
Programmable In-Network
Obfuscation of DNS Traffic

(work-in-progress)
Liang Wang, Hyojoon Kim, Prateek Mittal, Jennifer Rexford

Princeton University
ABSTRACT
In conventional DNS, or Do53, requests and responses are
sent in cleartext. Thus, DNS recursive resolvers or any on-
path adversaries can access privacy-sensitive information. To
address this issue, several encryption-based approaches (e.g.,
DNS-over-HTTPS) and proxy-based approaches (e.g., Obliv-
ious DNS) were proposed. However, encryption-based ap-
proaches put too much trust in recursive resolvers. Proxy-
based approaches can help hide the client’s identity, but
sets a higher deployment barrier while also introducing
noticeable performance overhead. We propose PINOT, a
packet-header obfuscation system that runs entirely in the
data plane of a programmable network switch, which provides
a lightweight, low-deployment-barrier anonymization service
for clients sending and receiving DNS packets. PINOT does
not require any modification to the DNS protocol or additional
client software installation or proxy setup. Yet, it can also
be combined with existing approaches to provide stronger
privacy guarantees. We implement a PINOT prototype on
a commodity switch, deploy it in a campus network, and
present results on protecting user identity against public
DNS services.

1 INTRODUCTION
The Domain Name System (DNS), responsible for translating
domains to IP addresses, is a critical component of the Internet
infrastructure. A user’s DNS request is usually handled by
a DNS recursive resolver, which performs DNS lookups
on behalf of the user and returns the resolved IPs. DNS
recursive resolvers are typically operated by the user’s Internet
service provider (ISP) or third-party services (e.g., Google
and Cloudflare). In conventional DNS (Do53), requests and
responses are in cleartext, so DNS recursive resolvers or on-
path adversaries have access to the user’s IP address and the
domain visited. Such information can be used for inferring
users’ browsing behaviors, fingerprinting and tracking users,
or even deanonymizing Tor users [19, 22, 42].

Encryption-based approaches have been proposed to pro-
tect user privacy in DNS. For instance, DNSCrypt [16], DNS-
over-HTTPS (DoH) [23], and DNS-over-TLS (DoT) [25]
send encrypted DNS requests to prevent eavesdroppers from

Internet

PINOT

PINOT-encrypted trafficOriginal traffic

Adversary

Controller

DNS resolver
Client

DNS

PINOT-enabled
network

srcIP = 1.1.1.1

dstIP = 8.8.8.8

IPv4 pakcet

srcIP =

fe::190c:84b0:5b5b:5b5b

dstIP =

ff:8888

IPv6 pakcet

Figure 1: PINOT setup.

seeing the queries. However, encryption-based approaches put
trust in the recursive resolvers, as the recursive resolvers see
the user’s real IP address and the associated queries, making
the recursive resolvers a single point of privacy failure.

Proxy-based approaches try to address this issue, leverag-
ing on-path proxies between a DNS client and a resolver to
decouple client IP addresses from DNS queries. Such exam-
ples are DNS over Tor, Anonymized DNSCrypt [14], Obliv-
ious DNS (ODNS) [37], and Oblivious DoH (ODoH) [39].
Proxy-based approaches are complementary to encryption-
based approaches and their combination offers better privacy
guarantees. However, this is at the expense of performance
degradation (i.e., higher DNS resolution latency) and load on
the proxies. The proxy-based approaches require modifica-
tions to the DNS protocol and client-side software, further
raising deployment barriers.

According to Cloudflare, 92% of the daily requests (254
Billion/day) received by a popular large recursive DNS
resolver still use Do53 (i.e., conventional DNS) [39]. Consid-
ering that Do53 will continue to have a large user base for the
foreseeable future, it is important to protect user privacy in
Do53. This begs the question: Can we provide a lightweight,
readily-deployable client anonymization solution for DNS
traffic without any modification to the DNS protocol and
infrastructure?

1

1.1 IP address obfuscation in data plane
Hiding the original client IP address from recursive resolvers
and untrusted networks is essential for preserving user privacy
in DNS traffic. Yet, providing such a capability normally
requires traversing trusted proxy nodes in the Internet, which
typically involves installing additional client software. In
our work, we leverage recent advances in programmable
switch hardware to develop a first-of-its-kind, network-
based approach for enhancing DNS privacy. We present
PINOT (Programmable In-Network Obfuscation of Traffic),
a lightweight packet-header obfuscation system that runs
entirely in the data plane of a programmable network switch.
Serving as an in-network transparent proxy, PINOT aims at
preventing an adversary from associating a DNS request with
the IP address of its originating client. PINOT does not require
any modification to the DNS protocol, nor does it require any
additional client software installation. We design PINOT as
a privacy primitive for obfuscating the association between
client IP addresses and DNS requests, and demonstrate that it
is a useful building block for bootstrapping advanced DNS
privacy applications when being used in combination with
other privacy-enhancing solutions. In this preliminary work,
we focus on protecting client IPv4 addresses against particular
public DNS services, and discuss protecting IPv6 addresses
in §3.3.

PINOT runs at the border of a trusted network (e.g., an
enterprise network) and encrypts the users’ IPv4 addresses
in DNS traffic to random IPv6 addresses owned by the
network before packets leave the network, as shown in
Figure 1. PINOT obfuscates each packet individually with a
probabilistic encryption scheme so that successive requests
from the same user have different encrypted IP addresses.
Programmable switch hardware has limited memory and
processing resources, posing challenges for implementing
cryptographic algorithms that are commonly used in privacy
applications. Nevertheless, we use a secure and efficient
cipher built atop iterated Even-Mansour (EM) [2], which can
perform encryption and decryption in a manner that is compat-
ible with a single pass through the packet-processing pipeline
of a hardware switch. Thus, PINOT can encrypt/decrypt IP
addresses at hardware switch rates (e.g., up to 12.8 Tbps on a
state-of-the-art Intel Tofino switch) [26].

