the server classifies a migra-
tion as RAVEN_MIG if the client is using IPv6 and its source address
changes within the same /64 prefix. A more general approach is to
add a special flag in the control field of the client IPv6 address or
packet header to notify the server about the migration type. We
are in the process of implementing this and leave the complete im-
plementation as future work. We demonstrate how this extension
significantly improves performance in § 7.
Discussion. It could be challenging for ordinary clients to choose a
good rotation policy to balance the performance-privacy trade-offs.
A potential solution is to let the network provide configuration poli-
cies (and the corresponding performance overhead) for its clients.
QUIC∗ could expose an interface to allow individual clients to set
the policies chosen amongst those preconfigured options. To cre-
ate efficient policies, the network may profile client traffic based

on client activities (website accesses, bulk downloads, etc.) to esti-
mate the trade-offs under different usage scenarios. We leave policy
generation as future work.

4.2 Data-plane implementation
RAVEN consists of a software controller for key distribution and
rotation, and a P416 data-plane program for encryption.
Line-rate encryption. For our /64 network, we use a 32-bit client
ID and a 16-bit padding, as in Figure 2. With the additional 16-
bit port number, the encryption input is 64 bits in total. RAVEN
currently implements the 2EM encryption scheme developed in
PINOT [64]; with more advanced switches, RAVEN could also run
64-bit SIMON/SPECK [5].

The controller, which can run on a dedicated host, generates
the encryption keys using the Python urandom function. It uses
grpc to communicate with the data plane to update the key table
and the key version number in the forwarding table. The keys are
stored in a key table, the index of which is ⟨version number, client
group index⟩. The version number is stored along with the port
forwarding (i.e., switch ingress port to egress port) information in a
forwarding table so the switch can determine the current version of
keys it should use upon receiving a packet. We show the encryption
pipeline and the major lookup tables in the P4 program in Figure 3.
Resource usage. Our implementation on an Intel Tofino switch
uses all ingress stages and 8% of egress stages. It uses, on average,
48.6% of hash distribution units, 34.9% of logical table IDs, 4.6% of
SRAM, and 0% of TCAM. The memory required for maintaining
encryption keys is negligible. See §A.5 for more details.

5 RAVEN DEPLOYMENT
We deployed RAVEN in our testbed and evaluated it against the
wider Internet. Figure 4 shows our deployment.
QUIC∗ clients, a RAVEN switch, and a public IPv6 space. The
end-host IPv4 client is a Linux server with two AMD EPYC 7302P
3.3Ghz 16-core CPUs and 128GB of memory. We use a QUIC∗ client
and a Chromium browser integrated with QUIC∗ to run our evalua-
tion. The RAVEN switch is aWedge 100BF-32X switch with a Tofino
programmable chip [45], and it sits between our end-host client and
the trusted network’s border gateway. The campus border gateway
allocates a /64 IPv6 subnet to our network; all RAVEN’s encrypted
IPv6 addresses are from this address block.
QUIC∗ server and proxy. We deploy and use our own QUIC∗

server hosted on an AWS EC2 c4.xlarge instance. We use this server
to run microbenchmarks to compare the throughput performance
with andwithout RAVEN (§ 7).We use the same instance as a QUIC∗

proxy as well to evaluate howwell RAVEN defends against webpage
fingerprinting attacks when clients visit real websites (§ 6).
Feasibility validation. We set the QUIC∗ client to migrate every
10 packets and perform key rotation every 500ms on the RAVEN
switch.We used the QUIC∗ client to download 200MB and 1GB files
hosted on the QUIC∗ server 10 times. All files were downloaded suc-
cessfully through RAVEN, and the SHA1 hash of every file matched
that of equivalent downloads directly via unmodified QUIC with-
out RAVEN. We used tcpdump to capture the QUIC∗ traffic on the
server. When fetching the 200MB file through RAVEN, the server
had seen 2,475 connections on average, and all the connections

200

RAVEN: Stateless Rapid IP Address Variation for Enterprise Networks Proceedings on Privacy Enhancing Technologies 2023(3)

:
0x01 0x52

… …

In Out

0xdc 0x86

0
aaa,bbb,

ccc,…

0 …

Keys

.. …

srcIP =

aa::abcd

dstIP =

bb:8888

Input: M = IP || Padding

srcIP =

aa::190c:84b0:5b5b:5b5b

dstIP =

bb:8888

Encryption keys

0

In

…

2

Out

…

0

Ver

0

Port forwarding
16-bit

padding

8-bit S-Box

0x01 0x52

… …

In Out

0xdc 0x86

C

(48)

Network prefix

(64)

DIffusion Layer:

shuffle bits

Straight

P-Box

Output: C

IPv6 address encoding

IPv6 packet

IPv6 pakcet

Permutation (run two rounds)

C = P2(P1(M K0) K1) K2

Encryption:

Ctrl

(16)
Port

(16)

0

1

Gid

..

srcPort

12345

dstPort

443

srcPort

5678

dstPort

443

Ver

Figure 3: IPv6 source address encryption in RAVEN. Keys of lookup tables are highlighted.

RAVEN
End-host

IPv6
Gateway

Campus Network

QUIC
(DNS, NTP,..)

IPv6 IPv6

AWS EC2
instances

Internet

Test
client

Quic
server

Quic
proxy

Github
Pages

Quic

TCP

Quic TCP

(Perf eval)

(Security eval)

IP1 IP2 IP1 IP3

Figure 4: RAVEN deployment setup.

were from unique client IPs. On average each IP was associated
with 80 packets (including return packets). When we fixed the key
and only rotated CIDs, the server had seen 1,525 unique client
IPs/connections, with the average subflow length being 130 packets.

Our test suggests RAVEN can effectively obfuscate client IPs,
which can prevent IP-based activity and location tracking (P1 and
P2). In our evaluation, we focus on more sophisticated attacks
that exploit non-IP metadata of flows, i.e, webpage fingerprinting
attacks.

6 SECURITY EVALUATION OF RAVEN
Our evaluation focuses on demonstrating the benefits of subflow
unlinkability (P3) provided by RAVEN. We first describe the sce-
nario, trace collection, and reconstruction attack simulation (§ 6.1
and § 6.2). Then we evaluate the efficiency of state-of-the-art attacks
under both real and simulated RAVEN defenses (§ 6.3). We further
examine the size of anonymity set using real-world campus traces
and discuss where RAVEN stands if an advanced adversary tries to
reconstruct a connection from independent sub-connections (§ 6.4
and § 6.5).

6.1 Scenario and experiment setup
Webpage (instead of website) fingerprinting. RAVEN does not
hide the destination IPs the clients talk to, but it is still useful for
mitigating webpage fingerprinting (WF) attacks.2 In this setting,
the adversary tries to fingerprint the specific webpages the clients
are visiting, which share the same IP address (e.g., IPs of CDNs and
shared hosting providers) so the adversary cannot infer webpages

2RAVEN can be used with proxies or VPNs to hide destination IPs for better privacy.

