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Link-State Routing With Hop-by-Hop Forwarding
Can Achieve Optimal Traffic Engineering
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Abstract—This paper settles an open question with a positive
answer: Optimal traffic engineering (or optimal multicommodity
flow) can be realized using just link-state routing protocols
with hop-by-hop forwarding. Today’s typical versions of these
protocols, Open Shortest Path First (OSPF) and Intermediate
System-Intermediate System (IS-IS), split traffic evenly over
shortest paths based on link weights. However, optimizing the
link weights for OSPF/IS-IS to the offered traffic is a well-known
NP-hard problem, and even the best setting of the weights can
deviate significantly from an optimal distribution of the traffic. In
this paper, we propose a new link-state routing protocol, PEFT,
that splits traffic over multiple paths with an exponential penalty
on longer paths. Unlike its predecessor, DEFT, our new protocol
provably achieves optimal traffic engineering while retaining the
simplicity of hop-by-hop forwarding. The new protocol also leads
to a significant reduction in the time needed to compute the best
link weights. Both the protocol and the computational methods
are developed in a conceptual framework, called Network Entropy
Maximization, that is used to identify the traffic distributions that
are not only optimal, but also realizable by link-state routing.

Index Terms—Interior gateway protocol, network entropy
maximization, optimization, Open Shortest Path First (OSPF),
routing, traffic engineering.

I. INTRODUCTION

ESIGNING a link-state routing protocol has three
D components. First is weight computation: The net-
work-management system computes a set of link weights
through a periodic and centralized optimization. The second
is traffic splitting: Each router uses the link weights to de-
cide traffic-splitting ratios among its outgoing links for every
destination. The third is packet forwarding: Each router in-
dependently decides which outgoing link to forward a packet
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based only on its destination prefix in order to realize the de-
sired traffic splitting. The popularity of link-state protocols can
be attributed to their ease of management. In particular, each
router’s traffic-splitting decision is made autonomously based
only on the link weights, without further assistance from the
network-management system, and each packet’s forwarding
decision is made in a hop-by-hop fashion without end-to-end
tunneling.

Such simplicity was thought to come at the expense of opti-
mality. In a procedure known as traffic engineering (TE), net-
work operators minimize a convex cost function of the link
loads by tuning the link weights used by the routers. With Open
Shortest Path First (OSPF) or Intermediate System-Intermediate
System (IS-IS), the major variants of link-state protocols in use
today, computing the right link weights is NP-hard, and even
the best setting of the weights can deviate significantly from op-
timal TE [2], [32]. The following question remains open: Can
a link-state protocol with hop-by-hop forwarding achieve op-
timal TE? This paper shows that the answer is in fact positive
by developing a new link-state protocol, Penalizing Exponential
Flow-spliTting (PEFT), proving that it achieves optimal TE and
demonstrating that link-weight computation for PEFT is highly
efficient in theory and in practice.

In PEFT, packet forwarding is just the same as OSPF: des-
tination-based and hop-by-hop. The key difference is in traffic
splitting. OSPF splits traffic evenly among the shortest paths,
and PEFT splits traffic along all paths, but penalizes longer
paths (i.e., paths with larger sums of link weights) exponen-
tially. While this is a difference in how link weights are used
in the routers, it also mandates a change in how link weights are
computed by the operator. It turns out that using link weights
in the PEFT way enables optimal traffic engineering. Using the
Abilene topology and traffic traces, we observe a 15% increase
in the efficiency of capacity utilization by PEFT over OSPF.
Furthermore, an exponential traffic-splitting penalty is the only
penalty that can lead to this optimality result. The corresponding
best link weights for PEFT can be efficiently computed: as effi-
ciently as solving a linearly constrained concave maximization
and much faster than the existing weight computation heuristics
for OSPF.

Clearly, if the complexity of managing a routing protocol
were not a concern, other approaches could be used to achieve
optimal TE. One possibility is multicommodity-flow type of
routing, where an optimal traffic distribution is realized by
dividing an arbitrary fraction of traffic over many paths. This
can be supported by the forwarding mechanism in multiprotocol
label switching (MPLS) [3]. However, optimality then comes
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TABLE 1
COMPARISON OF VARIOUS TE SCHEMES (NEW CONTRIBUTIONS IN ITALICS)

Commodity Link-State Routing
Routing OSPF PEFT
Traffic Splitting Arbitrary Even among shortest paths Exponential
Scalability Low High High
Optimal TE Yes No Yes
Complexity Convex Convex
Class Optimization NP Hard Optimization

with a cost for establishing many end-to-end tunnels to forward
packets. Second, other studies explored more flexible ways to
split traffic over shortest paths [4]-[6], but these solutions do not
enable routers to independently compute the flow-splitting ratios
from the link weights. Instead, a central management system
must compute and configure the traffic-splitting ratios and update
them when the topology changes, sacrificing the main benefit of
running a distributed link-state routing protocol in the first place.
Clearly, there is a tension between optimal but complex routing
or forwarding methods and the simple but to-date suboptimal
link-state routing with hop-by-hop forwarding. Recent works [1],
[7] attempted to attain optimality and simplicity simultaneously,
but in contrast to this paper, they neither proved optimality
for TE nor developed sufficiently fast methods for computing
link weights. A summary is provided in Table I.

There are several new ideas in this paper that enable a proof of
optimality and a much faster computation beyond, for example,
the theory and algorithm in our own earlier Distributed Expo-
nentially-weighted Flow spliTting (DEFT) [1] work. One of
these ideas is to develop the traffic-splitting and weight-compu-
tation methods from the conceptual framework of network en-
tropy maximization (NEM). As a proof technique and interme-
diate step of protocol development, we will construct an NEM
optimization problem that is solved neither by the operator nor
by the routers, but by us, the protocol developers. The opti-
mality condition of NEM reveals the structure of hop-by-hop
forwarding and is later used to guide both the router’s traffic
splitting and the operator’s weight computation. In short, it turns
out that a certain notion of entropy can precisely identify those
optimal traffic distributions that can be realized by link-state
protocols.

The general principle of entropy maximization has been used
to solve other networking problems, e.g., [8]-[11]. This is the
first work connecting entropy with IP routing. As we summarize
later in Table V, our NEM framework for routing is different
from and has interesting parallels to the recent work relating
TCP congestion control to network utility maximization (NUM)
[12]-[15]. Our work is not on solving the multicommodity flow
problem approximately with distributed methods, such as [16]
and [17].

The rest of this paper is organized as follows. Background
on optimal traffic engineering is introduced in Section II. The
theory of network entropy maximization in Section III leads
to the routing protocol PEFT in Section IV and the associated
link-weight computation algorithm in Section V. Extensive
numerical experiments are then summarized in Section VI.
The interesting and general framework of network entropy
maximization is further discussed in Section VII. We conclude
with further observations and extensions in Section VIII. In the
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TABLE II
SUMMARY OF KEY NOTATION
Notation Meaning
D(s,t) | Traffic demand from source s to destination ¢
Cu,v Capacity of link (u, v)
Ffuw Flow on link (u,v)
Cuv Necessary capacity of link (u, v)
i, Flow on link (u,v) destined to node ¢

fr Total incoming flow (destined to t) at u
W, Weight assigned to link (u, v)
Wmin Lower bound of all link weights
d, The shortest distance from node u to node t. di = 0
Rt ., Gap of shortest distance, h?, , £ d + wu,o — d},
I'(h%,,) | Traffic splitting function

Appendix, we present more details about NEM and PEFT, as
well as the key difference between PEFT and its predecessor,
DEFT. The key notation used in this paper is shown in
Table II.