Leveraging the growing deployment of IPv6 in the core
of the Internet, PINOT converts an IPv4 packet to an
IPv6 packet that embeds the encrypted IPv4 address in the
IPv6 source address (similar to NAT46 [11]) to (1) carry
encryption-related state and (2) ensure response packets can
be forwarded back normally. In contrast to stateful NATs [10],
PINOT is stateless and does decryption entirely based on
the information in IPv6 addresses, which makes it scalable
and also allows it to handle asymmetric routing. With a

Query
encryption

IP
hiding Transparency Proxy

overhead
Do53 No No - -
Encryption (DoH, DoT,
DNSCrypt, etc.) Yes No No -

Proxy (ODNS, ODoH,
DNS over Tor, etc.) Yes Yes No High

PINOT + Do53 No Yes Yes Low
PINOT + Encryption Yes Yes Yes* Low
Table 1: A comparison of PINOT and its variants with
different approaches. *Assuming an encryption-based
solution has already been deployed, using PINOT to
achieve IP obfuscation does not require modifying the
existing client/server software.

software controller distributing the per-AS secret keys, an
AS can deploy PINOT at multiple border points of the trusted
network; outgoing DNS traffic can go through any egress
points while return traffic can come into any ingress point.

After encryption, the source IP address in a packet
becomes meaningless to an adversary, who only knows which
Autonomous System (AS) initiated the packet but cannot
pinpoint the specific host that sent the packet, nor associate
multiple packets as coming from the same host. Our security
analysis demonstrates that PINOT is secure against a realistic
adversary under practical constraints.

Real-world deployment. We implement a prototype of
PINOT on an Intel Tofino switch [26] and deploy it in a
campus network to forward DNS traffic. We have released
the source code of PINOT to facilitate future research [33].
We show PINOT is feasible as it can correctly encrypt,
decrypt, and forward DNS traffic. While previous works have
implemented cryptographic algorithms on programmable data
planes using CPUs, SmartNICs, or NetFPGAs [20, 21, 38],
to the best of our knowledge, we are the first to implement a
working secure and efficient encryption scheme that runs at
hardware switch rate within programmable switch ASICs.

1.2 PINOT for DNS privacy

PINOT + Do53. PINOT can be deployed at the border
of a network to encrypt the source IP address in each
outgoing Do53 DNS request individually. We assume each
DNS request fits into a single UDP packet. 1 Based on the
DNS traffic collected in two large enterprise networks, DNS
requests are usually less than 512 bytes [1]. A DNS response
can be split across multiple packets. This would not affect
the decryption in PINOT, because PINOT is stateless and

1This assumption can be relaxed, see §A.3.

2

all the information (other than the secret key) required for
decryption is stored in the destination IPv6 address.

Unlike encryption-based and proxy-based DNS privacy
solutions, PINOT is an in-network solution and requires no
participation of end-users (DNS clients and resolvers). It also
makes no modifications to the existing DNS infrastructure and
protocol, and thus is completely transparent. Once deployed,
PINOT can provide ubiquitous protection to all of the users
in the trusted network. There is no extra effort needed from
the users. Table 1 summarizes how PINOT compares to other
approaches. Importantly, leveraging programmable switches,
PINOT adds negligible latency to DNS traffic.

PINOT is a standalone solution. Yet, PINOT is compat-
ible with certain encryption-based approaches (PINOT +
Encryption in Table 1), and can offer better DNS privacy
with low proxy overhead and throughput degradation when
used together. Adding PINOT to existing encryption-based
approaches does not require any additional change to the DNS
clients and resolvers.

PINOT + DNSCrypt. PINOT decouples IP (header) pro-
tection from DNS request encryption, and thus enables a
more flexible choice of the request protection scheme. For
instance, one can use DNSCrypt [16] to encrypt the DNS
requests to achieve confidentiality. In this case, the trusted
network that deploys PINOT would not be able to see the
plaintext DNS requests, while the resolver cannot see the real
client IP addresses. The resulting system achieves similar
privacy guarantees as Anonymized DNSCrypt [14]. However,
PINOT can encrypt packets at line rate with almost zero
latency overhead, avoiding the performance bottleneck of
proxy-based approaches.

PINOT + DoH/DoT. With a few modifications PINOT
can also work with connection-oriented protocols such as
DoH and DoT. In this case, PINOT needs to maintain per-
connection state and encrypt IP addresses on a per-connection
basis, which works in a similar way as a NAT. We leave
extending PINOT to support connection-oriented protocols
as future work.

The above cases demonstrate that PINOT can enhance
privacy of Do53 and several encryption-based DNS without
any changes or effort from other parties, other than the
AS/network that has an interest in boosting user privacy.
ISPs or cloud providers may also want to participate in
PINOT because of financial incentives, e.g., a cloud provider
can deploy PINOT as a privacy-enhancing service to attract
more customers.

2 PINOT PROBLEM DEFINITION
We study how to design a readily-deployable, in-network
privacy-enhancing system for DNS traffic with minimal

performance overhead. As the first step towards a com-
prehensive in-network anonymity system, we consider a
lightweight notion of anonymity, in which the AS where
PINOT is deployed is trusted and can observe both ends of
a communication session. 2 We only consider protecting the
user’s IP address against widely-used DNS public services.
In this section, we elaborate on design goals, threat model,
and hardware resource constraints.

2.1 Design goals
We seek to design a system that achieves the following privacy
properties:

Sender anonymity. With sender anonymity, an adversary
cannot discover the identity (IP address) of the client (sender).
We do not try to hide the server’s identity or the Autonomous
System (AS) of the client.

Packet unlinkability. We define packet unlinkability for
connectionless protocols as: given packets sent from a set of
clients, the adversary cannot determine whether the packets
are associated with the same client based on observed IP
addresses. This property helps protect users against traffic-
analysis attacks or user tracking. Associating packets to clients
using non-IP information (packet size, timing, etc.) is beyond
the scope of this paper.