purely based on their destination IPs. We also assume SNIs are en-
crypted [51]. Importantly, we assume many clients (connections) are
talking to the same server IP simultaneously (see § 6.4 for anonymity
set analysis). In our evaluation, we consider the case that adversary
tries to fingerprint GitHub Pages webpages.
The open-world setting. We focus on the open-world setting
in our evaluation because it is more realistic. In the open-world
setting, the client may visit any webpages monitored by the ad-
versary as well as webpages that the adversary has not seen (un-
monitored) [47]. The adversary aims to infer whether a given trace
(statistics extracted from a flow) corresponds to any webpage in
the monitored webpages. The open-world setting can be treated
as a binary (whether a webpage is in the monitored set of pages)
or a multi-class (whether a webpage matches a monitored page)
classification problem.
Webpages to fingerprint. To find webpages on GitHub Pages,
we search the Common Crawl database [59] (Jan 2022 release) to
extract URLs whose domain names end with “*.github.io”. From
about 0.8M URLs, we sampled 100 URLs as monitored webpages
and 10,000 URLs as unmonitored. We confirmed all webpages are
active at the time of our experiment by using curl to check their
HTTP status codes; if a webpage’s status code was not 200, we
replaced it with another webpage sampled from the unused URLs.
We visited each unmonitored webpage once and each monitored
webpage 20 times, resulting in 12,000 traces total.
A QUIC∗ proxy and trace collection. To accurately evaluate the
privacy benefits of RAVEN, we need to deploy RAVEN and then
collect traffic traces as we visit QUIC∗-based webpages. However,
GitHub does not support QUIC. Instead, we visit a webpage through
a reverse proxy that supports QUIC∗; the proxy accepts the requests
received via QUIC∗ from the client and fetches resources via TCP,
and sends responses back via QUIC∗. We compiled QUIC∗ into
the Chromium browser, and set up a QUIC∗ proxy on an EC2 in-
stance [22, 23]. We launch Chromium via a script to visit webpages
through our proxy, and stay for 30 seconds during a visit to ensure
the webpage is fully loaded. We used tcpdump to capture the QUIC
traffic during a visit on the proxy. The browser cache was cleaned
between each visit.
Note on connection ID rotation.We want to use Chromium to
collect realistic traffic (as opposed to our customized client soft-
ware). However, QUIC migration support in Chromium is still ex-
perimental at this time, and we can only do timing-based migration

201

Proceedings on Privacy Enhancing Technologies 2023(3) Wang et al.

5 4 3 2 1Raven protected

Missing 4 3 1

Wrongly included
(Best) 5 7 3 16

* Rectangle: Sub connection. Number: Client IP address

Time
Wrongly included

(Real) 7 168

(a)

(b) 1 -1 -1 -1 1 -1 -1 -1

* Circle: packet. 1/-1: Packet direction — sent/return

1 1

Wrong splitting Correct splitting

-1 -1

Figure 5: (a) Two reconstruction error types. (b) The correct
way to split a 5-packet trace when rotating every 3 packets.

in our test due to an issue in Chromium. 3 In our evaluation, we
perform IP migration per 500ms to ensure good throughput (see
§ 7 for more details on performance). The average subflow length
is about 100 packets.

6.2 Attack simulation
Connection reconstruction attacks.RAVEN does not perform ex-
tra obfuscation on the QUIC traffic, so the adversary can distinguish
handshake packets from data packets. By monitoring handshake
packets, the adversary can identify the first few packets of a con-
nection and the initial IP address. This does leak a small amount of
information about the connection (also the number of active con-
nections in the network) and could facilitate WF attacks [37, 68].
The adversary then may try to associate observed sub-connections
of non-initial IPs to a target initial IP, i.e., performing reconstruction
attacks, to recover the original connection before further perform-
ing traffic analysis.

Given a target connection or initial IP, we define a true posi-
tive (TP) as the case that a sub-connection is correctly associated
with the target connection (i.e., relevant), otherwise a false neg-
ative (FN). Similarly, a true negative (TN) is that a non-relevant
sub-connection is correctly identified as non-relevant (otherwise a
false positive or FP).

We also refer to the false-negative rate of the attack as recon-
struction error, denoted by 𝑒 . We assume a strong adversary that is
able to perform reconstruction attacks only making the following
two errors4, and defer the possible reconstruction methods to § 6.5.
• Missing (M-type): The attack fails to include a few relevant sub-
connections in the reconstructed connection, i.e., the attack has
only FNs and no FPs.

• Wrongly-included (W-type): The attack wrongly replaces some
relevant sub-connections with non-relevant sub-connections in
the reconstructed connection. This corresponds to an attack that
produces the same number of FPs and FNs, and FPs happen to
perfectly fill the vacancy of FNs in the reconstructed connection.

We stress that by assuming near-perfect reconstruction attacks,
our evaluation of RAVEN’s defense is conservative. In real-world
3This issue may involve other components or mechanisms in Chromium and we have
been actively working with developers from the QUICHE team to resolve this issue.
4Another case is the attack produces no FNs and only FPs. We discuss this case in
Appendix §A.3 and leave evaluating it as future work.

attacks, a W-type error can cause an avalanche effect. As in Fig-
ure 5 (a), if the ending time of sub-connection 6 (non-relevant) is
after the beginning of sub-connection 3, the adversary will miss
sub-connection 3. This is because sub-connections of the same con-
nection must appear sequentially and cannot overlap each other in
timing.
Reconstruction error simulation. We now discuss how to gen-
erate the traces produced by reconstruction attacks. Given a se-
quence of sub-connections and an error rate 𝑒 , we mark each sub-
connection (except for the first one) as M-type or W-type error
with a probability of 𝑒 . If it is a M-type error, we simply remove the
sub-connection. For W-type, we replace the sub-connection with a
simulated sub-connection, in which the packet size, packet interval,
and direction are drawn from the distributions of the real-world
traces. The detailed sub-connection simulation method is in Appen-
dix §A.2. Finally, we concatenate the processed sub-connections as
the reconstructed connection.
Attack strategy. A non-adaptive adversary may use (S1) the first
sub-connections or (S2) the undefended connections to generate
the traces for training. (The adversary can use CIDs to locate her
own connections in RAVEN-protected traffic.) An adaptive adver-
sary may take reconstruction errors into consideration, perform
reconstruction attacks on her own traffic as if she does not have
the ground truth, and use (S3) the connections reconstructed under
an error rate 𝑒 for training. The intuition behind S3 is by using re-
constructed connections for training, the adversary may minimize
the difference between the training and testing traces. Note that
for testing, the adversary can only access the first sub-connections
or reconstructed connections.

6.3 Efficiency of RAVENagainst WF attacks
We first evaluate the efficiency of RAVEN against WF attacks using
the real-world traffic produced by RAVEN§ 6.3.1. Then, we simulate
RAVEN defense to study how different migration policies affect
RAVEN efficiency.

6.3.1 Evaluation with real-world RAVEN traffic.
ML-basedWF attacks. To better evaluate the efficiency of RAVEN
againstWF attacks, we consider five attacks that use state-of-the-art
machine learning techniques in the evaluation. Deep fingerprinting
(DF) attacks [57], timing attacks [50], and Tiktok attacks [50] all use
deep learning models. They use packet direction, packet timing, and
a combination of direction and packet timing, as features respec-
tively. K-fingerprinting (k-FP) [28] and CUMUL [47] use random
forests and SVM with manually-crafted features, respectively.
Evaluation metrics.We primarily use precision-recall (PR) curves
and the area under them (AUC-PR) to evaluate the attacks. For k-FP,
we use the same method in [57] to define the prediction probability
of an example, which is the fraction of the nearest neighbors be-
longing to the example among the k nearest neighbors. All tests are
conducted in the open-world binary-classification setting. Deep-
learning-based attacks use 100 epochs and 5,000 as the trace size.
Hyperparameter tuning (Appendix Figure 10) shows this configu-
ration balances attack efficiency and training performance.

202

RAVEN: Stateless Rapid IP Address Variation for Enterprise Networks Proceedings on Privacy Enhancing Technologies 2023(3)

DF Tiktok Timing k-FP

Undef 0.93 (0.01) 0.94 (0.01) 0.96 (0.01) 0.95 (0.01)
S1 0.67 (0.02) 0.75 (0.02) 0.77 (0.04) 0.78 (0.01)
S2 / M 0.55 (0.02) 0.54 (0.03) 0.56 (0.02) 0.46 (0.02)
S2 / W 0.61 (0.02) 0.60 (0.04) 0.63 (0.04) 0.64 (0.02)
S3 / M 0.78 (0.02) 0.81 (0.01) 0.84 (0.01) 0.82 (0.01)
S3 / W 0.70 (0.02) 0.78 (0.01) 0.84 (0.02) 0.77 (0.02)

Table 4: Average AUC-PR and standard deviation of WF at-
tacks under different attack strategies. The reconstruction
error is 0.1. We assume the adversary only makes 1 type of
error.