II. BACKGROUND ON OPTIMAL TE

A. Definitions of Optimality

Consider a wireline network as a directed graph G = (V, E),
where V is the set of nodes (where N = |V|), E is the set
of links (where £ = |E|), and link (u,v) has capacity c, ,.
The offered traffic is represented by a traffic matrix D(s,t) for
source—destination pairs indexed by (s, ).

The load f., ., on each link (u, v) depends on how the network
decides to route the traffic. An objective function enables quanti-
tative comparisons between different routing solutions in terms
of the load on the links. Traffic engineering usually considers a
link-cost function @( fy, 4, ¢y ) that is an increasing function of
Suo-

For example, ®(f, ., cu,») can be the link utilization
Su,w / Cu,v, and the objective of traffic engineering can be to
minimize maxy, ) ®(fu,vs Cu,v)-

As another example, let ®(fy, .,y ) be a piecewise-linear
approximation of the M/M/1 delay formula [18], e.g.,

(p(fu,m Cu,v)

.fu,v7

?’f'u,v - 2/3Cu,v7
lofu,v - 16/3 Cu,v7

f’u,v/cu,v < 1/3

1/3 < fu,v/cu,v < 2/3
2/3 < fu,v/cu,v < 9/10
70fu,v - 178/3011,1)7 9/10 S fu,v/cu,v S 1
500 f,,» — 1468 /3¢y v, 1< fuw/Cun <11/10
5000 fu. — 16318/3¢u 2, 11/10 < fun/Cun

ey

and the objective is to minimize Z(um) D(fuw,Cuw)

More generally, we use “®({ f,, v, Cu» })” to represent any in-
creasing and convex objective function. The optimality of traffic
engineering is with respect to this objective function.

At this point, we can already observe that there is a “gap”
between the objective of TE and the mechanism of link-state
routing. Optimality is defined directly in terms of the traffic
flows, whereas link-state protocols represent the paths indirectly
in terms of link weights. Bridging this gap is one of the chal-
lenges that have prevented researchers from achieving optimal
traffic engineering using link-state routing thus far.
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B. Optimal TE Via Multicommodity Flow

Consider the following convex optimization problem: min-
imizing the TE cost function over flow conservation and link
capacity constraints.

COMMODITY:

min (b({fu,in cu,’U})

S.t. Z fst,v -

vi(s,v)€E

fu,v

(2a)
D(s,t) Vs #t (2b)

E ue_

u:(u,s)€EE

Z ww < Cuw V(u,v)

tev
flt,,,vyfu,v Z 0.

(20)

vars. (2d)

This multicommodity problem! can be readily solved effi-
ciently, where the flow destined to a single destination is treated
as a commodity, and f!  is the amount of flow on link (u,v)
destined to node £.2

The resulting solution, however, may not be realizable
through link-state routing and hop-by-hop forwarding. Indeed,
for a network with N nodes and E links, the multicom-
modity-flow solution may require up to O(N2E) tunnels, i.e.,
explicit routing (see Appendix-E), making it difficult to scale.
In contrast, link-state routing is much simpler, requiring only
O(FE) parameters (i.e., one per link).

Furthermore, while it is true that, from the solution of the
COMMODITY problem, a set of link weights can be computed
such that all the commodity flow will be forwarded along the
shortest paths [4], [5], the flow-splitting ratios among these
shortest paths are not related to the link weights, forcing the
operator to specify up to O(NE) additional parameters (one
parameter on each link for each destination) as the flow-split-
ting ratios for all the routers.

Henceforth, we use the following phrases: optimal traffic
engineering, optimal multicommodity flow (2) and optimal
distribution of traffic, interchangeably. We formally define the
problem addressed in this paper.

Optimal Traffic Engineering With Link-State Routing: In a
network G = (V,E) using a link-state routing protocol with
destination-based hop-by-hop forwarding, each router is aware
of the weight of each link. Based on the E' link weights, each
router independently computes the flow-splitting ratios across
its outgoing links. Is there such a protocol, with efficient com-
putation of the link weights, that can achieve the optimal distri-
bution of traffic as defined in (2)?

The rest of this paper shows that optimal traffic engineering
can, in fact, be achieved using only F link weights.

I'We first remark that solving this COMMODITY problem is only an inter-
mediate step in the proof. The actual PEFT protocol in Section IV will not be
implementing a multicommodity-flow-based routing with end-to-end tunneling.
Another clarifying remark is that while we will later show that PEFT link-weight
computation is as easy as solving a convex optimization. However, that opti-
mization is not this well-known COMMODITY problem.

2If the objective ®({fu. .. Cu,.}) is not a strictly increasing function of
link flow f, ., (like minimizing the maximum link utilization), the optimal
solution of COMMODITY problem (2) may contain flow cycles. To prevent
bandwidth waste, we can eliminate flow cycles in the optimal routing with a
O(E log N)-time algorithm for each commodity [19].
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III. THEORETICAL FOUNDATION: NEM

In this section, we present the theory of realizing optimal TE
with link-state protocols. We first compute the minimal load
that each link must carry to achieve optimal traffic distribution,
then examine all the traffic-splitting choices subject to necessary
(minimal) link capacities. It turns out that the traffic-splitting
configuration that is realizable with hop-by-hop forwarding can
be picked out by maximizing a weighted sum of the entropies
of traffic-splitting vectors. In addition, the corresponding link
weights can be found efficiently by solving the new optimiza-
tion problem using the gradient descent algorithm. It is impor-
tant to realize that the proposed NEM framework developed in
this section is used to design the protocol. The NEM problem
itself is not solved by the operator or routers—it is constructed
as a proof technique and an intermediate step toward the results
in Sections IV and V.

A. Necessary Capacity

Given the traffic matrix and the objective function, the so-
lution to the COMMODITY problem (2) provides the optimal
distribution of traffic. We represent the resulting flow on each
link (u,v) as the necessary capacity ¢, 2 fuw (or ¢ as a
vector). The necessary capacity is a minimal3 set of link capac-
ities to realize optimal traffic engineering.

There could be numerous ways of traffic splitting that
realize optimal TE. If we replace link capacity c,, in
COMMODITY (2) with the necessary capacity ¢, .,* we
are free to impose another objective function to pick out a
particular optimal solution to the original problem. A key
challenge here is to design a new objective function, purely for
the purpose of protocol development, such that the resulting
routing of flow can be realized distributively with link-state
routing protocols and hop-by-hop forwarding.

B. Network Entropy Maximization

Denote P ; as the set of paths from s to ¢ (repeated nodes
are allowed) and % .+ as the probability (fraction) of forwarding
a packet of demand D(s,t) to the ith path (PZ,). Obviously,
>k + = 1. If we require the probabilities of using two
paths to be the same as long as they are of the same length
(see Appendix-B for details), to be realized with hop-by-hop
forwarding, the values of x’st should satisfy

g Z K(u U)
(u,w)€EE

Jt g Z K(u u)
(u,v)€E P

3

where w, ,, is the weight assigned to link (u, v), K(“-’U) is the

number of times P! + passes through link (u,v) (Py , can contaln
cycles), and g(-) is a known function for all the routers. We find

3But may not be the minimum capacity. ¢ is minimal if B e #£ene =&,
whereas ¢ is the minimum if V¢! : € < ¢'.

4The link cost is still defined in terms of the original link capacity, i.e., link
utilization or cost will not be changed due to the use of necessary capacity.
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that the set of values of :[:;t satisfying (3) maximizes a “net-
work entropy” defined as follows. Consider the entropy func-
tion z(«% ,) = —a , log«? ; for source—destination pair (s, t).
The weighted sum, -, (D(s7 > iep., z(azgt)>, is defined
as the network entropy.> '

Now we define the NEM problem under the necessary ca-
pacity constraints as follows:

max Y | D(s,t) Y z(al,) (4a)
s,t 1€P; ¢
ZD s, 1)K 12 ) g + < Cup Y(u,v) (4b)
s,t,1
Z x;t = Vs, t (4¢)
vars. x‘st > 0. (4d)

From the optimal solution of the COMMODITY problem, we
know the feasibility set of NEM is nonempty. For a concave
maximization over a nonempty, compact constraint set, there
exist globally optimal solutions to NEM.