Additionally, we want to achieve two operational goals:

Low deployment barriers. The solution should be read-
ily deployable without modifications to existing Internet
infrastructure and protocols, or running special client-side
software (i.e., no involvement of end-users). In addition,
the solution should be able to provide ubiquitous privacy
protection for a set of users.

Low performance overhead. We want our solution to pro-
cess network traffic at hardware switch rates. Therefore, we
need to minimize the overhead introduced by cryptographic
operations, and keep as little per-packet/per-flow state as
possible (or, better yet, no state at all).

2.2 Threat model and assumptions
As shown in Figure 1, we assume an unmodified client
communicates with a server through a trusted entity (an
enterprise network or an ISP). The trusted entity and the
server should have both IPv4 and IPv6 connectivity. The goal
of an adversary is to recover the actual client IP addresses of
network traffic it observes, given the contents of the packets
that it can see.

We consider two types of attackers: passive and active. The
passive adversary could be the remote server, or any network
element between the trusted network and the server. The
2The combination of PINOT and encryption based methods will prevent the
deploying AS from learning client DNS queries.

3

adversary may be an AS; it could also be any intermediate
network point such as an Internet exchange point (IXP) or
even simply a link. An active adversary may control a few
hosts in the trusted network, and is able to send packets with
arbitrary spoofed source IP addresses. We assume, however,
that an active adversary cannot observe other users’ traffic in
the trusted network.

Finally, we do not yet consider implementation-specific
attacks, such as bugs in the implementation and bias in the
random number generators offered by hardware switches.

2.3 Hardware switch resource constraints
High-speed programmable switches can facilitate achiev-
ing the performance goal in §2.1. Programmable switches
deployed at the border of the trusted network can process
terabytes of traffic per second. Nevertheless, to build a system
with the desired privacy properties, we need to work carefully
within the hardware resource constraints.

In a programmable switch, the packet-processing pipeline
is divided into multiple stages. Each stage only allows a
limited number of table lookups, and mathematical and
logical operations. A program running in the data plane
can process traffic at line rate only if it can “fit” into the
switch ASIC—that is, if the program only requires the
packet to go through the pipeline once. Given the limited
stages in commodity programmable switches, fitting standard
cryptographic algorithms into the switch, if possible, is
extremely challenging (see §6 for more discussions).

3 PINOT DESIGN
PINOT consists of a software controller for key management,
and a data-plane program that performs IP address encryp-
tion/decryption at hardware switch rates using a lightweight
secure cipher [2]. We use the IPv6 address encoding technique
to avoid maintaining any per-flow or per-packet state, similar
to NAT46 [11]. With the controller distributing the per-
network encryption keys, PINOT can be deployed at multiple
border points of the trusted network and naturally handles
asymmetric routing. Next, we discuss the encryption scheme
and IPv6 encoding.

3.1 Efficient encryption in the data plane
Standard encryption algorithms such as AES are too complex
to implement in a single pass through the switch ASIC.
Performing multiple passes over the packets would cause
significant performance degradation, making line-rate en-
cryption infeasible. Therefore, we look for a lightweight
and secure cipher that can fit into switch ASICs. After
exploring various options, we found that the two-round Even-
Mansour (2EM) scheme [2] satisfies our requirements. 2EM
can be implemented using table lookups and XORs, avoiding

complex cryptographic computations such as hashing in the
data plane. With careful code optimization, 2EM can encrypt
a packet in a single pass through the switch packet-processing
pipeline, yet is secure against a computationally bounded
adversary in practice.

Our cipher encrypts a 𝑛-bit message 𝑀 by computing:

𝐸 (𝑀) = 𝑃2 (𝑃1 (𝑀 ⊕ 𝑘0) ⊕ 𝑘1) ⊕ 𝑘2 (1)

where 𝑘0, 𝑘1, and 𝑘2 are n-bit independent encryption keys
to thwart attacks that exploit key relation, and 𝑃1 and 𝑃2 are
independent permutations over 𝑛-bit strings, which can be im-
plemented as substitution-permutation networks (SPN) [41].
This construction has been proven to be secure up to
2

2𝑛
3 queries under adaptive chosen-plaintext and ciphertext

adversaries [8, 27]. For encrypting 32-bit IPv4 addresses
(𝑛 = 32), 2EM is only secure against 2.6 million queries,
i.e., an adversary can recover keys or plaintexts with high
probability after knowing 2.6 M plaintext-ciphertext pairs
using efficient attacks [8, 30]. To improve the security of
PINOT, we adopt two approaches:

•Random padding to increase message size: We append
a 𝑙-bit random string to an IP address to extend the length
of encryption input. The use of random padding improves
the security of the encryption as 𝑛 becomes larger (𝑙 + 32).
For 𝑙 = 32, our cipher is secure against about 7 trillion
queries. Random padding also makes the encryption non-
deterministic, i.e., encrypting a given IP addresses multiple
times will produce different ciphertexts. This is desirable for
achieving packet unlinkability.

•Key rotation to limit the number of encryptions under
given keys: We update the key set (i.e., the three encryption
keys 𝑘0, 𝑘1, and 𝑘2) being used for encryption every 𝑡 seconds.
Key rotation limits the number of plaintext-ciphertext pairs
an adversary can collect for given keys to reduce the attack
success probability, and minimizes the damage caused by
compromised encryption keys, as keys expire after at most
𝑡 seconds.3 One potential issue caused by key rotation is
inconsistent keys during encryption and decryption, i.e., the
key set may be updated when the packets from the server
are still in transit. To address this issue, we maintain three
versions of key sets, and rotate the key sets using the algorithm
proposed in SPINE [13]. The key version number is encoded
in the encrypted client address (§3.2).

Practical attacks are hard under realistic resource con-
straints. A realistic adversary can only perform a reasonable
amount of computation (i.e., computationally bounded) under
limited memory resources. The best known practical attacks
against 2EM, which are chosen-plaintext attacks, require
more than 289 bits of memory for 𝑛 = 64 even if the adversary
can send more than 1 trillion queries per second [15]. That

3We can also rotate the permutations.