We start with fixing the reconstruction error rate to 0.1, and vary
error types and attacks. We run the test 10 times and examine the
average AUC-PR in each setting.
Baseline performance. We replace the client IPs in a connection
with the same IP to simulate the undefended trace. For undefended
traces, The AUC-PR of all DL-based attacks and k-FP range from
0.93 to 0.96, as shown in Table 4. CUMUL has the worst performance
(in fact, under all parameter combinations). Even for undefended
traces, the best AUC-PR is only 0.36. A possible reason is CUMUL
relies on packet size features. QUIC has built-in support for packet
padding to mitigate traffic analysis. We observe that packet size
may leak less information about a connection than other features
when using QUICHE, as in our traces the size of 72% of the QUIC
packets is 1,238 bytes. If all QUIC packets are well padded to a
constant size by the application, the performance of CUMUL could
become even worse. In the upcoming sections, we only discuss the
results from DL-based attacks and k-FP.
Subflow unlinkability lowers the efficiency of WF attacks.
As shown in Table 4, RAVEN successfully reduces the AUC-PRs
of all attacks under various attack strategies, especially for non-
adaptive attacks. In the best-case scenario, if the adversary adopts
the Timing attacks [50], uses reconstructed connections for training
(S3), and only makes M-type errors with an error rate of 0.1, the
adversary can achieve a relatively high AUC-PR which is 0.84.
However, looking at its PR curve, the precision will be less than
0.6 in order to achieve a recall that is greater than 0.9 (Figure 6 (a)).
We show the PR curves of the best-case performance of all attacks
under different settings in Figure 11 in the Appendix.

Timing features play a crucial role in the classification. Timing
and k-FP are able to achieve better AUC-PRs than other attacks
in tests. Examining the feature importance of the random forests
model used in the best-performing k-FP attack, we find that timing-
related features contribute the most to the classification. As in
Figure 6 (b), the top 10 important features are all timing-related. In
fact, 16 of the top 20 features are statistics about packet inter-arrival
times or timestamps. The importance of the two types of features
alone (24 features out of 175 features) is 45%.

Using reconstructed connections for training (S3) overall can
make the attacks more efficient. One possible explanation is this
strategy may reduce the difference between the amount of informa-
tion provided in the training and test traces. Compared to S3, using
the original connections for training (S2) ignores the information

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Timing-Undef
Timing-RAVEN

(a) PR curve under strat = S3, e = 0.1/Missing

 0

 1

 2

 3

 4

 5

In
t.O

u
t.7

5
th

T
.In

.7
5

th

T
.O

u
t.7

5
th

In
t.T

o
ta

l.7
5

th

T
.In

.1
0

0
th

T
.O

u
t.1

0
0

th

In
t.In

.7
5

th

T
.In

.2
5

th

T
.O

u
t.2

5
th

In
t.O

u
t.S

td

Im
p

o
rt

a
n

c
e

 (
%

)

(b) Feature importance

Figure 6: (a) PR curves of the best-performing attack with-
/without RAVEN. The PR curves of all attacks under different
settings are in Figure 11 in the Appendix. (b) Top 10 features
and their importance of the random forests models in k-FP.

Bin-class Multi-class
AUC-PR r-Precison Recall

Undef 0.96 (0.01) 0.88 (0.06) 0.87 (0.05)
Const-1 0.86 (0.01) 0.78 (0.09) 0.74 (0.10)
Const-20 0.85 (0.07) 0.77 (0.08) 0.74 (0.11)
Random 0.78 (0.02) 0.71 (0.09) 0.44 (0.14)
w/ Front 0.58 (0.06) 0.42 (0.12) 0.36 (0.04)
w/ WTF-PAD 0.64 (0.13) 0.57 (0.02) 0.43 (0.06)

Table 5: Efficiency of the best-performing attacks against
RAVEN under different migration policies. 𝑒 = 0.1.

loss caused by traffic splitting, and thus fails to accurately model
RAVEN-protected traffic.
Multi-class open-world. We further consider the open-world set-
ting as a multi-class classification problem, i.e., the classifier needs
to determine not only whether a given instance is in the monitored
set but also the exact site. We used 𝑟 -precision and recall proposed
in [66], with 𝑟 = 5 based on our dataset, as the metrics. Our observa-
tion remains unchanged: Timing attacks under S3/M outperform all
the other attacks, with an r-precision of 0.76 (STD=0.07), dropped
from 0.88 (STD=0.06) against undefended traces. The recall drops
more dramatically, from 0.87 (STD=0.05) to 0.56 (STD=0.05), sug-
gesting the attacks will produce a considerable amount of FNs.
Impact of error rate on RAVEN efficiency. We pick the best-
performing attack (Timing attacks using S3 with M-type error) and
examine how error rate affects attack efficiency (0.1 to 0.9 with a
step of 0.1). The AUC-PRs drop from about 0.84 to 0.77 as the error
rate increases, which is expected because S1 is the worst-case of
S3/M.

6.3.2 Evaluation with simulated RAVEN defense.
RAVEN defense simulation. Recall that due to the aforemen-
tioned Chromium issues, our testbed can only adopt limited migra-
tion policies. To study the efficiency of RAVEN against WF attacks
under diverse, finer-grained migration policies, we need to simulate
the RAVEN defense. To improve simulation accuracy, we determine
the splitting boundary in the following way: if the migration fre-
quency is every 𝑘 packets, a sub-connection contains 𝑘 packets plus
all the return packets before the first outgoing packet after the 𝑘
packets. The reason is the return packets from the server are always
sent to the last-seen client IP, and the client IP only changes in the

203

Proceedings on Privacy Enhancing Technologies 2023(3) Wang et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
R

RE

Undef
RAVEN-Random

WTFPAD-Only
WTFPAD-RAVEN

(1) WTF-PAD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
R

RE

Undef
RAVEN-Random

Front-Only
Front-RAVEN

(2) Front

Figure 7: The PR curves of timing attacks against undefended
traces, traces protected withWTF-PAD/Front only, and traces
protected with both RAVEN and WTF-PAD/Front. We show
the PR curves under the best-case defenses. 𝑒 = 0.1.

next outgoing packet even if the rotation threshold has been hit.
We give an example in Figure 5(b).
Constant-frequency and randommigration. Since the splitting
boundary is always at outgoing/sent packets, the finest way to
control migration is based on the number of outgoing packets,
rather than the total number of packets or timing.5 In our discussion,
our migration policy is based on a counter of outgoing packets. We
use 𝑘 to denote migration frequency.

Random migration is very effective. When the client migrates
with𝑘 randomly selected from 1 to 20, theAUC-PR is 0.78 (STD=0.02).
In the multi-class setting, the r-precision becomes 0.71 (STD=0.09)
and the recall is 0.44 (STD=0.14).

For constant-frequency migration, when 𝑒 = 0.1, the AUC-PRs
are similar under different 𝑘 (𝑘 = 1 to 20). It seems to be counter-
intuitive that higher frequency migration does not offer better
privacy. We noticed that the result could be an artifact of our recon-
struction attack simulation. See Appendix §A.4 for more details.
As we demonstrate soon in § 6.5, high-frequency migration can
increase the error rate of reconstruction attacks. When 𝑒 increases
from 0.1 to 0.5, the AUC-PR when 𝑘 = 1 falls to 0.65.
Combination ofRAVENand application-layer defenses.RAVEN
is complementary to application-layer WF defenses, as RAVEN is
an IP and transport layer defense. We can combine RAVEN with
other WF defenses to achieve better privacy (assuming that Tor or
VPNs have replaced TCP with QUIC as the transport). We consider
two efficient defenses: Front [18] andWTF-PAD [38]. Both defenses
are lightweight, application-layer defenses and mitigate WF attacks
by adding paddings. We do not consider WF defenses that enforce
a constant packet rate or add delays between packets that has high
performance overheads (e.g., Tamaraw[8]). We used the default
parameters in WTF-PAD, as in the code provided by [18]. For Front,
we changed𝑊𝑚𝑖𝑛 to 0.5 so more noise will be added to the first
sub-connection. The bandwidth overheads of both defenses are
about 250%.