C. Solve NEM by Dual Decomposition

We will connect the characterization of optimal solutions to
NEM that are realizable with hop-by-hop forwarding to expo-
nential penalty. Toward that end and to provide a foundation for
link weight computation in Section V, we first investigate the
Lagrange dual problem of NEM and a gradient-based solution.

Denote dual variables for constraints (4b) as A, , for
link (u,v) (or A as a vector). We first write the Lagrangian
L(z, \) associated with the NEM problem

:Z D(s,t) Z z(xit)

s,t 1€Ps ¢

= > A | D D(s,HK 11“ wh,—¢

Cuy,v
(u,v)€E ERX)

Lz, A)

®)

The Lagrange dual function is

Q) = Lz, \) (6)

max
1>T>0
1. ll=1.

where 0 and 1 are the vectors whose elements are all zeros and
ones, respectively, and z ; is the vector of a:;_’t.
The dual problem is formulated as

min Q)
st. A=0. @)
To solve the dual problem, we first consider problem (6).

The maximization of the Lagrangian over = can be solved as
TRAFFIC-DISTRIBUTION problem (8).

5The physical interpretation of entropy for IP routing and the uniqueness of
choosing the entropy function to pick out the right flow distributions are pre-
sented in Appendix-C and Appendix-B, respectively.
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TRAFFIC-DISTRIBUTION:
max Z )\ vcu'u'i'z Z Z(xé,t)
(u,v)€E 1€Ps ¢
= > M [ Yo DEOKETE, ) B
(u,v)€EE ERX
Vs, t. (8b)

Zwii =1

Then, the dual problem (7) can be solved by using the gradient
descent algorithm as follows for iterations indexed by g¢:

)‘u,v(q + 1)
+
= [Auw(@) = @) | Eun ZDstKw L)
= [Puw(9) — (q) (Cupw — fu, ,,( DT VY(uv) €E (9)

where a(q) > 0 is the step-size, 2 ,(¢) are solutions of the
TRAFFIC-DISTRIBUTION problem (8) for a given A(g), and
fu,w(q) is the total flow on link (u,v).

After this dual decomposition, the following result can
be proven with standard convergence analysis for gradient
algorithms [20].

Lemma 1: By solving the TRAFFIC-DISTRIBUTION
problem for the NEM problem and the dual variable update (9),
A(q) converge to the optimal dual solutions A", and the corre-
sponding primal variables z* are the globally optimal primal
solutions of (4).

Proof: See Appendix-D. ]

D. Solve TRAFFIC-DISTRIBUTION Problem

Note that, the TRAFFIC-DISTRIBUTION problem is also
separable, i.e., the traffic splitting for each demand across its
paths is independent of the others since they are not coupled
together with link capacity constraint (4b). Therefore, we can
solve a subproblem (10) for each demand D(s, t) separately.

DEMAND-DISTRIBUTION for D(s,t):

max D(s,t) Z Z(xit)

1€P; ¢
-3 <ZD s,1) Kl(;:’”)x;t> (10a)
(u,v)€EE ot
Zl’s,t =1 (10b)
We write the Lagrangian associated with the

DEMAND-DISTRIBUTION subproblem as

— st <Z x;t—l)
(ZD 5,1 K(“”) ;t> (11)

where ji, ¢ is the Lagrangian variable associated with (10b).

D(s,t) Y z(w,)

1€P; ¢

= > Auw

(u,v)€E

L7 (%t p1s,) =
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According to Karush—-Kuhn-Tucker (KKT) conditions® [21],
at the optimal solution of the DEMAND-DISTRIBUTION sub-
problem, we have
=0.

)= 3 KN, — (12)

D(s,t
(o (s,1)

For the entropy function, z(z) = —zlogz, 2/(z) = -1 —

log x, we have

> K9y +“:_~f+1
7" (u,v) " pt v TP (s,t)
Top =€ st

(13)
where z ,, y% , are the values of the z ;. 1., respectively, at
the optimal solution.

Then, for two paths 7, j from s to £, we have

v e (u,v) s,
Tst . (14)

IJ ( )
t _ w,v
S, E Kpj Au,v
(u,0) st
e >

We pause to examine the engineering implications of (14). If
we use A\, , as the weight w, ,, for link (u,v), the probability
of using path Pj,t is inversely proportional to the exponential
value of its path length. It is important to observe at this point
that since (14) has no factor of y? ,, an intermediate router can
ignore the source of the packet when making forwarding de-
cisions. Equally importantly, from (9), in iteration ¢, the pro-
cedure for updating link weights does not need the values of
xi,,(q) Instead, the procedure just needs f., . (q), the aggre-
gated bandwidth usage. We will show how to calculate f, ,(gq)
efficiently in Section V-B.

Now, combining the optimality results in Section II-B and
Lemma 1 with the existence of (14), we have the following.

Theorem 1: Optimal traffic engineering (i.e., the optimal
multicommodity flow) for a given traffic matrix can be realized
with link weights using exponential flow splitting (14).

IV. NEwW LINK-STATE ROUTING PROTOCOL: PEFT

In this section, we translate the theoretical results in
Section III into a new link-state routing protocol run by routers.
Each router makes an independent decision on how to forward
traffic to a destination (i.e., flow-splitting ratios) among its out-
going links, using only the link weights. We first present PEFT
from (14) and summarize the notation of the traffic-splitting
function [1] for calculating flow-splitting ratios. Then, we show
an efficient way to calculate the traffic-splitting function for the
flow with PEFT routing, which can be approximated to further
simplify the computation of traffic-splitting ratios in practice.

A. PEFT

Based on (14), we propose a new link-state routing protocol,
called PEFT. The fraction of the traffic (from w to ¢) distributed
across the 7th path (or probability of forwarding a packet), x,iw,

6KKT is a necessary condition, but NEM must have a global optimal solution.
Thus, we must have one set of 2", p* , for (12).
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-

\b/

Fig. 1. Realize a PEFT flow using hop-by-hop forwarding.

is inversely proportional to the exponential value of its path
. A /’
length pzht = Z(u’,v)EE K;; tv)w“'ﬂ)

e_p;,i

PEFT: !

u,t

= (15)
e u,t
7

Theorem 1 in Section III shows PEFT can achieve optimal TE.
A PEFT flow can be realized with hop-by-hop forwarding. For
the sample network in Fig. 1, for the two paths from stot (s —
u — a — tand s — v — b — t) and two paths from u to ¢,
the flows on them for PEFT (15) satisfy
fs—)u—)a—)t : fs—nl,—)b—>t = fu—>a—>t : fu—)b—>t (16)
Therefore, router u can treat the packets from different
sources (e.g., s or u) equally by forwarding them among the
outgoing links with precalculated splitting ratios. Formally, we
have the following.
Proposition 1: The PEFT flow for a set of link weights can
be realized with hop-by-hop forwarding.

Proof: For the traffic from s to ¢, assume P;(s, u,t) is the
set of all the paths (having flow from s to ¢) that share 7, a sub-
path (segment) from s to u, and P(u,t) is the set of all paths
having flow from w to ¢. From PEFT (15), the traffic-splitting
ratio of the flows on P;(s,u,t) is equal to that of P(u,t). The
equality holds for every set of P;(s, u, t) for a PEFT flow. Thus,
the flow can be realized with hop-by-hop forwarding. [ |

As a link-state routing protocol, we need to define the traffic-
splitting function for PEFT as follows.