4

would generate approximately 2.4 Pbps DNS traffic when
assuming the average IPv4 packet size is 300 bytes [4]. This
is infeasible in practice. In addition, generating a large volume
of traffic from a few hosts, if possible, can easily be flagged
as DDoS attacks. See Appendix §A.1 for a detailed security
analysis.

The adversary may also target a specific IP address, spoof
this IP address, and collect all the possible encrypted IPv6
addresses to build a cipertext table in advance. If it finds
a packet’s encrypted source IPv6 address in the table, the
adversary knows the packet was sent from the target IP
address. However, to have a high success rate, such attacks
require the adversary to generate about 10 Tb traffic from a
single IP address to build the cipertext table for a given key
set, which can also easily be detected.

3.2 Translation from IPv4 to IPv6
Encrypting a 32-bit IPv4 address will produce a ciphertext
of 32 + 𝑙 bits (𝑙 is the length of the random padding), which
cannot be used as a valid IPv4 address for routing. The whole
ciphertext also needs to be stored somewhere for decryption.
To ensure return traffic can be correctly routed back based
on the encrypted IP addresses and to avoid maintaining any
state in the switches, we transform an IPv4 packet into an
IPv6 packet when the packet leaves the trusted network. The
IPv6 packet encodes the encrypted IPv4 address in its IPv6
source address field, as shown in Figure 2. The highest 𝑑 bits
of a transformed IPv6 source address are the IPv6 network
prefix reserved by the trusted network, the lowest 32 + 𝑙 bits
contain the encrypted IPv4 source address, and the remaining
bits are used for storing encryption metadata such as the key
set version number. The values in the IPv4 header fields that
have corresponding IPv6 header fields are preserved.

The IPv4 destination addresses are replaced with their
IPv6 counterparts. Recall that we only consider services with
both IPv4 and IPv6 addresses. Therefore, we can perform
DNS lookups in advance to get the IPv4 and IPv6 addresses
of public servers of interest from their DNS A and AAAA
records, respectively, and store the IPv4/IPv6 address pairs in
a lookup table in the switch data plane for later use.

We use the key version number in the IPv6 destination
address of a return (IPv6) packet to locate the key set for
decryption. The return packet is converted back to an IPv4
packet and forwarded based on the decrypted address.

3.3 PINOT for IPv6 networks
We can also use PINOT to protect certain IPv6 networks. For
instance, suppose the trusted entity has a /64 IPv6 network,
and reserves a /96 network for PINOT. We call the 64 to 96
bits in an IPv6 source address subnet ID, which is static in
this case. We can use PINOT to encrypt the lowest 32 bits of

!"#"$%"&'()%*')$"+,- ."$#,/0'1

2$,3,045'()%6'

7&&$"##

!40&/8'

)4&&,03

Keys

9":';"<'

."$#,/0'1

Encryption

=0>$:?<"&'()%6'7&&$"##
IPv6

Address

Figure 2: PINOT IPv6 source address encoding.

an IPv6 source address with up to 30 bits of random padding,
and use the subnet ID to carry the encryption meta. During
decryption, PINOT replaces the subnet ID part of an IPv6
address with the original, static subnet ID.

4 IMPLEMENTATION ON COMMODITY
SWITCH

Key rotation and distribution. PINOT consists of a software
controller for key distribution and rotation, and a P4 [3]
data-plane program for IP address encryption. The controller,
which can run on a dedicated host or in the control plane
of a programmable switch, generates three 64-bit encryption
keys using the Python urandom function. It uses grpc to
communicate with the data plane to update the keys and the
key version number. In our evaluation, the keys are updated
every five seconds. The two-bit version number is stored along
with the port forwarding (i.e., switch ingress port to egress
port) information in a forwarding table.

Address mapping. For IPv6/IPv4 packet transformation,
PINOT also maintains two address mapping tables (IP4to6
and IP6to4) that store the corresponding IPv6 address of an
IPv4 address, and vice versa, for the DNS resolvers.

2EM encryption. PINOT generates random paddings via
the Random external function in the Tofino programmable
switch, and uses substitution-permutation networks for per-
mutation [41]. To permute a 64-bit input, PINOT first
performs substitution using 8-bit substitution boxes (S-boxes)
to substitute every byte of the input with another byte, and
then applies a 64-bit straight permutation box (P-box) to
shuffle the bits of the S-box output. We currently use the
static S-box in the AES standard and randomly shuffle the
bits in the P-box; we plan to generate S-boxes and P-boxes
dynamically and update them periodically in the future.

We implement two different PINOT prototypes: a 56-bit
version and a 64-bit version that use 24-bit and 32-bit random
paddings (i.e., 𝑙 = 24 and 𝑙 = 32), respectively. We use the
56-bit version for the real-world deployment because we have
a /64 IPv6 network allocated; with the 64-bit version, there
is no space left in an IPv6 address for the two-bit version

5

!
"#"$ "#%&

' '

() *+,

"#-. "#/0

"
11123332

...2'

$ '

456 7589

& '

96.(:;<;

$=$=$=$

-9,(:;<;

/=/=/=/

Input: M = IP || Padding

'= '=

/=/=/=/ >>!!////

(:?@ (:?0

' '

96.(:;<;

>5!!$A".!/@3"!%3%3!%3%3

-9,(:;<

>>!////

Encryption keys

IP4to6

"

()

'

&

*+,

'

"

456

"

Port forwarding
24-bit

random

padding

8-bit S-Box

"#"$ "#%&

' '

() *+,

"#-. "#/0

B

C%0D

E5,FG6H;I65>J#;

C0@D

456

C&D

DIffusion Layer:

shuffle bits

Straight

P-Box

K1)-GL

CMD

Output: C

IPv6 address encoding

IPv4 pakcet

IPv6 pakcet

Permutation (run two rounds)

C = P2(P1(M K0) K1) K2

Encryption:

Figure 3: IPv4 source address encryption in the data plane in 56-bit PINOT.