Without RAVEN, the average AUC-PRs of the best-performing at-
tacks (S3/W, 𝑒=0.1) against WTF-PAD and Front are 0.77 (STD=0.05)
and 0.70 (STD=0.04), respectively. The performance of RAVEN us-
ing random migration is comparable to WTF-PAD. Even combined
with weak RAVEN defense (constant migration per 20 packets), the
5For example, in Figure 5(b), migrating per 1 to 5 packets produces the same splitting
as migration per 1 outgoing packet. Similarly, one can migrate at any time before the
2𝑛𝑑 outgoing packet but the first sub-connection always consists of packets 1 to 5.

average AUC-PRs drop to 0.64 (STD=0.13) and 0.58 (STD=0.06). The
results suggest RAVEN-protected clients could adopt application-
layer defenses to further mitigate WF attacks. The PR curves of the
attacks under the best-case defenses are shown in Figure 7.

6.4 Insights on anonymity sets
To understand the anonymity set size in the real world, we captured
300 seconds of anonymized UDP IPv4 traffic sent to port 443 at
the beginning of every hour, on a large campus network (no IPv6
support) between Oct 31, 2022 and Nov 13, 2022. We extracted
33.5M QUIC connections using Wireshark 3.6.5. In this section,
we examine whether real-world QUIC traffic can form reasonable
anonymity sets for RAVEN to achieve the desired privacy goals.
Anonymity set for P1 and P2. The anonymity sets for P1 and
P2 are the active clients in the network. If the network only has
one active client, it is trivial to link IPs or connections to the client.
We examined the number of active clients in any given 1-second
time window, which ranges from 4 to 1,519, and calculated the
average number across 300 seconds in each hour. The result (shown
in Figure 8 (upper)) exhibits strong hourly and daily patterns: there
are more active clients around noon of a day and on weekdays.
Anonymity set for P3. For P3, the anonymity set size is the num-
ber of active QUIC connections to the same server IP. If a set of
connections of the same server IP have packets sent or received
during the same 1-second time period, we consider them as con-
current. (Server port is always 443.) In each hour, we counted the
average number of concurrent connections per second per server
IP in the 300-second time period. As shown in Figure 8 (middle),
in any given 1-second time period, a server on average has 1.3 to
3.3 concurrent connections. We observe the same hourly and daily
patterns as for the anonymity sets for P1 and P2. Depending on
the services and time, the anonymity set changes significantly. For
example, Akamai has 5 to 50 connections per server per second
while CloudFront has at most 4. A server of google.com can have
up to 1,066 concurrent connections. Looking at those most-seen
server/destination IPs belonging to CDN and DNS services, at least
20% of the time those IPs have more than two (up to 120) concur-
rent connections per second, except for AWS CloudFront (Appendix
Figure 12).
Takeaways.We estimate that the QUIC traffic currently only ac-
counts for about 20% of all campus traffic, including both TCP and
UDP traffic. Even so, the current QUIC traffic provides sufficient
large anonymity sets for the privacy proprieties RAVEN aims to
achieve (we will soon demonstrate that the anonymity set size is
sufficient for P3 in § 6.5). We believe as the Internet gradually tran-
sitions from TCP to QUIC, more clients and popular websites will
adopt QUIC, which can provide larger anonymity sets. Our results
are based on a single network, but can still shed light on the benefits
of RAVEN in similar scale deployments.

6.5 Understanding reconstruction efficiency
As shown in Table 4, without doing reconstruction, a non-adaptive
adversary cannot perform efficient WF attacks. In this section, we
discuss two possible ways to perform reconstruction.

204

RAVEN: Stateless Rapid IP Address Variation for Enterprise Networks Proceedings on Privacy Enhancing Technologies 2023(3)

 0
 200
 400
 600
 800

 1000
 1200
 1400

10/31 11/02 11/04 11/06 11/08 11/10 11/12 11/14

#
 C

lie
n

t

 1

 1.5

 2

 2.5

 3

 3.5

10/31 11/02 11/04 11/06 11/08 11/10 11/12 11/14

#
 C

o
n

c
u

rr
e

n
t

C
o

n
n

 0
 10
 20
 30
 40
 50
 60
 70
 80

10/31 11/02 11/04 11/06 11/08 11/10 11/12 11/14

E
rr

o
r

ra
te

 (
%

) freq=5
freq=10

Figure 8: Anonymity set sizes and error rates over 2-week
time period (starting from a Monday, measured hourly). The
plot shows one x axis tick every 12 hours.

Timing-based reconstruction. In RAVEN-protected traffic, sub-
connections of the same connection must appear sequentially so over-
lapping sub-connections can never belong to the same connection. This
simple fact can be used by the adversary to eliminate non-relevant
sub-connections. Then, the adversary may simply classify a given
sub-connection and the first sub-connection seen after it as the
same connection, and iterate this process until the reconstructed
connection contains a certain number of packets. We simulated this
greedy attack using the connections associated with the servers of
the most connections in each hour. During the simulation, we give
the adversary an advantage over RAVEN by assuming the adversary
knows the exact lengths of target connections in advance.

When 𝑘 = 5, the attacks misidentified at least 24.3%–70.9% of the
sub-connections, with an average of 38.3%. Reducing the migration
frequency decreases the error rate: the error rate ranges from 5.4%
to 47.6%, with an average of 10.1% when 𝑘 = 10. The error rate
estimation is very conservative, as in practice the adversary may
not be able to have accurate prior knowledge on connection length.
Imagine a target connection is only 100-packet long while some
traffic-analysis attacks require 500 packets for good accuracy, the
adversary may incorrectly associate 400 non-relevant packets to
the target connection.

An interesting observation is larger anonymity set does not neces-
sarily result in higher reconstruction error. Generally, the reconstruc-
tion attacks are likely to be less accurate when more non-relevant
sub-connections could be mixed with the relevant sub-connections.
Even with fewer concurrent connections, the extent of mixing can
be high, depending on the timing of packets. Based on this obser-
vation, a single active client may create “decoy” connections to
confuse the adversary to protect a privacy-sensitive connection.
By migrating the decoy connections at strategic points (e.g., be-
tween two sub-connections of the sensitive connection), the decoy
connections are mixed with the sensitive connection to make recon-
struction attacks harder. This can be viewed as a variant of Front or
WTF-PAD. Overall, we argue that (1) greedy reconstruction may
not be reliable, and (2) higher-frequency migration may make re-
construction attacks less accurate, and consequently can worsen
WF attack performance.
Metadata-based reconstruction. We examined known metadata
that could link packets to connections, namely QUIC CIDs in the

return packets, QUIC packet number, and IP IDs. CIDs in the return
packets and QUIC packet numbers are randomized/encrypted by
default in QUIC, and QUIC IPv6 traffic does not contain IP IDs.
These metadata cannot be used for reconstruction. See detailed
discussions in §A.1.

7 PERFORMANCE EVALUATION
Recall that theQUIC∗ configurablemigration parameters are ⟨𝑛, 𝑘, 𝑝⟩:
the client uses one connection ID from 𝑛 negotiated IDs every 𝑘

packets. After 𝑝 ID rotations, the client requests a new set of 𝑛
IDs from the server. We use the wide-area testbed to understand
the performance impact of QUIC∗ parameters and encryption key
rotation frequency on client throughput, by using a QUIC∗ client to
fetch a 200MB file hosted on the remote QUIC∗ server. Results are
shown in Figure 9. By default 𝑛 is set to 10 in the tests. For a given
setting, we repeat the measurement 20 times and report the median
throughput. We define 𝑡 = 1/𝑡 as the key rotation frequency, or the
number of key rotations per second. The connection ID rotation
frequency is 𝑘 = 100/𝑘 , or the number of ID rotations per 100
packets. The ID set update frequency is defined as 𝑝 = 10/𝑝 — the
number of updates per 10 ID rotations.
Unmodified QUIC and QUIC∗ under high-frequency key ro-
tation. We first examine how key rotation frequency affects client
throughput. For a given 𝑡 , the lifetime of an encryption key is
(𝑁𝑘 + 1) ∗ 𝑡 (𝑁𝑘 is the number of historical keys maintained by
the switch), and return packets encrypted under this key cannot
be decrypted and will be dropped by the switch after (𝑁𝑘 + 1) ∗ 𝑡 .
In our test, 𝑁𝑘 = 2. We can see from Figure 9 (a) (only showing the
results under 𝑡 up to 10 to demonstrate the trend), the throughput of
unmodified QUIC decreases dramatically as IP migration happens
more frequently, and the probability of connection timeout due to
too many retransmission timeouts also increases.