B. Review: Traffic-Splitting Function

The notation of traffic-splitting (allocation) function was in-
troduced in [1] to succinctly describe link-state routing proto-
cols. In a directed graph, each unidirectional link (u,v) has a
single, configurable weight w,, ,,. Based on a complete view of
the topology and link weights, a router can compute the shortest
distance d!, from any node u to node ¢; d’, + w,, ,, represents the
distance from u to ¢ when routed through neighboring node v.
Shortest-distance gap h!, , is defined as d}, +w,,, —d.,, which is
always greater than or equal to 0. Then, (u, v) lies on a shortest
path to ¢ if and only if k!, , = 0. Traffic-splitting function
(T'(ht,,)) indicates the relative amount of traffic destined to ¢
that node « will forward via outgoing link (u, v).” Let f! denote
the total incoming flow (destined to t) at node w (including the

TFor example, the traffic-splitting function for even splitting across shortest
paths (e.g., OSPF) is

I L ifh,, =0
o l“,,ﬂ)—{o’ ith! , > 0.
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passing-through flow and self-originated flow). The total out-
going flow of traffic (destined to t) traversing link (u,v), fy ,,,
can be computed as follows:

I'(hi,,.)
> F(}Li,j)'

(u,j)€EE

t t
Ju,v = fu

a7)

Consistent with hop-by-hop forwarding, u splits the traffic over
the outgoing links without regard to the source node or the in-
coming link from which the traffic arrived.

C. Exact Traffic-Splitting Function for PEFT

The traffic-splitting function for PEFT can be calculated by
each node autonomously and in polynomial time. From the def-
inition of PEFT (15), more traffic should be sent along an out-
going link used by more paths, and the paths should be treated
differently based on their path lengths. To compute the traffic
splitting on each outgoing link, we first define a positive real
number Y?, possibly interpretable as the “equivalent number”
of shortest paths from node w to destination ¢, and let T§ 21,

For a PEFT flow, we have

e*(pi,i*di)

i Z (18a)
i€P, ¢
= Z e_(pf"‘+w‘L‘”_dfl,_df,-i-df,)
(u,v)EE \JEPu
= 3 |etirment) 3 erlenent)
(u,w)€EE e
= (e—hi,v Yﬁ) _ )

The recursive relationship represented in (18b)8 can be used
in the following way: e_h:?-v'ff) is an “equivalent number”
of shortest paths from u to ¢ for those paths passing through
link (u,v) and the router should distribute the traffic from « on
link (u,v) in proportion to e~ T!. Then, we have an exact
traffic-splitting function® for PEFT at link (u, v)

Lpx(h,) = The " (19)
To enable hop-by-hop forwarding, each router needs to inde-
pendently calculate T'px (h, ,) for all node pairs. Then, each
router first computes the all-pairs shortest paths, using, e.g., the
Floyd-Warshall algorithm with time complexity O(N?) [22]
and calculates the values of e~ " Then, for each destina-
tion ¢, to compute the values of YL, each router needs to solve

8Allowing for paths with cycles is required for the recursive derivation of

(18b) (ie., from 3, , cf(pz“fdi”) to T?). Consider a simple example
with two unidirectional links between « and v [i.e., (#, v) and (v, u)],and P! ,
and P! , are the sets of the paths to * from u and v, respectively. Then, the
concatenation of link (u, v) and P} ,, which may create paths with cycle, is a
subset of P; ,. Similarly, the concatenation of link (v, ) and P} , is a subset
of P! ,. However, if optimal TE is acyclic, only cycle-free paths will be used
because longer paths are exponentially penalized.

9P in the subscript emphasizes that the calculation of traffic splitting con-
siders the paths toward destination, and X" denotes exactness.
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N linear (18b), which requires O(N?3) time [22]. Thus, the total
complexity is O(N*?).

D. Detour: Traffic-Splitting Function for “Downward PEFT”

To prevent cycles in link-state routing, packets are usually for-
warded along a “downward path” where the next hop is closer
to destination. This inspires the following Downward PEFT,
whose traffic-splitting function is I'pp (RY, ) 1°:

t,—h
Tpp(hy,) = {(l]””e ’

ifdt, > d!,

20
otherwise. 20)

I'pp(hl,,) can approximate I'px (h, ) and further simplify
the computation of Y?, and traffic splitting as discussed below
and utilized in Section V-C.

We consider each destination ¢ independently. After tem-
porarily removing link (u,v) where d, < d¢ since there is
no flow on it, we get an acyclic network and do topological
sorting on the remaining network. Proceeding through the
nodes u in increasing topological order (starting with des-
tination #), we compute the value of T! using (18b). For
each destination, topology sorting requires O(N + FE) time,
and summarizing the Y! across the outgoing links requires
O(N + E) time. Thus, the total time complexity to calculate
T!is O(N3 + N(N + E)) = O(N?).

In general, “Downward PEFT’ does not provably achieve
optimal TE, in contrast to PEFT, although it comes extremely
close to optimal TE in practice, with the associated link weight
computation even faster than that for PEFT. In the case where
the lower bound of all link weights, wy,;y, is large enough, the
downward PEFT is same as PEFT.!!

E. Discussion

In the control plane, PEFT does not change the routing-pro-
tocol messages that are sent between the routers (an important
consideration for practical use), but does change the computa-
tion done locally on each router based on the weights.

In the data plane, routers today implement hash-based split-
ting over multiple outgoing links, typically with an even (1 out
of n) splitting ratio. PEFT requires flexible splitting over mul-
tiple outgoing links, thus we need to store the splitting percent-
ages—whereas for 1/n spitting, the splitting ratio is implic-
itly even. It requires a little extra storage and processing, not
enough to become a new bottleneck, when packets arrive to di-
rect packets to the appropriate outgoing links.

An optimal distribution of traffic could have flow cycles if the
objective @({ fu,v, Cu,v}) is not a strictly increasing function of
link flow f,, ». Both cyclic or acyclic optimal traffic distributions
can be realized with Exact PEFT. For a cyclic optimal traffic dis-
tribution, Exact PEFT may result in cycles in link-state routing.
For an acyclic optimal traffic distribution (or with flow cycles
removed as in [19]), the flow on the cyclic paths in Exact PEFT
solution should be sufficiently close to 0. Downward PEFT is

10D in the subscript emphasizes “downward.”
"For link (u, v), if the shortest distance to ¢ of u is df, < d?, then hf, , =

dt 4w, —d, > w,, andTpx(h: ) < Tie ™wv, and the flow des-
tined to ¢ on (u, v) is close to 0 if w,, , is large enough, e.g., e~ '° & 0.005%.
Therefore, most flow in PEFT always makes forward progress toward the des-
tination, i.e., from router w with larger d’, to router v with smaller d,.
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Algorithm 1: Optimize Over Link Weights

Algorithm 2: Link_Weight_Update(f)

Compute necessary capacities ¢ by solving (2)
w «— Any set of link weights

f — Traffic_Distribution(w)

while f # ¢ do

w «— Link_Weight_Update(f)

f < Traffic_Distribution(w)

end while

Return w /*final link weights*/

A A ol

a faster but approximate solution to realize an acyclic optimal
traffic distribution.

V. LINK-WEIGHT COMPUTATION FOR PEFT

Section IV described how routers split traffic under PEFT.
A new way to use link weights also means the network oper-
ator needs a new way to compute, centrally and offline, the op-
timal link weights. It turns out that the NP-hard problem of link-
weight computation in OSPF can be turned into a convex opti-
mization when link weights are used by PEFT. To do that, we
will convert the iterative method of solving the NEM problem
in Section III into a simple and efficient algorithm. We first
present an algorithm that iteratively chooses a tentative set of
link weights and evaluates the corresponding traffic distribution
by simulating the PEFT traffic splitting run by the routers. From
Theorem 1, the algorithm is guaranteed to converge to a set
of link weights, which realizes optimal TE with PEFT. To fur-
ther speed up the calculation, the traffic distribution with PEFT
for each iteration can be approximated with downward PEFT.
The simulation in Section VI shows that such an approxima-
tion is very close to optimal and provides substantial speedup in
practice.