 Internet
PINOT

End-host

IPv6
Gateway

DNS
traffic

Campus Network

Public
DNS Resolvers

IPv6 IPv4

Figure 4: PINOT deployment in a campus network.

number. Figure 3 shows an example of IPv4 source address
encryption in the 56-bit PINOT. Even with the 64-bit PINOT,
the S-box or inverse S-box tables only take up about 16 KB
of memory, and the extra memory used for storing encryption
keys and P-boxes are negligible. Such low overhead allows
PINOT to store additional encryption keys to encrypt more
fields in the packet header. See Appendix §A.2. We have
released the source code of PINOT [33].

5 DEPLOYMENT AND EVALUATION
Wide-area testbed. We test PINOT on Do53 traffic in our
evaluation. Figure 4 shows the PINOT deployment in our
network that connects to the wider Internet. The end-host IPv4
client device is a Linux server with two Intel Xeon E5530
2.4GHz CPUs and 16GB of memory. The PINOT switch sits
between our end-host device and the trusted network’s border
gateway. The switch is a Wedge 100BF-32X switch with a
Tofino programmable chip [29], and loads the PINOT P4_16
program. The switch acts as the IPv4 gateway for the client.
On the IPv6 side, our network’s border gateway allocates a
/64 IPv6 subnet to the PINOT switch; PINOT selects IPv6
addresses in this subnet that are used by the IPv4 client when
communicating with the Internet.

The client’s Do53 traffic traverses the PINOT switch and
the IPv6 border gateway to reach public DNS resolvers on the
Internet. The PINOT switch automatically translates a target
DNS resolver address to an IPv6 equivalent and vice versa
for the response using pre-installed rules.

From the lists of 11,884 public DNS resolvers [34], we
found 374 DNS resolvers that have both IPv4 and IPV6
addresses and thus can answer IPv4 or IPv6 queries correctly.
The IPv4/v6 address pairs of these resolvers are stored in the
PINOT switch’s IP4to6 and IP6to4 tables.

Feasibility. To evaluate if PINOT correctly encrypts, decrypts,
and forwards Do53 traffic, We use dig to send DNS queries
for A records of ten unique domains randomly selected from
the top 1 million domains to each resolver (totalling 3,740
queries), using IPv4 and IPv6 networks. There are 3,387
consistent queries, i.e., returning the exact same A records in
both settings; the inconsistent responses are caused by either
DNS load balancing or resolver-side errors (misconfiguration,
etc.). We replay the consistent queries with PINOT running
and find all returned A records are consistent with the results
that use IPv4 or IPv6 networks.

Latency introduced by IPv6 routing. Though encryption
and decryption can be performed at switch hardware rates (e.g.,
3.2 Tb/s on our switch), there is one potential source of
overhead: the routing paths taken by IPv6 packets and IPv4
packets could be different, affecting latency. We test 1,000
DNS queries and examine the query time. As shown in
Figure 5, Though using IPv6 may add up to 30 ms of delay in
a query, PINOT does not introduce additional latency in 97%
of the cases.

Overall, we conclude that PINOT does not affect the normal
use of Do53.

6 RELATED WORK

Cryptographic algorithms in programmable data planes.
The ability to support cryptographic algorithms in pro-
grammable hardware is important for offloading security and
privacy applications to data planes. Previous works mostly
focus on using switch CPUs, SmartNICs, or NetFPGAs to
implement cryptographic algorithms, but these approaches
may have performance, scalability, or compatibility issues [20,

6

−10 0 10 20 30

0.0

0.5

1.0

Time difference (in ms)

Pe
rc

en
ta

ge

Figure 5: CDF of DNS response time differences.

21, 38]. Very few studies have examined using switch ASICs
for cryptographic operations. SPINE implements a prototype
of SipHash for the BMv2 software model [13]. However,
unlike in software, SPINE likely needs at least three passes of
the packet on a hardware switch due to resource constraints,
degrading the throughput by a factor of three. Similarly,
P4-AES [9] requires at least two more passes of a packet
on hardware switches. In contrast to SPINE and P4-AES,
PINOT is able to fit into switch ASICs and encrypt source
IP addresses using a single pass of the packet-processing
pipeline on commercial off-the-shelf programmable switches.

Hiding user IP addresses. Network-layer anonymity sys-
tems, such as LAP [24], Dovetail [36], HORNET [5], PHI [7],
and TARANET [6], typically require multiple ASes along an
end-to-end path to cooperate in the protocol and end-users to
run specialized software. The involvement of end-users not
only further raises deployment barriers, but also introduces
human errors [32] that cause privacy failures. None of the
systems were implemented on programmable hardware.

Address Hiding Protocol (AHP) [35] and SPINE [13] can
conceal users’ IP addresses without user participation. In
AHP, a trusted network assigns a random IP address to a user
from its own IPv4 address space, which poses security issues
for small networks. In addition, AHP does not provide packet
unlinkability. SPINE encrypts the IP address in every packet
using a programmable switch, but requires an additional
trusted network at the receiver to decrypt every packet.

DNS privacy. Encrypted DNS such as DNS-over-HTTPS (DoH),
DNS-over-TLS (DoT), and DNSCrypt [16, 23, 25] can
encrypt DNS queries. However, they put trust in third-party
servers that are able to associated client IP addresses to DNS
queries, which could become a single point of privacy failure.
Anonymized DNSCrypt [14], Oblivious DNS (ODNS) [37],
and Oblivious DoH (ODoH) [39] use proxies to hide client
IP addresses from third-party resolvers, but requires mod-
ifications to DNS clients and infrastructure and introduce
relatively high latency. In contrast to other proxy-based

solutions, PINOT does not require cooperation from end-
users and introduces low proxy performance overhead.