For QUIC∗, we fix the connection ID to eliminate the potential
overhead introduced by ID rotation. As in Figure 9 (a), when 𝑡 ≤ 20
(or key rotation per 50ms), the median throughput is similar to
that of the control case, which is using unmodified QUIC without
RAVEN (𝑡 = 0). But, as 𝑡 becomes higher, we do see more “outlier”
cases with degraded throughput. This is because extremely high
𝑡 could make most of the return packets get dropped due to key
expiration and trigger retransmission. Overall, by distinguishing
IP migration caused by RAVEN from normal migration, QUIC∗

reduces performance overhead significantly.
The results also shed light on the client throughput with timing-

based migration. Recall that in our deployment 𝑡 = 2 or IP migration
every 500ms. The throughput degradation of QUIC∗ is only 0.5%,
while that of the unmodified QUIC is 12%. If the client is modified
and the server remains unmodified, the performance overhead is
also about 12%.
Fine-grained high-frequency connection ID rotation.We fix
key rotation frequency 𝑡 = 0 and ID set update frequency 𝑝 = 0 and
vary 𝑘 to examine the overhead introduced by active ID rotation. In
Figure 9 (b), when 𝑘 increases from 0.5 to 100, the throughput drops
by 20%, from 260Mbps to 206Mbps. This unexpected degradation
is likely caused by the client: The client needs to select a new ID
and update the in-use connection ID every 𝑘 packets. This routine

205

Proceedings on Privacy Enhancing Technologies 2023(3) Wang et al.

 0
 50

 100
 150
 200
 250
 300

0 0.2
1 2 5 10 20 40 60 80 100

T
h
o
u
g
h
p
u
t
(M

b
p
s
)

Key rotation frequency (per 1s)
(a)

quic*
quic

 0
 50

 100
 150
 200
 250
 300

0 0.5
1 2 5 10 100

Conn rotation frequency (per 100 pkts)
(b)

 0
 50

 100
 150
 200
 250
 300

0 0.2
0.25

0.3
0.5

1 1.25
1.6

2.5
5 10

Conn ID update frequency (per 10 rotation)
(c)

k=1
k=2

Figure 9: Median client throughput under different controlled settings. Error bars indicate min and max. (a) No connection ID
rotation, and vary key rotation frequency (or IP migration frequency) 𝑡 . (b) No key rotation and connection ID set update, vary
connection ID rotation frequency 𝑘 . (c) No key rotation, vary connection ID set update frequency p under 𝑘 = 1 and 𝑘 = 2. In (a)
the throughput of unmodified QUIC drops to almost zero when key rotation frequency ≥ 20 so we omit those data points.

happens more frequently as 𝑘 increases. The corresponding code
can be optimized to make this routine more efficient.
Connection ID set update frequency. Each connection ID set
update requires 1 RTT to complete, so the connection ID update
frequency affects the number of extra RTTs, which is the domi-
nant source of performance degradation. As in Figure 9(c), higher
ID rotation frequency incurs more ID updates, leading to lower
throughput. When using each connection ID only once (𝑝 = 1), the
throughput degradation is about 28% for 𝑘 = 1. Overall, the number
of additional RTTs is determined by 𝑘 and 𝑝 . For every 100 packets,
the additional RTTs is 𝑘 ∗ 𝑝/10. To reduce the connection ID set up-
date frequency, QUIC∗ can prepare a large number of CIDs during
connection ID negotiation. For the 8-byte CIDs used in QUICHE, a
QUIC frame can hold about 160 CIDs.

8 RELATEDWORK
In this section, we discuss related work not covered in § 2.
Network-based solutions: Hiding IP addresses and traffic
patterns. Network-layer anonymity systems, such as LAP [32],
Dovetail [54], HORNET [9], PHI [11], and TARANET [10], can
provide stronger sender/receiver anonymity and flow unlinkabil-
ity, but they do not provide subflow unlinkability. SPINE [14] uses
programmable switches to encrypt IP addresses and Ditto [41] lever-
ages programmable switches to obfuscate traffic. They both require
cooperation from the receiving-end networks to decrypt/decode
obfuscated packets.

While RAVEN focuses on protecting client IP addresses against
privacy attacks, a type of moving target defense randomizes server
IP addresses for security purposes (e.g., mitigating DDoS attacks),
such as Mirage and NASR [2, 4, 36, 43]. Such systems are not de-
signed to provide subflow unlinkability or even flow unlinkability.
Client-based solutions: Traffic splitting. The split-based solu-
tions, such as splitting a flow to use multiple routing paths [29, 39,
65], are typically used in combination with tunnel-based solutions
(e.g., Tor [16]) for mitigating traffic-analysis attacks; alone, they
do not provide anonymity. The split-based solutions do achieve
subflow unlinkability to some extent. However, a recent study from
Beckerle et al. [6] performs a critical evaluation of splitting-based
defenses, and demonstrates that the defenses are less effective once
the adversary is able to observe the vast majority of traffic. Beckerle

et al. [6] develop novel Maturesc attacks against existing splitting-
based defenses that can achieve good accuracy. We leave evaluating
Maturesc against RAVEN as future work.
MIMIQ and PINOT. MIMIQ [25] is the first system to use QUIC’s
connection migration feature to change IPv4 addresses to improve
privacy. RAVEN goes much further in extending QUIC to achieve
packet unlinkability, by changingQUIC’s connection ID. PINOT [64]
proposes in-network address obfuscation only for connectionless
traffic (e.g., DNS), while RAVEN supports connection-oriented traf-
fic. In addition, our paper proposes a novel division of labor between
clients and switches, and builds and deploys a prototype system.
We also present a full-scale security and performance evaluation
with real hardware and traffic.

9 CONCLUSION
RAVEN is a privacy solution for enterprise networks, allowing
them to provide privacy-as-a-service to their clients. RAVEN hides
client identifiers and breaks the association between packets that
belong to the same connection by rapidly rotating the IP address,
port number, and connection ID a client uses publicly on the Inter-
net. RAVEN lets the client decide when to change its connection
metadata, while the network actually performs the rotation. Our
deployment and evaluation show RAVEN can enhance the privacy
of the enterprise network and its clients with low overhead.

ACKNOWLEDGMENTS
We are grateful to Noah Apthorpe, Hooman Mohajeri Moghaddam,
and Paul Schmitt for insights that helped us refine this work. We are
also grateful to anonymous reviewers for their invaluable feedback.
This work was supported by the National Science Foundation under
grants CNS-1553437 and CNS-1704105, and by DARPA under grant
FA8750-19-C-0079.

REFERENCES
[1] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme. 2011. IPv6 Flow Label Specifi-

cation. RFC 6437. RFC Editor.
[2] Spyros Antonatos, Periklis Akritidis, Evangelos P Markatos, and Kostas G Anag-

nostakis. 2007. Defending against hitlist worms using network address space
randomization. Computer Networks 51, 12 (2007), 3471–3490.

[3] Apple. 2021. Apple iCloud Private Relay Overview. https://www.apple.com/
privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF.

[4] Nahid Bandi, Hesam Tajbakhsh, and Morteza Analoui. 2021. FastMove: Fast IP
switching moving target defense to mitigate DDOS attacks. In IEEE Conference

206

https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF
https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF

RAVEN: Stateless Rapid IP Address Variation for Enterprise Networks Proceedings on Privacy Enhancing Technologies 2023(3)

on Dependable and Secure Computing (DSC). IEEE, 1–7.
[5] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,

and Louis Wingers. 2013. The SIMON and SPECK Families of Lightweight Block
Ciphers. Cryptology ePrint Archive, Paper 2013/404. https://eprint.iacr.org/
2013/404 https://eprint.iacr.org/2013/404.