A. Algorithm Framework for Optimizing Link Weights

The iterative algorithm consists of two main parts:

1) computing the optimal traffic distribution (necessary
capacities) for a given traffic matrix by solving the
COMMODITY problem (2);

2) computing the link weights that would achieve the optimal
traffic distribution.

The second step uses the optimal traffic distribution found in
the first step as input and need not consider the objective func-
tion (®({ fu,vs Cun})) any further. Starting with an initial set-
ting of link weights, the algorithm (see Algorithm 1) repeatedly
updates the link weights until the load on each link is the same
as the necessary capacity. Each setting of the link weights cor-
responds to a particular way of splitting the traffic over a set
of paths. The Traffic_Distribution procedure computes the re-
sulting link loads f, ., based on the traffic matrix. Then, the
Link_Weight_Update procedure (see Algorithm 2) increases
the weight of each link (u, v) linearly if the traffic exceeds the
necessary capacity, or decreases it otherwise. The parameter o
is a positive step-size, which can be constant or dynamically ad-
justed; we find that setting « to the reciprocal of the maximum

for each link (u,v) do
Wy,p Wy — & (6u,v - fu,v)
end for

Return new link weights w

sz

Algorithm 3: Traffic_Distributionw with T'px (+)

1: For link weights w, construct all-pairs shortest paths (e.g.,
with Floyd—Warshall algorithm) and compute I'px (A%, ,,)

For each ¢, compute f! by solving linear (21)
t Tpx(hy )

t
, L
u,v u Z(u,j cE rpx(hiyj
fu,v — Zte\/ fu,v

Return f /*set of f, ., total flow on each link*/

necessary link capacity ( ﬁ) performs well in practice.

Algorithm 1 is guaranteed to converge to the global optimal so-
lution as stated in Lemma 1.

In terms of computational complexity, we know that
COMMODITY can be solved efficiently. The complexity of
Algorithm 2 is O(F). The remaining question is how to solve
the subproblem Traffic_Distribution(w) efficiently.

B. Compute Traffic Distribution With PEFT

To compute the traffic distribution for PEFT, we should first
compute the shortest paths between each pair of nodes and all
the values I'px (hf‘,,,,) as in Section IV-C, which is shown as the
first step of Algorithm 3. Computing the resulting distribution of
traffic is complicated by the fact that I'px (-) may direct traffic
“backwards” to a node that is farther away from the destination.
To capture these effects, recall that f! is the total incoming flow
at node u (including traffic originating at u as well as any traffic
arriving from other nodes) that is destined to node ¢. In partic-
ular, the traffic D(s,¢) that enters the network at node s and
leaves at node ¢ satisfies the following linear equation:

fi= > # Upx(ha.,) = D(s,1). (21
S x Z FPX(h;_ J) - s V)
z:(m,s)G[E (.T,j)G[E s

That is, the traffic D(s,t) entering the network at node s
matches the total incoming flow f! at node s (destined to
node t), excluding the traffic entering s from other nodes. The
transit flow is captured as a sum over all incoming links from
neighboring nodes x, which split their incoming traffic f% over
their links based on the traffic-splitting function.

Algorithm 3 computes the traffic distribution by solving the
system of linear (21) and computing the resulting flow on each
link (u, v). The N linear (21) for each ¢ typically require O(N3)
time [22] to solve. Thus, the total complexity is O(N*).

C. Approximate Traffic Distribution With “Downward PEFT”

If optimal traffic distribution is cycle-free, we can further re-
duce the computational overhead in link-weight computation.
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Algorithm 4: Traffic_Distribution(w) with I'pp(-)

1: For link weights w, construct all-pairs shortest paths and
compute I'pp(hs, )
for each destination ¢ do
Temporarily remove link (u,v) where df, < d!,
Do topological sorting on the remaining network
for each source s # t in the decreasing topological order
do
f; — D(‘S t) + Zm:(z7s)€[|§ f;,s

R e ot

’ Z(s.j)elE Teo(hg ;)

end for

end for

.fu,'U — Zte\/ 15,17
Return f /*set of f, ,*/

TY R I D

—_

Note that, if the optimal traffic distribution is acyclic, in the last
iteration in Algorithm 1, the flow cycle will be negligible. In ad-
dition, the accurate solution for each intermediate iteration is not
necessary in practice, we can approximate PEFT (I'px (-)) with
Downward PEFT (I'pp(-)) to forward traffic only on “down-
ward” paths, and the traffic distribution for each intermediate it-
eration can be computed using a combinatorial algorithm, which
is significantly faster than solving linear (21).

As in Section V-B, we first compute the shortest paths be-
tween all pairs of nodes, as well as the values of I'p D(hfm,), as
shown in the first step of Algorithm 4. The following procedure
is very similar to, but subtly different from, that for calculating
T'pp(ht, ). We consider each destination ¢ independently since
the flow to each destination can be computed without regard to
the other destinations. After temporarily removing link (u,v)
where d!, < d¢ since there is no flow on it, we get an acyclic net-
work and do topological sorting on the remaining network. The
computation starts at the node without any incoming link in the
acyclic network since this node would never carry any traffic to
t that originates at other nodes. Proceeding through the nodes s
in decreasing topological order, we compute the total incoming
flow at node s (destined to ?) as the sum of the flow originating
at s [i.e., D(s,t)] and the flow arriving from neighboring nodes
z (fL ). Then, we use the total incoming flow at s to compute
the flow of traffic toward ¢ on each of its outgoing links (s,v)
using the traffic-splitting function I'pp (-).

In Algorithm 4, computing the all-pairs shortest paths with
the Floyd—Warshall algorithm has time complexity O(N?3) [22].
For each destination, topology sorting requires O(N + E) time,
and summarizing the incoming flow and splitting across the out-
going links requires O(N + E) time. Thus, the total time com-
plexity to run Algorithm 4 in each iteration of Algorithm 1 is
O(N?*+ N(N + E)) = O(N?).

Finally, the total running time for Algorithm 1 depends on
the time required to solve (2) and the total number of itera-
tions required for Algorithms 2 and 4. Interestingly, although the
original NEM problem involves an infinite number of variables,
the complexity of Algorithm 1 is still comparable to solving a
convex optimization with polynomial number of variables [like
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the COMMODITY problem (2)] using the gradient descent al-
gorithm since we do not need to solve NEM directly.!2 However,
in the terminology of complexity theory, link-weight computa-
tion for PEFT is not yet proven to be polynomial-time, although
in the special case of single destination, we can compute PEFT
in polynomial time as shown in Proposition 2.

Proposition 2: Downward PEFT can achieve acyclic optimal
traffic engineering with a single destination in polynomial time.

See Appendix-F for proof.

VI. PERFORMANCE EVALUATION

How well can the new routing protocol PEFT perform, and
how fast can the new link weight computation be? PEFT has
been already proven to achieve optimal TE in Section III, with a
complexity of link-weight computation similar to that of solving
convex optimization (with a polynomial number of variables).
In this section, we numerically demonstrate that its approximate
version, Downward PEFT, can make convergence very fast in
practice while coming extremely close to TE optimality.

A. Simulation Environment

We consider two network objective  functions
(({fuwsCun})): maximum link utilization and total
link cost (1) (as used in operator’s TE formulation). For
benchmarking, the optimal values of both objectives are
computed by solving linear program (2) with CPLEX 9.1 [23]
via AMPL [24].