7 CONCLUSION
PINOT is a lightweight in-network anonymity solution that
hides users’ IP addresses from downstream ASes and desti-
nation servers. Utilizing an efficient and secure encryption
scheme, PINOT can encrypt IP addresses at hardware switch
rates. In contrast to known anonymity solutions, PINOT
has a low barrier to deployment, because it requires no
cooperation from end-users or any ASes other than the trusted
network where it is deployed. We implemented and deployed
a prototype of PINOT, and demonstrated PINOT is feasible
for improving user privacy in DNS.

REFERENCES
[1] Jawad Ahmed, Hassan Habibi Gharakheili, Qasim Raza, Craig Russell,

and Vijay Sivaraman. 2019. Monitoring enterprise DNS queries for
detecting data exfiltration from internal hosts. IEEE Transactions on
Network and Service Management 17, 1 (2019), 265–279.

[2] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, François-Xavier
Standaert, John Steinberger, and Elmar Tischhauser. 2012. Key-
alternating ciphers in a provable setting: Encryption using a small
number of public permutations. In International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 45–
62.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, and David Walker. 2014. P4: Programming
Protocol-Independent Packet Processors. ACM SIGCOMM Computer
Communication Review 44, 3 (July 2014), 87–95.

[4] Caida. 2008. Packet size distribution comparison between Internet links
in 1998 and 2008. https://www.caida.org/research/traffic-analysis/pkt_
size_distribution/graphs.xml. (2008).

[5] Chen Chen, Daniele E Asoni, David Barrera, George Danezis,
and Adrain Perrig. 2015. HORNET: High-speed onion routing at
the network layer. In ACM SIGSAC Conference on Computer and
Communications Security. 1441–1454.

[6] Chen Chen, Daniele E Asoni, Adrian Perrig, David Barrera, George
Danezis, and Carmela Troncoso. 2018. TARANET: Traffic-analysis
resistant anonymity at the network layer. In IEEE European Symposium
on Security and Privacy. IEEE, 137–152.

[7] Chen Chen and Adrian Perrig. 2017. PHI: Path-Hidden Lightweight
Anonymity Protocol at Network Layer. In Privacy Enhancing
Technologies. 100–117.

[8] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John
Steinberger. 2018. Minimizing the two-round Even–Mansour cipher.
Journal of Cryptology 31, 4 (2018), 1064–1119.

[9] Xiaoqi Chen. 2020. Implementing AES encryption on programmable
switches via scrambled lookup tables. In ACM SIGCOMM Workshop
on Secure Programmable Network Infrastructure. 8–14.

[10] Cisco. 2020. Configuring NAT for IP Address Conserva-
tion. https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/
configuration/xe-16/nat-xe-16-book/iadnat-addr-consv.html. (2020).

[11] Citrix. 2020. Stateless NAT46. https://docs.
citrix.com/en-us/netscaler/12/networking/ip-addressing/
configuring-network-address-translation/stateless-nat46-translation.
html. (2020).

7

https://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml
https://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/xe-16/nat-xe-16-book/iadnat-addr-consv.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/xe-16/nat-xe-16-book/iadnat-addr-consv.html
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-network-address-translation/stateless-nat46-translation.html
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-network-address-translation/stateless-nat46-translation.html
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-network-address-translation/stateless-nat46-translation.html
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-network-address-translation/stateless-nat46-translation.html

[12] Joan Daemen and Vincent Rijmen. 2006. Two-Round AES Differentials.
IACR Cryptology ePrint Archive (2006), 39.

[13] Trisha Datta, Nick Feamster, Jennifer Rexford, and Liang Wang. 2019.
SPINE: Surveillance Protection in the Network Elements. In USENIX
Workshop on Free and Open Communications on the Internet.

[14] Frank Denis. 2020. Anonymized DNSCrypt. https://github.com/
DNSCrypt/dnscrypt-proxy/wiki/Anonymized-DNS. (2020).

[15] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. 2016.
Key recovery attacks on iterated Even-Mansour encryption schemes.
Journal of Cryptology 29, 4 (2016), 697–728.

[16] DNSCrypt. 2020. DNSCrypt. https://dnscrypt.info/. (2020).
[17] Jason A Donenfeld. 2017. WireGuard: Next Generation Kernel Network

Tunnel. In Network and Distributed System Security Symposium.
[18] Orr Dunkelman, Gautham Sekar, and Bart Preneel. 2007. Improved

meet-in-the-middle attacks on reduced-round DES. In International
Conference on Cryptology in India. Springer, 86–100.

[19] Benjamin Greschbach, Tobias Pulls, Laura M. Roberts, Philipp Winter,
and Nick Feamster. 2017. The Effect of DNS on Tor’s Anonymity. In
Network and Distributed System Security Symposium.

[20] Frederik Hauser, Marco Häberle, Mark Schmidt, and Michael Menth.
2020. P4-IPsec: Site-to-Site and Host-to-Site VPN With IPsec in P4-
Based SDN. IEEE Access 8 (2020), 139567–139586.

[21] Frederik Hauser, Mark Schmidt, Marco Häberle, and Michael Menth.
2020. P4-MACsec: Dynamic Topology Monitoring and Data Layer
Protection with MACsec in P4-Based SDN. IEEE Access (2020).

[22] Dominik Herrmann, Christian Banse, and Hannes Federrath. 2013.
Behavior-based tracking: Exploiting characteristic patterns in DNS
traffic. Computers & Security 39 (2013), 17–33.

[23] P. Hoffman and P. McManus. 2018. DNS Queries over HTTPS (DoH).
RFC 8484. RFC Editor.

[24] Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Adrian Perrig, Akira Yamada,
Samuel C Nelson, Marco Gruteser, and Wei Meng. 2012. LAP:
Lightweight anonymity and privacy. In IEEE Symposium on Security
and Privacy. IEEE, 506–520.

[25] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman.
2016. Specification for DNS over Transport Layer Security (TLS). RFC
7858. RFC Editor.

[26] Intel. 2020. Intel Tofino. https://www.intel.com/content/www/us/
en/products/network-io/programmable-ethernet-switch/tofino-series/
tofino.html. (2020).