[6] Matthias Beckerle, Jonathan Magnusson, and Tobias Pulls. 2022. Splitting Hairs
and Network Traces: Improved Attacks Against Traffic Splitting as a Website
Fingerprinting Defense. In Proceedings of the 21st Workshop on Privacy in the
Electronic Society. 15–27.

[7] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, François-Xavier Standaert,
John Steinberger, and Elmar Tischhauser. 2012. Key-alternating ciphers in a
provable setting: Encryption using a small number of public permutations. In In-
ternational Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 45–62.

[8] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A systematic approach to developing and evaluating website fingerprinting
defenses. In ACM SIGSAC Conference on Computer and Communications Security.
227–238.

[9] Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and Adrain Perrig.
2015. HORNET: High-speed onion routing at the network layer. In ACM SIGSAC
Conference on Computer and Communications Security. 1441–1454.

[10] Chen Chen, Daniele E Asoni, Adrian Perrig, David Barrera, George Danezis, and
Carmela Troncoso. 2018. TARANET: Traffic-analysis resistant anonymity at
the network layer. In IEEE European Symposium on Security and Privacy. IEEE,
137–152.

[11] Chen Chen and Adrian Perrig. 2017. PHI: Path-Hidden Lightweight Anonymity
Protocol at Network Layer. In Privacy Enhancing Technologies. 100–117.

[12] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. 2000. Traffic Data Repository
at the WIDE Project. In USENIX Annual Technical Conference.

[13] Alissa Cooper, Fernando Gont, and Dave Thaler. 2016. Security and privacy
considerations for IPv6 address generation mechanisms. IETF, RFC 7721 (2016).

[14] Trisha Datta, Nick Feamster, Jennifer Rexford, and Liang Wang. 2019. SPINE:
Surveillance Protection in the Network Elements. In USENIX Workshop on Free
and Open Communications on the Internet.

[15] S. Deering and R. Hinden. 2017. Internet Protocol, Version 6 (IPv6) Specification.
STD 86. RFC Editor.

[16] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-
generation onion router. Technical Report. Naval Research Lab Washington DC.

[17] DNSCrypt. 2020. DNSCrypt. https://dnscrypt.info/.
[18] Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against

Website Fingerprinting. In USENIX Security Symposium. 717–734.
[19] F. Gont. 2014. A Method for Generating Semantically Opaque Interface Identifiers

with IPv6 Stateless Address Autoconfiguration (SLAAC). RFC 7217. RFC Editor.
[20] F. Gont and T. Chown. 2016. Network Reconnaissance in IPv6 Networks. RFC 7707.

RFC Editor.
[21] F. Gont, S. Krishnan, T. Narten, and R. Draves. 2021. Temporary Address Extensions

for Stateless Address Autoconfiguration in IPv6. RFC 8981. RFC Editor.
[22] Google. 2022. The Chromium Projects. https://www.chromium.org/chromium-

projects/.
[23] Google. 2022. Playing with QUIC. https://www.chromium.org/quic/playing-

with-quic/.
[24] Google. 2022. QUICHE. https://quiche.googlesource.com/quiche/.
[25] Yashodhar Govil, Liang Wang, and Jennifer Rexford. 2020. MIMIQ: Masking IP

with Migration in QUIC. In USENIX Workshop on Free and Open Communications
on the Internet (FOCI 20).

[26] Benjamin Greschbach, Tobias Pulls, Laura M Roberts, Philipp Winter, and Nick
Feamster. 2017. The Effect of DNS on Tor’s Anonymity. InNetwork and Distributed
System Security Symposium. Internet society.

[27] Stephen Groat, Matthew Dunlop, Randy Marchany, and Joseph Tront. 2010. The
privacy implications of stateless IPv6 addressing. In Annual Workshop on Cyber
Security and Information Intelligence Research. 1–4.

[28] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In USENIX Security Symposium. USENIX As-
sociation, Austin, TX, 1187–1203.

[29] Sébastien Henri, Gines Garcia-Aviles, Pablo Serrano, Albert Banchs, and Patrick
Thiran. 2020. Protecting against Website Fingerprinting with Multihoming. In
Privacy Enhancing Technologies, Vol. 2020. 89–110. https://doi.org/10.2478/popets-
2020-0019

[30] Dominik Herrmann, Christian Banse, and Hannes Federrath. 2013. Behavior-
based tracking: Exploiting characteristic patterns in DNS traffic. Computers &
Security 39 (2013), 17–33.

[31] Andrew Hintz. 2002. Fingerprinting websites using traffic analysis. In Interna-
tional Workshop on Privacy Enhancing Technologies. Springer, 171–178.

[32] Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Adrian Perrig, Akira Yamada, Samuel C
Nelson, Marco Gruteser, and Wei Meng. 2012. LAP: Lightweight anonymity and
privacy. In IEEE Symposium on Security and Privacy. IEEE, 506–520.

[33] C. Huitema, S. Dickinson, and A. Mankin. 2022. DNS over Dedicated QUIC
Connections. RFC 9250. RFC Editor.

[34] Intel Tofino 2021. Intel Tofino Chip. https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-switch/tofino-series/tofino.html.

[35] J. Iyengar and M. Thomson. 2021. QUIC: A UDP-Based Multiplexed and Secure
Transport. https://www.rfc-editor.org/rfc/rfc9000.html. RFC 9000.

[36] Quan Jia, Kun Sun, and Angelos Stavrou. 2013. Motag: Moving target defense
against internet denial of service attacks. In International Conference on Computer
Communication and Networks (ICCCN). IEEE, 1–9.

[37] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A critical evaluation of website fingerprinting attacks. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 263–274.

[38] Marc Juárez, Mohsen Imani, Mike Perry, Claudia Díaz, and MatthewWright. 2016.
Toward an Efficient Website Fingerprinting Defense. In European Symposium
on Research in Computer Security (Lecture Notes in Computer Science, Vol. 9878).
Springer, 27–46. https://doi.org/10.1007/978-3-319-45744-4_2

[39] Wladimir De la Cadena, Asya Mitseva, Jens Hiller, Jan Pennekamp, Sebastian
Reuter, Julian Filter, Thomas Engel, Klaus Wehrle, and Andriy Panchenko. 2020.
TrafficSliver: Fighting Website Fingerprinting Attacks with Traffic Splitting. In
ACM SIGSAC Conference on Computer and Communications Security. ACM.

[40] Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring information leakage
in website fingerprinting attacks and defenses. In ACM SIGSAC Conference on
Computer and Communications Security. 1977–1992.

[41] Roland Meier, Vincent Lenders, and Laurent Vanbever. 2022. ditto: WAN Traffic
Obfuscation at Line Rate. In NDSS Symposium 2022. Internet Society.

[42] Vikas Mishra, Pierre Laperdrix, Antoine Vastel, Walter Rudametkin, Romain
Rouvoy, and Martin Lopatka. 2020. Don’t count me out: On the relevance of IP
address in the tracking ecosystem. In World Wide Web Conference. 808–815.

[43] Prateek Mittal, Dongho Kim, Yih-Chun Hu, and Matthew Caesar. 2011. Mi-
rage: Towards deployable DDoS defense for Web applications. arXiv preprint
arXiv:1110.1060 (2011).

[44] T. Narten, R. Draves, and S. Krishnan. 2007. Privacy Extensions for Stateless
Address Autoconfiguration in IPv6. RFC 4941. RFC Editor.

[45] Edgecore Networks. 2019. Edge-core Wedge 100BF-32X. https://www.edge-
core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335,2019.

[46] University of Oregon. 2020. Route Views Archive Project. http://archive.
routeviews.org/.

[47] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale.. In NDSS.

[48] Simran Patil and Nikita Borisov. 2019. What can you learn from an IP?. In Applied
Networking Research Workshop. 45–51.

[49] Barath Raghavan, Tadayoshi Kohno, Alex C. Snoeren, and David Wetherall. 2009.
Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default. In
Privacy Enhancing Technologies Symposium, Ian Goldberg and Mikhail J. Atallah
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 143–163.