To compare to OSPF, we use the state-of-the-art local-search
method in [2]. We adopt TOTEM 1.1 [25], which follows the
same approach as [2] and has similar quality of the results.!3 We
use the same parameter setting for local search as in [2], [18],
where the link weights are restricted as integers from 1 to 20
since a larger weight range would slow down the searching [18],
initial link weights are chosen randomly, and the best result is
collected after 5000 iterations.

Note that here we do not evaluate and compare some previous
works using noneven splitting over shortest paths [4], [5] since
these solutions do not enable routers to independently compute
the flow-splitting ratios from link weights.

To determine link weights under PEFT, we run Algorithm 1
with up to 5000 iterations of computing the traffic distribution
and updating link weights. Abusing terminology a little, in this
section we use the term PEFT to denote the traffic engineering
with Algorithm 1 (including two sub-Algorithms 2 and 4).

We run the simulation for a real backbone network and
several synthetic networks. The properties of the networks
used are summarized in Table IV, which will be presented in
Subsection VI-E. First is the Abilene network (Fig. 2) [26],
which has 11 nodes and 28 directional links with 10-Gb/s
capacity. The traffic demands are extracted from the sampled
Netflow data on November 15, 2005. To simulate networks

12We do not need to write down the NEM problem explicitly or obtain the
optimal value for each variable. Instead, we just search for E dual variables (link
weights) that can enable optimal solution of NEM problem. Each step in the
proposed gradient descent algorithm has polynomial-time complexity in terms
of the number of nodes and edges.

3Proprietary enhancements can bring in factors of improvement, but as we
will see, PEFT’s advantage on computational speed is orders of magnitude.
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Fig. 2. Abilene network.

TABLE III
MAXIMUM LINK UTILIZATION OF OPTIMAL TRAFFIC ENGINEERING, PEFT,
AND LOCAL SEARCH OSPF FOR LIGHT-LOADING NETWORKS

Net. ID Optimal TE PEFT OSPF
abilene 33.9% 33.9% 39.8%
hier50a 56.4% 56.5% | 58.6%
hier50b 44.7% 45.0% | 59.2%
rand50 60.6% 60.6% | 60.6%
rand50a 60.8% 60.8% | 64.7%
rand100 55.0% 55.0% | 71.5%

with different congestion levels, we create different test cases
by uniformly decreasing the link capacity until the maximal
link utilization reaches 100% with optimal TE.

We also test the algorithms on the same topologies and traffic
matrices as those in [2]. The two-level hierarchical networks
were generated using GT-ITM, which consists of two kinds of
links: local access links with 200-unit capacity and long-dis-
tance links with 1000-unit capacity. In the random topologies,
the probability of having a link between two nodes is a con-
stant parameter, and all link capacities are 1000 units. In these
test cases, for each network, traffic demands are uniformly in-
creased to simulate different congestion levels.

B. Minimization of Maximum Link Utilization

Since we create different levels of congestion for the same
network by uniformly decreasing link capacities or uniformly
increasing traffic demands, we just need to compute the max-
imum link utilization (MLU) for one test case in each network
because MLU is proportional to the ratio of total demand over
total capacity. In addition to MLU, we are particularly inter-
ested in the metric “efficiency of capacity utilization,” n, which
is defined as the following ratio: the percentage of the traffic
demand satisfied when the MLU reaches 100% under a traffic
engineering scheme over that in the optimal traffic engineering.
The improvement in 7 is referred to as the “Internet capacity
increase” in [2].

For any test case of a network, if MLU of optimal TE, OSPF,

and PEFT are &, £, and &p, respectively, then no = 6% and
np = LD Thus, PEFT can increase Internet capacity over

OSPF by 11p — 7o Table III shows the maximum link utiliza-
tions of optimal traffic engineering, PEFT, and Local Search
OSPF for the test case with the lightest loading of each network.
Fig. 3 illustrates the efficiency of capacity utilization of the three
schemes. They show that PEFT is very close to optimal traffic
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Fig. 3. Efficiency of capacity utilization of optimal traffic engineering, PEFT
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network.

engineering in minimizing MLU and increases Internet capacity
over OSPF by 15% for the Abilene network and 24% for the
hier50b network, respectively.

C. Minimization of Total Link Cost

We also employ the cost function (1) as in [2]. The compar-
ison is based on the optimality gap, in terms of the total link cost,
compared against the value achieved by the optimal traffic en-
gineering. Typical results for different topologies with various
traffic matrices are shown in Fig. 4, where the network loading
is the ratio of total demand over total capacity. From the results,
we observe that the gap between OSPF and the optimal traffic
engineering can be very significant (up to 821%) for the most
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Fig. 5. Evolution of optimality gap of PEFT with different step-sizes.

congested case of the Abilene network. In contrast, PEFT can
achieve almost the same performance as the optimal traffic en-
gineering in terms of total link cost. Note that, within those fig-
ures, the maximum optimality gap of PEFT is only up to 8.8%
in Fig. 4(b), which can be further reduced to 1.5% with a larger
step-size and more iterations (which is feasible as the algorithm
runs very quickly, to be shown in Section VI-E).

D. Convergence Behavior

Fig. 5 shows the optimality gap in terms of total cost achieved
by PEFT, using different step-sizes, within the first 5000 itera-
tions for the Abilene network with the least link capacities. It
provides convergence behavior typically observed. The legends
show the ratio of the step-size over the default setting. It demon-
strates that the algorithm developed in Section V for the PEFT
protocol converges very fast even with the default setting, and
reduces the gap to 5% after 100 iterations and 1% after 3000
iterations. In addition, increasing step-size a little will speed up
the convergency and as expected; too large a step-size (e.g., 2.5
in the above example) would cause oscillation. Notice that there
is a wide range of step-sizes that can make convergence very
fast. An even faster solution with Newton’s method can be found
in [27].

E. Running Time Requirement

Besides the convergence behavior, the actual running time
is also an important evaluation criteria. The tests for PEFT
and local search OSPF were performed under the time-sharing
servers of Redhat Enterprise Linux 4 with Intel Pentium IV
processors at 2.8 ~ 3.2 GHz. Note that the running time for
local search OSPF is sensitive to the traffic matrix since a
near-optimal solution can be reached very quickly for light
traffic matrices. Therefore, we show the range of their average
running times per iteration for qualitative reference.

Fig. 6 shows the optimality gap (on a log scale) achieved
by local search OSPF and PEFT within the first 500 iterations
for a typical scenario [Fig. 4(c)]. It demonstrates that Algo-
rithm 1 for PEFT converges much faster than local search for
OSPF. Table IV shows the average running time per iteration
for different networks. We observe that our algorithm is very
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Fig. 6. Comparison of the drop in optimality gap between Local Search OSPF
and PEFT in a two-level topology with 50 nodes and 212 links.

TABLE IV
AVERAGE RUNNING TIME PER ITERATION REQUIRED BY PEFT AND
LoCAL SEARCH OSPF TO ATTAIN THE PERFORMANCE IN FIG. 4

. Time per Iteration (second)
Net. ID Topology Node # | Link # PEET OSPF
abilene Backbone 11 28 0.002 6.0~13.9
hier50a 2-level 50 148 0.006 6.0~13.9
hier50b 2-level 50 212 0.007 6.4~17.4
rand50 Random 50 228 0.007 3.2~9.0
rand50a Random 50 245 0.007 6.1~14.1
rand100 Random 100 403 0.042 39.5~105.1

fast, requiring at most 2 min even for the largest network (with
100 nodes) tested, while the OSPF local search needs tens of
hours on the same computer. On average, the algorithm de-
veloped in this paper to find link weights for PEFT routing is
2000 times faster than local search algorithms for OSPF routing.