[27] Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. 2012. An
asymptotically tight security analysis of the iterated Even-Mansour
cipher. In International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 278–295.

[28] Matthew Luckie, Robert Beverly, Ryan Koga, Ken Keys, Joshua A
Kroll, and k claffy. 2019. Network Hygiene, Incentives, and Regulation:
Deployment of Source Address Validation in the Internet. In ACM
SIGSAC Conference on Computer and Communications Security. 465–
480.

[29] Edgecore Networks. 2020. Edge-core Wedge 100BF-32X.
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&
cls3=181&id=335,2019. (2020).

[30] Ivica Nikolić, Lei Wang, and Shuang Wu. 2013. Cryptanalysis of
Round-Reduced LED. In International Workshop on Fast Software
Encryption. Springer, 112–129.

[31] University of Oregon. 2020. Route Views Archive Project. http://
archive.routeviews.org/. (2020).

[32] Patrick Howell O’Neill. 2020. The real chink in Tor’s armor. https:
//www.dailydot.com/crime/silk-road-tor-arrests/. (2020).

[33] P4 privacy. 2020. PINOT source code. https://github.com/liangw89/
p4privacy/tree/master/pinot. (2020).

[34] Public-dns.info. 2020. Public DNS resolvers. https://public-dns.info/.
(2020).

[35] Barath Raghavan, Tadayoshi Kohno, Alex C. Snoeren, and David
Wetherall. 2009. Enlisting ISPs to Improve Online Privacy: IP Address
Mixing by Default. In Privacy Enhancing Technologies Symposium.
Springer Berlin Heidelberg, 143–163.

[36] Jody Sankey and Matthew Wright. 2014. Dovetail: Stronger anonymity
in next-generation internet routing. In Privacy Enhancing Technologies
Symposium. Springer, 283–303.

[37] Paul Schmitt, Anne Edmundson, Allison Mankin, and Nick Feamster.
2019. Oblivious DNS: Practical privacy for DNS queries. In Privacy
Enhancing Technologies Symposium, Vol. 2019. Sciendo, 228–244.

[38] Dominik Scholz, Andreas Oeldemann, Fabien Geyer, Sebastian
Gallenmüller, Henning Stubbe, Thomas Wild, Andreas Herkersdorf,
and Georg Carle. 2019. Cryptographic Hashing in P4 Data Planes.
In ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE, 1–6.

[39] Sudheesh Singanamalla, Suphanat Chunhapanya, Marek Vavruša,
Tanya Verma, Peter Wu, Marwan Fayed, Kurtis Heimerl, Nick
Sullivan, and Christopher Wood. 2020. Oblivious DNS over
HTTPS (ODoH): A Practical Privacy Enhancement to DNS. (2020).
arXiv:cs.CR/2011.10121

[40] Tele2. 2020. Tele2 Speedtest. http://speedtest.tele2.net/. (2020).
[41] Wikipedia. 2020. Substitution–permutation network. https://en.

wikipedia.org/wiki/Substitution-permutation_network. (Feb 2020).
[42] Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. 2007. Analysis

of privacy disclosure in DNS query. In International Conference on
Multimedia and Ubiquitous Engineering. IEEE, 952–957.

A APPENDIX
A.1 Security analysis
The security of 2EM depends on the plaintext size 𝑛 (32 + 𝑙).
With a larger IPv6 network (i.e., a short network prefix
𝑑), PINOT can append more random bits to the original
IPv4 source address to produce a longer input. To facilitate
discussion, we fix 𝑛 = 64 (i.e., 𝑙 = 32). Note that 2

2𝑛
3

is the lower bound obtained in the information-theoretic
model [8, 27]. There is a significant gap between this
lower bound and the complexity of the best-known attacks
in the computational model. We only consider the best-
known attacks for certain types of (computationally bounded)
adversaries in this section.

Passive adversary. A passive adversary can only perform the
trivial attacks, i.e., an exhaustive key search, which requires
brute forcing in the space of 23𝑛 or 2192 keys. Such brute-force
attacks are clearly infeasible for computationally bounded
adversaries.

Known/chosen-plaintext adversary. Non-trivial attacks usu-
ally need to consider three important factors: data complex-
ity, memory complexity, and time complexity, where data
complexity is the number of ciphertext-plaintext pairs they
need to collect, and memory complexity is the number of
memory units (𝑛-bit blocks) required during attacks. A known-
plaintext adversary may trade memory complexity for data
complexity using the man-in-the-middle (MITM) attacks

8

https://github.com/DNSCrypt/dnscrypt-proxy/wiki/Anonymized-DNS
https://github.com/DNSCrypt/dnscrypt-proxy/wiki/Anonymized-DNS
https://dnscrypt.info/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335,2019
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335,2019
http://archive.routeviews.org/
http://archive.routeviews.org/
https://www.dailydot.com/crime/silk-road-tor-arrests/
https://www.dailydot.com/crime/silk-road-tor-arrests/
https://github.com/liangw89/p4privacy/tree/master/pinot
https://github.com/liangw89/p4privacy/tree/master/pinot
https://public-dns.info/
http://arxiv.org/abs/cs.CR/2011.10121
http://speedtest.tele2.net/
https://en.wikipedia.org/wiki/Substitution-permutation_network
https://en.wikipedia.org/wiki/Substitution-permutation_network

0 20 40 60
20

30(1G)
40(1T)
50(1P)

60

80

100

120

17 GB
340 GB

105 TB
31 PB

9 EB

Memory complexity

D
at

a
co

m
pl

ex
ity

32 40 48 56 64

Figure 6: Data complexity vs memory complexity of the
key recovery attacks under varied 𝑛 (32, 40, 48, 56 and
64 bits). The memory complexity increases from 21 to
2𝑛 . X-axis and Y-axis are in log2 scale. Data complexity
indicates the number of plaintext -ciphertext pairs (i.e.,
encrypted packets) an adversary needs to collect.

proposed by Andrey et al. [2]. A MITM attack only requires
knowing a small number of ciphertext-plaintext pairs (e.g.,
2); however, its memory complexity is 2𝑛 , i.e., more than 147
exabytes of memory is required for storing a precomputed
table.