[50] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2020. The Utility of Packet Timing in Website
Fingerprinting Attacks. Privacy Enhancing Technologies 2020, 3 (2020), 5–24.
https://doi.org/doi:10.2478/popets-2020-0043

[51] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2022. TLS
Encrypted Client Hello. https://datatracker.ietf.org/doc/draft-ietf-tls-esni/.

[52] RIPE NCC. 2017. Best Current Operational Practice for Operators: IPv6 prefix
assignment for end-users — persistent vs non-persistent, and what size to choose.
https://www.ripe.net/publications/docs/ripe-690.

[53] Erik Rye, Robert Beverly, and KC Claffy. 2021. Follow the scent: Defeating IPv6
prefix rotation privacy. In ACM Internet Measurement Conference. 739–752.

[54] Jody Sankey and Matthew Wright. 2014. Dovetail: Stronger anonymity in
next-generation internet routing. In Privacy Enhancing Technologies Symposium.
Springer, 283–303.

[55] James Saxon and Nick Feamster. 2022. GPS-based Geolocation of consumer IP
addresses. In International Conference on Passive and Active Network Measurement.
Springer, 122–151.

[56] Shodan. 2020. The search engine for the Internet of Things. https://www.shodan.
io/.

[57] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep Fin-
gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.
In ACM SIGSAC Conference on Computer and Communications Security (Toronto,
Canada). 1928–1943. https://doi.org/10.1145/3243734.3243768

[58] Alex C Snoeren and Hari Balakrishnan. 2000. An end-to-end approach to host
mobility. In International Conference on Mobile Computing and Networking. 155–
166.

[59] The Common Crawl team. 2022. The Common Crawl Dataset. https://
commoncrawl.org/.

[60] tele2. 2020. Tele2 Speedtest. http://speedtest.tele2.net/.
[61] M. Thomson and S. Turner. 2021. Using TLS to Secure QUIC. RFC 9001. RFC

Editor.
[62] S. Thomson, T. Narten, and T. Jinmei. 2007. IPv6 Stateless Address Autocon-

figuration. RFC 4862. RFC Editor. http://www.rfc-editor.org/rfc/rfc4862.txt
http://www.rfc-editor.org/rfc/rfc4862.txt.

207

https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://dnscrypt.info/
https://www.chromium.org/chromium-projects/
https://www.chromium.org/chromium-projects/
https://www.chromium.org/quic/playing-with-quic/
https://www.chromium.org/quic/playing-with-quic/
https://quiche.googlesource.com/quiche/
https://doi.org/10.2478/popets-2020-0019
https://doi.org/10.2478/popets-2020-0019
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.rfc-editor.org/rfc/rfc9000.html
https://doi.org/10.1007/978-3-319-45744-4_2
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335,2019
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335,2019
http://archive.routeviews.org/
http://archive.routeviews.org/
https://doi.org/doi:10.2478/popets-2020-0043
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/
 https://www.ripe.net/publications/docs/ripe-690
https://www.shodan.io/
https://www.shodan.io/
https://doi.org/10.1145/3243734.3243768
 https://commoncrawl.org/
 https://commoncrawl.org/
http://speedtest.tele2.net/
http://www.rfc-editor.org/rfc/rfc4862.txt
http://www.rfc-editor.org/rfc/rfc4862.txt

Proceedings on Privacy Enhancing Technologies 2023(3) Wang et al.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 30 40 50 60 70 80 90 100

A
U

C
-P

R

Epoch No

500
2000
5000

10000

Figure 10: Average PR-AUCs of timing attacks under varied
epoch number and trace size. In our tests the epoch number
is 100 and trace size is 5,000.

[63] Liang Wang. 2023. RAVEN Github Repo. https://github.com/liangw89/RAVEN.
[64] Liang Wang, Hyojoon Kim, Prateek Mittal, and Jennifer Rexford. 2021. Pro-

grammable in-network obfuscation of DNS traffic. In NDSS: DNS Privacy Work-
shop.

[65] Mona Wang, Anunay Kulshrestha, Liang Wang, and Prateek Mittal. 2022. Lever-
aging strategic connection migration-powered traffic splitting for privacy. Pro-
ceedings on Privacy Enhancing Technologies 3 (2022), 498–515.

[66] Tao Wang. 2020. High precision open-world website fingerprinting. In IEEE
Symposium on Security and Privacy (SP). IEEE, 152–167.

[67] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. In USENIX
Security Symposium. San Diego, CA, 143–157.

[68] Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with Website
Fingerprinting. Proc. Priv. Enhancing Technol. 2016, 4 (2016), 21–36.

[69] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. 2005. Profiling internet
backbone traffic: Behavior models and applications. ACM SIGCOMM Computer
Communication Review 35, 4 (2005), 169–180.

[70] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. 2008. Internet traffic be-
havior profiling for network security monitoring. IEEE/ACM Transactions On
Networking 16, 6 (2008), 1241–1252.

[71] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin Abadi. 2012.
Host Fingerprinting and Tracking on the Web: Privacy and Security Implications..
In NDSS, Vol. 62. 66.

[72] Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. 2007. Analysis of privacy
disclosure in DNS query. In International Conference onMultimedia and Ubiquitous
Engineering. IEEE, 952–957.

[73] Sebastian Zimmeck, Jie S Li, Hyungtae Kim, Steven M Bellovin, and Tony Jebara.
2017. A privacy analysis of cross-device tracking. In USENIX Security Symposium.
1391–1408.

A APPENDIX
A.1 Possible identifiers in QUIC
IPv6 flow label and extension headers. To better understand the
use of flow labels and extension headers, we examined three 15-min
MAWI anonymized network traces [12], collected in August 2021.
Out of around 320 K IPv6 TCP flows, 87% of them have zero-value
flow labels. Meanwhile, only 99 IPv6 packets contain extension
headers. Other than zeroing, we can also extend RAVEN to obfuscate
the flow label field, in a similar fashion we do port obfuscation, and
randomize the order of extension headers.
QUIC packet number. A QUIC packet has a packet number that
increases per packet transmitted, which is used for tracking packets
and locating the cryptographic nonce for packet protection. Even
with IP and connection ID rotation, the continuity of packet num-
bers of two sub-connections may reveal to the adversary that they
belong to the same connection. However, QUIC performs header
protection by default [61], so the packet numbers are encrypted
and cannot be learned by the adversary.

IP identification number. Similar to QUIC packet number, the
monotonically increasing IP identification (IP ID) field of the IPv4
header can also be used for associating packets to connections. In
IPv6, regular IPv6 packets do not contain IP IDs, while the frag-
mented IPv6 packets have an identification field that is the same as
IP ID. However, QUIC RFC requires “UDP datagrams MUST NOT
be fragmented at the IP layer.” (see [35], Sec 14). Different from
IPv4, only endpoints can perform IP fragmentation in IPv6. QUIC
endpoints will adjust the packet size to obey the MTUs of their
networks to avoid fragmentation. When detecting the MTU of a
network is smaller than QUIC’s maximum datagram size, QUIC
will close the connection. In conclusion, QUIC IPv6 traffic does not
contain IP ID.
Connection IDs in return packets. In QUIC, each peer of a con-
nection independently selects the connection IDs that its counter-
part should use, and then they exchange the set of connection IDs
during their handshake phase. Thus, theoretically, RAVEN should
also rotate the connection IDs in the packets sent from the server
because they can also be used to identify clients and connections.
However, the connection IDs in server-to-client packets are not
required and do not need to be set by the server. In fact, in Google’s
QUICHE implementation, server-to-client packets do not even con-
tain connection IDs.

A.2 W-type error simulation
We obtain five distributions from the real-world traces: packet di-
rection, sent packet size, return packet size, packet interval of the
packets of the same direction, and packet interval of the packets of
different directions. During simulation, we first draw the direction
of a packet from the direction distribution, and then draw the packet
size from the corresponding packet size distribution based on the
packet direction. Then, we compare the direction of the current
packet with its preceding packet to determine the interval distribu-
tion to draw from. The timestamp of the packet is the timestamp
of its preceding packet plus the selected time interval. We keep
creating new packets until the timestamp of the packet is greater
than that of the first packet of the succeeding sub-connection.)