VII. NEM: A FRAMEWORK FOR LINK-STATE ROUTING

In this section, we highlight the conceptual framework of
NEM and the differences between NEM and NUM.

As explained in Section III, NEM is developed in this paper
as a unifying mathematical model that enables the discovery and
development of new link-state routing protocol PEFT. Although
NEM is solved by neither routers nor operators, its solution
leads to both the development of PEFT traffic splitting and link-
weight computation algorithms. More discussions on the intu-
itions behind NEM can be found in Appendix-C.

On the other hand, TCP congestion control protocols have
been studied extensively since 1998 as solutions to another
family of optimization models called NUM. The notion of
network utility was first advocated in [28] in 1995 for band-
width allocation among elastic demands on source rates. The
NUM problem (22) was first introduced for TCP congestion
control (e.g., [12]-[15]). Consider a communication network
with L logical links, each with a fixed capacity of ¢; b/s and
S sources (i.e., end-users), each transmitting at a source rate
of =5 b/s. Each source s emits one flow, using a fixed set
L(s) of links in its path, and has an increasing (and often
concave) function Us(z,) called utility function. Each link [
is shared by a set S(l) of sources. NUM, in its basic version,
is the following problem of maximizing the network utility
> Us(zs), over the source rates X, subject to linear flow
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TABLE V
NUM FOR TCP AND NEM FOR IP: MAIN DIFFERENCES

Property Congestion Control (TCP) Traffic Engineering (IP)
Traffic type Elastic Inelastic

Flow distribution Fixed Variable

Participants End user and router Operator and router

Timescale Seconds Hours

Optimization Model Network Utility Maximization | Network Entropy Maximization
Lagrange multipliers | Congestion price Link weight

Reverse engineering Tahoe, Reno, Vegas, etc. Even splitting in OSPF
Forward engineering | FAST TCP, etc. PEFT

constraints Zse s@) Ts < ¢ for all links [ (note that routing is
fixed in NUM formulation):

maximize Z Us(zs)

s

subject to Z zs < ¢

\)
s€S(1)
variables x > 0. (22)

There is a useful economics interpretation of the dual-based
distributed algorithm for NUM, in which the Lagrange dual
variables can be interpreted as shadow prices for resource allo-
cation, and end-users and the network maximize their net util-
ities and net revenue, respectively. Much reverse-engineering
of existing TCP variants and forward-engineering of new con-
gestion control protocols have been developed with the NUM
model as a starting point.

The NEM problem proposed in this paper is not a special
case of NUM since entropy is not an increasing function and
the design freedom in NEM is routing rather than rate control.
Instead, there is a useful and interesting parallel between the
framework of NEM proposed this paper, for link-state routing
protocols in the IP layer, and that of NUM matured over the last
decade, for end-to-end congestion control protocols in the TCP
layer. The comparison between the two frameworks is shown in
Table V, where results from this paper are highlighted in italics.

VIII. CONCLUDING REMARKS

Commodity-flow-based routing protocols are optimal for any
convex objective in Internet TE, but introduce much configu-
ration complexity. Link-state routing is simple, but prior work
suggests it does not achieve optimal TE. This paper proves that
optimal traffic engineering, in fact, can be achieved by link-state
routing with hop-by-hop forwarding, and the right link weights
can be computed efficiently, as long as flow splitting on non-
shortest paths is allowed but properly penalized. In the Ap-
pendix, we also show uniqueness of the exponential penalty in
achieving optimal TE and discuss interpretations of NEM from
the viewpoints of statistical physics and combinatorics.

Before concluding this paper, we would like to highlight that
optimization is used in three different ways in this paper. First
and obviously, it is used when developing algorithms to solve
the link-weight computation problem for PEFT.

In a more interesting way, the level of difficulty of optimizing
link weights for OSPF is used as a hint that perhaps we need to

revisit the standard assumption on how link weights should be
used. In this approach of “Design For Optimizability,” some-
times a restrictive assumption in the protocol can be perturbed
at low “cost” and yet turn a very hard network-management
problem into an efficiently solvable one. In this case, better (and
indeed the best) TE and faster weight computation are simulta-
neously achieved.

In yet another way, optimization in the form of NEM is intro-
duced as a conceptual framework to develop routing protocols.
The NEM framework for distributed routing also leads to sev-
eral interesting future directions, including extensions to robust
TE and to the interactions between congestion control at sources
with link-state routing in the network.

APPENDIX

In this Appendix, we present more details about NEM and
PEFT. Appendix-A explains the differences between PEFT and
DEFT [1]. Appendix-B proves the uniqueness of choosing the
entropy function to pick out the right flow distributions realiz-
able with link-state routing. Appendix-C introduces a physical
interpretation of entropy for IP routing. Appendix-D proves
Lemma 1 on the convergence of solving the NEM problem
with the gradient descent algorithm. Appendix-E introduces
how to realize the multicommodity-flow solution with up to
O(N?E) tunnels, which also can be used as an initialization
for the NEM problem (4). Appendix-F proves Proposition 2
and shows a polynomial-time algorithm of setting optimal link
weights for PEFT in a single-destination network.

A. Differences Between PEFT and DEFT

Here, we explain several points of potential confusion be-
tween PEFT in this paper and DEFT in [1]. Link-state routing
protocols can be categorized as link-based and path-based in
terms of flow splitting. Their difference is illustrated in Fig. 7,
with a network that only has traffic demand from s to t. Assume
the weights of the links are shown in Fig. 7(a). Obviously, the
shortest distance from s to ¢ is 2 units, and both nodes ¢ and u
are on the shortest paths from s to ¢. In a link-based splitting
scheme (e.g., OSPF, Fong [7], and DEFT [1]), node s evenly
splits traffic across its two outgoing links (s,t¢) and (s,u) as
shown in Fig. 7(b), whereas in a path-based splitting scheme,
e.g., PEFT, there are three equal-length paths from (s,¢) and s
evenly splits traffic across them as shown in Fig. 7(c). Note that
the path-based model does not imply explicit routing to set up
tunnels for all the possible paths. Instead, each node just needs
to compute and stores the aggregated flow-splitting ratio across
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(a)
Fig. 7. Difference in traffic splittings for link-based and path-based link-state
routing protocol. (a) Link weights. (b) Link-based splitting. (c) Path-based
splitting.

its outgoing links, like 66% on link (s, u) for the sample net-
work in Fig. 7(c). Therefore, path-based splitting schemes can
still be realized with hop-by-hop forwarding.

The key differences between PEFT and DEFT are summa-

rized as follows.

1) DEFT is a link-based flow splitting, while PEFT is a path-
based flow splitting.

2) The core algorithms for setting link weights are com-
pletely different. Reference [1] introduces a nonconvex,
nonsmooth optimization for DEFT and a two-stage itera-
tive solution method, while the theory for PEFT is NEM.
The two-stage method for DEFT is much slower than the
algorithms developed for PEFT in this paper.

3) Reference [1] numerically shows DEFT can realize near-
optimal TE in terms of a particular objective (total link
cost), while this paper proves that PEFT can realize optimal
TE with any convex objective function.

B. Uniqueness of Exponential Penalty

Can optimal traffic engineering be achieved by other penalty
functions on longer paths? Here, we demonstrate that exponen-
tial penalty is the only way of realizing optimal traffic distribu-
tion with path-based link-state routing.