The best known attacks against 2EM with independent keys
and permutations are the key recovery attacks proposed by
Dinur et al. [15], aiming to lower time complexity. The key
recovery attacks also require precomputing a big table, and the
memory complexity 𝑀 and data complexity 𝐷 approximately
satisfy 𝐷 = 22(𝑛−1)/(4𝑀). The memory-data trade-offs are
shown in Figure 6. Indeed, a powerful adversary may be able
and be willing to prepare a large amount of memory. However,
practical attacks are hard., as the adversary must obey rate
limits. In practice, even a large ISP may not see more than
1 T packets per second (approximately 2.4 Pbps assuming the
average IPv4 packet size is 300 bytes). Under this constraint,
the adversary still needs to prepare 289 bits of memory for
𝑛 = 64, and more memory if targeting a lower packet rate.
The use of random padding also makes attacks harder because
the adversary can only choose or know partial plaintexts.

Besides, the adversary cannot perform chosen-plaintext
attacks in a majority of networks or ASes because of a
lack of capability on source address spoofing (i.e., choosing
plaintexts). The Spoofer project examined more than 7 K
/24 networks and found about 85% of them implement
certain mechanisms (e.g. Source Address Validation) to
filter outbound spoofed-source packets [28]. For an active
adversary, generating a large volume of traffic from a few
hosts, if possible, can easily be flagged as DDoS attacks.

Chosen-ciphertext adversary. Our encryption scheme does
not provide malleability so the adversary might be able to
manipulate the destination addresses in the return traffic.
PINOT may forward a tampered packet based on the de-
crypted address, or may drop the packet because it does not
recognize the decrypted address. In either case the adversary
cannot see the decrypted address, and therefore is limited in
terms of performing chosen-ciphertext attacks.

2EM alternatives. It is possible to fit the standard ciphers
with reduced rounds into the data plane, e.g., 2-round AES
and 2-round DES. However, the adversary may break these
schemes with low data complexity attacks by exploiting the
relation between round keys and algebraic properties of the
algorithms [12, 18].

In our setting, a cipher is considered as secure if breaking
it requires attacks with high data complexity. Besides, the
encrypting and decrypting parties are the same in PINOT, so
we do not need to consider key distribution and can store
key materials of large sizes. A good alternative to 2EM
should use independent round keys to prevent the adversary
from exploiting its key schedule. We believe there are other
ciphers can be used in lieu of 2EM, and leave exploring 2EM
alternatives as future work.

A.2 Obfuscating other IP header fields
We have extended our prototypes to support port encryption
by adding a one-time pad table that stores random 16-bit
one-time pads. PINOT uses the first 16 bit of the generated
random padding as a key to fetch the corresponding one-time
pad in the one-time pad table, and XOR the one-time pad with
the source port in an IPv4 packet. Fetching one-time pads can
be done in parallel with IP address encryption, requiring no
additional stages. In fact, we can get multiple one-time pads
at the same time in one table lookup, and XOR them with
different header fields.

A.3 DNS over WireGuard
As discussed in §1.2, since PINOT obfuscates each packet
individually, to use PINOT with Do53 or DNSCrypt, the
DNS request must fit into one UDP packet. To relax this
requirement, we consider sending DNS requests over an
emerging VPN tunnel, WireGuard. As shown in Figure 7,
The DNS resolver also serves as a VPN peer that only accepts
WireGuard VPN connections from registered DNS clients.

WireGuard is a UDP-based, connectionless VPN protocol
that will be merged into Linux kernel soon [17]. WireGuard
leverages a special mechanism to achieve good IP mobility: it
assumes a peer’s IP address can change frequently, and uses
the source IP address in the latest packet received from the
peer for future commutations. This enables PINOT to perform

9

PINOT

IP: 1.2.3.4

Query:

???

IP: ffff:…

WG WG

DNS

Resolver
Client Query:

???

Network

Figure 7: DNS over WireGuard and PINOT.

per-packet encryption on WireGuard traffic in a stateless way
without disrupting connectivity.

Each DNS client is associated with a public key, which
could serve as a pseudonym. Though it does see all the DNS
requests from a given client based on the public key, the DNS
resolver cannot use that information to pinpoint the real client
as PINOT obfuscates the client IP address constantly. Without
any IP information, The user behavior profiles collected by
a malicious resolver are meaningless to other parties (e.g.,

advertising companies). The use of WireGuard also prevents
the trusted network from learning the DNS requests.

We are still working on a full prototype of DNS-over-
WireGuard. In this work, we only focus on on the feasibility
of per-packet encryption on WireGuard traffic. We set up a
WireGuard forwarding server on an AWS EC2 t2.micro
instance. Our client’s WireGuard traffic traverses this server
to reach public services on the Internet.

We download 100 randomly selected files with varying
sizes (1 KB to 10 GB) from two websites [31, 40]. All files
download successfully through WireGuard and PINOT, and
the SHA1 hash of every file matches that of equivalent
downloads directly using the IPv4 network. Overall, we
conclude that per-packet encryption does not affect the
normal use of WireGuard. We leave performance comparison
between DNS-over-WireGaurd, DoH, DoT, and other DNS
privacy-enhancing mechanisms as future work.

10

	Abstract
	1 Introduction
	1.1 IP address obfuscation in data plane
	1.2 PINOT for DNS privacy

	2 PINOT Problem definition
	2.1 Design goals
	2.2 Threat model and assumptions
	2.3 Hardware switch resource constraints

	3 PINOT Design
	3.1 Efficient encryption in the data plane
	3.2 Translation from IPv4 to IPv6
	3.3 PINOT for IPv6 networks

	4 Implementation on commodity switch
	5 Deployment and Evaluation
	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Security analysis
	A.2 Obfuscating other IP header fields
	A.3 DNS over WireGuard