A.3 Discussions on attack evaluation
Reconstruction attacks with FPs only. In this case, non-relevant
sub-connections are inserted between relevant sub-connections in
the reconstructed connection. We leave the evaluation of this as
future work. We suspect this error may make further WF attacks
less efficient than M-/W-type errors, because the connections recon-
structed under this error are similar to the connections protected
by a weak version of application-layer defenses(e.g., Front and
WTF-PAD [18, 38]).
Other migration strategies.We stress that our evaluation is con-
servative, because we model strong reconstruction attacks. In
practice, reconstruction attacks could become far less accurate and
therefore make WF attacks less effective.

One migration strategy we didn’t discuss in the paper is inten-
tionally delaying the new sub-connections so that the sub-connections
appear to be more independent. A drawback of such a strategy is
extra latency. One may migrate strategically to minimize latency

208

https://github.com/liangw89/RAVEN

RAVEN: Stateless Rapid IP Address Variation for Enterprise Networks Proceedings on Privacy Enhancing Technologies 2023(3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
R

RE

(1) Strat = S1, E = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
R

RE

(2) Strat = S2, E = 0.1/Missing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
R

RE

Timing-Undef DF Tiktok Time KFP

(3) Strat = S2, E = 0.1/Wrong

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
R

RE

(4) Strat = S3, E = 0.1/Missing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
R

RE

(5) Strat = S3, E = 0.1/Wrong

Figure 11: The precision-recall curves of WF attacks against RAVEN under different strategies. The plots are based on the
best-case performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
D

F

Conn per second

Cloudflare
Akamai

Cloudfront
Fastly

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Conn per second

8.8.8.8
8.8.8.4

Figure 12: CDF of the number of connections per second for
the most-seen IPs in each CDN and DNS service.

overhead while maximizing privacy. We leave optimizing this mi-
gration strategy as future work.

A.4 Notes on the constant-migration result
The reconstruction attacks follow a binomial distribution, and the
number of correctly reconstructed sub-connections is expected to
be𝑛′∗(1−𝑒), when the number of tested sub-connections𝑛′ is large
enough. Decreasing 𝑘 makes sub-connections shorter, but also in-
creases 𝑛′. Therefore, the lengths of the reconstructed connections
could be approximately the same under different 𝑘 . Quantitatively,
the connections reconstructed under different 𝑘 have similar infor-
mation leakage (6.64 bits) as analyzed by WeFDE [40, 50].

A.5 RAVEN’s data plane resource usage
Table 6 shows the data plane resource usagewhen running RAVEN’s
P416 program. Not surprisingly, RAVEN uses a noticeable amount
of hash units and logical tables for performing multiple hashing,
substitution, and permutation operations. Still, the utilization is less
than 50% for each, leaving enough room for other applications or
operations if needed. RAVEN uses all stages in the ingress pipeline,
but that simply indicates the total pipeline length of the RAVEN
program alone; other independent applications may be able to share
stages with RAVEN. Besides, the egress pipeline is barely utilized
by RAVEN.

Encrypting a 64-bit plaintext requires 64-bit keys. We maintain
three versions of key sets for each client group, where each key set
has three keys. We create eight client groups based on the lowest
three bits of destination IP address. The number of resulting 64-bit
keys is 72 (3x3x8), which is trivial in terms of memory usage.

Resource (usage unit) Tofino 1 [34]
Stages (number) 100% I + 8% E
Hash Dist Unit (avg.) 48.6%
Logical Table ID (avg.) 34.9%
SRAM (avg.) 4.3%
TCAM (avg.) 0.0%
Exact Match Input Xbar (avg.) 11.3%
Ternary Match Input Xbar (avg.) 0.0%
Table 6: Data plane resource usage in Tofino 1.

A.6 RAVEN extensions
Protecting hierarchical IPv6 addresses. In § 3 we focus on the
network that has no subnets. In fact, the same encryption scheme
can be applied to protect hierarchical IPv6 addresses from leaking
internal routing details. The encryption takes the client ID, port,
padding, and the subnet portion of the address as input, and the
subnet portion of the address will also be used for storing ciphertext.
More specifically, given an address 𝐼𝑃 = 𝑃 | | 𝑅 | |𝐶 , where 𝑃 =

𝑃1 | | 𝑃2 (𝑃1 is the network prefix, 𝑃2 is the subnet prefix, 𝑅 is the
reversed field and 𝐶 is the client bits), RAVEN encrypts the address
as 𝐸 (𝑃2 | |𝐶 | | 𝑝𝑜𝑟𝑡 | | 𝑝𝑎𝑑𝑑𝑖𝑛𝑔), and |𝑃2| bits of the ciphertext are
stored in 𝑃2. The adversary can only learn 𝑃1 from the encrypted
address but nothing about subnets.
Protecting IPv4 networks. We can also use RAVEN to protect
IPv4 networks that have IPv6 connectivity. The encryption scheme
remains unchanged and clients’ IPv4 addresses are used as client IDs
during encryption. The switch only needs to maintain additional
mapping tables for converting destination IPv4 addresses to the
corresponding IPv6 addresses (and backward). We would like to
point out due to IPv4 IP-IDs, RAVEN can only guarantee P1 and
P2, unless both ends use random IP-IDs.
Connectionless protocols: DNS and NTP. When using random
padding, RAVEN is able to achieve per-packet encryption. All outgo-
ing packets will have distinct IP addresses. This is useful for connec-
tionless protocols such as DNS and NTP. Conventional DNS (Do53)
and NTP reveal the client IP addresses, which are known to cause
privacy and security issues. For instance, the adversary may use
DNS information to infer users’ browsing behaviors, fingerprint

209

Proceedings on Privacy Enhancing Technologies 2023(3) Wang et al.

and track users, or even deanonymize Tor users [26, 30, 72]; mali-
cious public NTP servers can gather client IPv4 and IPv6 addresses
to find targets for unauthorized scans [56]. For Do53 and NTP,
RAVEN can provide per-packet IP rotation to hide client IP ad-
dresses at the IP layer, requiring no client/server-side cooperation,
nor protocol modification. Moreover, RAVEN is compatible with
certain DNS protection mechanisms such as DNSCrypt [17] and
DNS-over-QUIC (DoQ) [33].
WireGuard.We implemented a simple prototype to validate that
RAVEN can work with WireGuard. We rotated the encryption key
every 1 second and download 100 randomly selected files with
varying sizes (1 KB to 10GB) from two websites [46, 60]. All files
download successfully through WireGuard and RAVEN, and the
SHA1 hash of every file matches that of equivalent downloads di-
rectly.We repeated the same test under per-packet IP encryption (by
using per-packet random bits as the padding), and WireGuard can
still work correctly. Throughput tests suggest the client throughput
drops by about 20% when doing per-packet encryption compared to
no encryption. RAVENwith unmodifiedWireGuard can easily guar-
antee P1 and P2. For P3, we need to rotate the peer identification
in a similar manner as we do in QUIC.

210

	Abstract
	1 Introduction
	2 RAVEN Problem Setting
	2.1 Threat model
	2.2 Design goals
	2.3 Comparison with existing solutions

	3 RAVEN Design
	3.1 RAVEN's division of labor
	3.2 Clients with seamless migration
	3.3 A network that encrypts and encodes
	3.4 Efficient encryption in the data plane
	3.5 Incremental deployability of RAVEN

	4 RAVEN Prototype Implementation
	4.1 QUIC*: RAVEN-compatible QUIC
	4.2 Data-plane implementation

	5 RAVEN Deployment
	6 Security Evaluation of RAVEN
	6.1 Scenario and experiment setup
	6.2 Attack simulation
	6.3 Efficiency of RAVENagainst WF attacks
	6.4 Insights on anonymity sets
	6.5 Understanding reconstruction efficiency

	7 Performance Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Possible identifiers in QUIC
	A.2 W-type error simulation
	A.3 Discussions on attack evaluation
	A.4 Notes on the constant-migration result
	A.5 RAVEN's data plane resource usage
	A.6 RAVEN extensions