As in (12), we use A, , as weight for link (u,v), denote p £

e

K gf))‘“:” as the length of the ith path, define ﬁ as ¢, and

simplify =%, , as z, then we have

Z(x)=p—q=0 (27)
then
z(z) = (p+ g+ Cy (28)
where C is a constant and
z(x) - C
ptaqg= % 2 o) (x). (29)
Assume () is reversible, then we have
z =9 (p+q) (30)

We also denote = ¢(p, q). Note that, for path-based link-state
routing, for two paths of the same demand D(s, ), the ratio of

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 6, DECEMBER 2011

the traffic over them should depend only on their path lengths.
For a path of length p and a shortest path of length p,, we have

©(p,q)

©(po,q)

= log ¢(p, q) — log ¢(po, q) = log f1(p, po)

_, dloge(p.q) _ dlog(po, q)

:fl(p:po)

d d =0
q q
. /q dlogp(p.q) ; _ /q dlogp(po,9) ;.
q0 dq qo0 dq

= log ¢(p, q)|%, = log ¢(po, a)I%,
¢(p, 90)(po, 9)

31
‘P(pO;QO) ( )

= o(p,q) =

where py, o are constants.
Therefore, we can define two functions f(p) > 0 and g(q) >
0, such that

z = f(p)g(q) (32)
where
dz , dr ,
o f'(p)g(q) e f)g'(9)- (33)
From (30), Z—; = ‘(ii—fl”, thus
/ , f'p) _ 4'(q)
f(p)g(q) = f(p)g'(q) = ) = o) (34)
Since % is a function of p and % is a function of ¢, thus
f'(p) _ 9'(q)
= =C. 35
fe 99 G

where C' < 0 since f'(p) < 0 assuming we send more traffic
on a shorter path.

Therefore, f(p) = Ae“? and g(q) = Be, z =
ABeC@W+4) Then, z2(z) = Loéﬁ + 0, = Ilggr _
%x + (1. Consider the objective function (4a) and con-

straint (4c) of the NEM problem and ignore the exact values of
the constant parameters A, B, C, and C. It is now clear that
we can choose z(z) = —z logx as the objective function and
there is no other format of z(x) resulting in a flow that can be
realized by link-state routing.

C. Entropy Maximization and Most Likely Flow Configuration

There are several intriguing relationships between the frame-
work of network entropy maximization for link-state routing
and statistical physics. We speculate about some of the thought-
provoking connections in this Appendix.

In classical statistical mechanics, many microscopic be-
haviors aggregate into macroscopic states, and an isolated
thermodynamic system will eventually reach an equilibrium
macroscopic state that is the most likely one. Interestingly,
entropy maximization for traffic engineering can be motivated
by an argument of “most likely flow configuration,” shown as
follows.

Consider a network with only one source—destination
pair (s,t) and P uncapacitated paths between them. If there
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are T' packets to be transmitted from s to ¢, let T; > 0 be the
number of packets on path 4, with ). 7; = T. Each set of
such {7;}, which can be represented as a vector, is referred to
as a macroscopic state. In contrast, each collection of routing
decisions for individual packets represents a microscopic state.
There are a total of P possible microscopic states. The number
of microscopic states consistent with a given macroscopic state
can be viewed as a measure of likelihood of that macroscopic
state.

The number of microscopic states corresponding to the
macroscopic state {T;} is K = . We want to search

T 1’
for the macroscopic state with the largest number of K, i.e.,
max K, or, equivalently, maxlog K = maxlog HT!T-" For a

large system asymptote, T and 7} are large numbers. Hence,
using Stirling’s approximation, n! ~ n™e™", we have log K=
log (e7TTT) =%, log (e’TiTiTi) =-TY, Zlog L.

This shows that the system equilibrium is the ﬁow configura-
tion that maximizes the entropy, — ), T'z; log «;, where z; =
% is the fraction of flow on path s.

The optimality result of PEFT through NEM suggests an in-
triguing connection between the principle of entropy maximiza-
tion and that of shortest description length since maximizing en-
tropy picks out those traffic distribution that can be realized by
the simplest set of routing configuration parameters: one weight
per link to be used independently by each router.

D. Proof of Lemma 1

Proof: Since strong duality holds for problem (4) and its
Lagrange dual problem (7), we solve the dual problem through
gradient method and recover the primal optimizers from the dual
optimizers. By Danskin’s Theorem [20]

9QA(9) _
8)\uy = Cy U_;D S, t pi ( )

Y(u,v) € E.
Hence, the algorithm in (9) is a gradient descent algorithm for
dual problem (7). Since the dual objective function Q(A) is a
convex function, there exists a step-size «(q) that guarantees
A(q) to converge to the optimal dual solutions A* [20]. Also,
if VQ() satisfies a Lipschitz continuity condition, i.e., there
exists a constant I > 0 such that

IVQ(A1) -

then A(q) converges to the optimal dual solution A* with a suffi-
ciently small constant step-size «(q) = «,0 < a < 2/H [20].
The Lipschitz continuity condition is satisfied if the curvatures
of the entropy functions are bounded away from zero; see [29]
for further details. Furthermore, since problem (4) is a strictly
convex optimization problem and TRAFFIC-DISTRIBUTION
problems (8) have unique solutions, * are the globally optimal
primal solutions of (4) [30]. [ |

VQ(A)|| < H||Ar — Az VA1, A2 = 0

E. Tunnel-Based Routing to Realize Optimal TE

A tunnel-based routing can be derived from the optimal solu-
tion of the COMMODITY problem (2) based on dual decompo-
sition. The approach follows the same way as the flow decom-
position technique in [31]. We rephrase the approach and illus-
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trate its complexity. The flow destined to the same destination is
treated as a commodity. In the optimal solution of (2), there are
up to N acyclic commodity flows, where [V is the node number.
The paths with flow can be determined for each commodity in-
dependently. For commodity ¢, starting with any source s, tem-
porarily remove all the links without flow to ¢ (i.e., ffm, = 0).
In the remaining network, choose any path from s to ¢, and let
(u',v") be the link with the least f¢  along the path, then deduct
fu . from demand D(s, t) and ﬂow i, for all the links along
the path. Remove link (v, v’) from further consideration. Re-
peat the above procedure until the paths for D(s,t) have been
determined. For each demand D(s, t), there are at most E paths
with flow since at least one link is removed during each step.
Therefore, the total number of paths for N commodities (and
O(N?) source/destination pair) is O(N?E). Hence, the above
procedure finishes within polynomial time.

E Polynomial-Time Algorithm of Link Weight Setting for
Single-Destination Network

For a single-destination (sink) network, the link weights to
realize acyclic optimal TE with PEFT can be found in polyno-
mial time. The method is much faster than solving the NEM
problem with the gradient descent algorithm. We have the fol-
lowing lemma first.

Lemma 2: “Downward PEFT” can realize any acyclic flow
for a single destination in polynomial time.

Proof: The links without flow can be assigned infinitely
large weights and excluded from further processing. Denote
fi = 2wk fups Where fi  is the amount of flow on
link (u,v). The nodes are processed in their reverse topological
order in the acyclic flow, where the first node is the destination ¢,
with T¢ = 1 (Section IV-C). When node u is processed, from
(17), (18b), and (19), we have

S ;Z T (36)

and
Rt » = —log % > 37)

then
T < ﬂ (38)

u — t
u,v

t ot
uv

We can set T¢ = min,, v)€E F since at least one
= 0.

link (u,wg) is on the shortest path from utot,ie., hi
Then, we set the weight for link (u, vo) as W,y and the shortest
distance from node « to t, d = Wmin + df,o. Then, the weight

of link (u,v) is — log ;t”w“ +d!, — d! from (37). Itis easy to

verify that the above link weighting satisfies the definition of

downward PEFT (20)!4 and the time complexity is O(N + F).
Proof of Proposition 2:

Proof: An obvious conclusion from Lemma 2 if optimal

TE is cycle-free. ]

14Al11 d¢ have been determined since the nodes are processed in the reverse
topological order and d! = 0.
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