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LatLong: Diagnosing Wide-Area
Latency Changes for CDNs

Yaping Zhu, Benjamin Helsley, Jennifer Rexford, Aspi Siganporia, and Sridhar Srinivasan

Abstract—Minimizing user-perceived latency is crucial for
Content Distribution Networks (CDNs) hosting interactive ser-
vices. Latency may increase for many reasons, such as interdo-
main routing changes and the CDN’s own load-balancing policies.
CDNs need greater visibility into the causes of latency increases,
so they can adapt by directing traffic to different servers or
paths. In this paper, we propose a tool for CDNs to diagnose large
latency increases, based on passive measurements of performance,
traffic, and routing. Separating the many causes from the effects
is challenging. We propose a decision tree for classifying latency
changes, and determine how to distinguish traffic shifts from
increases in latency for existing servers, routers, and paths.
Another challenge is that network operators group related clients
to reduce measurement and control overhead, but the clients
in a region may use multiple servers and paths during a
measurement interval. We propose metrics that quantify the
latency contributions across sets of servers and routers. Based
on the design, we implement the LatLong tool for diagnosing
large latency increases for CDN. We use LatLong to analyze a
month of data from Google’s CDN, and find that nearly 1%
of the daily latency changes increase delay by more than 100
msec. Note that the latency increase of 100 msec is significant,
since these are daily averages over groups of clients, and we only
focus on latency-sensitive traffic for our study. More than 40% of
these increases coincide with interdomain routing changes, and
more than one-third involve a shift in traffic to different servers.
This is the first work to diagnose latency problems in a large,
operational CDN from purely passive measurements. Through
case studies of individual events, we identify research challenges
for managing wide-area latency for CDNs.

Index Terms—Network diagnosis, latency increases, content
distribution networks (CDNs).

I. INTRODUCTION

CONTENT Distribution Networks (CDNs) offer users
access to a wide variety of services, running on geo-

graphically distributed servers. Many web services are delay-
sensitive interactive applications (e.g., search, games, and
collaborative editing). CDN administrators go to great lengths
to minimize user-perceived latency, by overprovisioning server
resources, directing clients to nearby servers, and shifting
traffic away from overloaded servers. Yet, CDNs are quite
vulnerable to increases in the wide-area latency between their
servers and the clients, due to interdomain routing changes or
congestion in other domains. The CDN administrators need to
detect and diagnose these large increases in round-trip time,
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Fig. 1. CDN architecture and measurements.

and adapt to alleviate the problem (e.g., by directing clients
to a different front-end server or adjusting routing policies to
select a different path).

To detect and diagnose latency problems, CDNs could
deploy a large-scale active-monitoring infrastructure to collect
performance measurements from synthetic clients all over the
world. Instead, this paper explores how CDNs can diagnose
latency problems based on measurements they can readily and
efficiently collect—passive measurements of performance [1],
traffic [2], and routing from their own networks. Our goal is
to design the system to maximize the information the CDN
can glean from these sources of data. By joining data collected
from different locations, the CDN can determine where a client
request enters the CDN’s network, which front-end server
handles the request, and what egress router and interdomain
path carry the response traffic, as shown in Figure 1. Using
this data, we analyze changes in wide-area latency between the
clients and the front-end servers; the rest of the user-perceived
latency, between the front and back-end servers, is already
under the CDN’s direct control.

Finding the root cause of latency increases is difficult. Many
factors can contribute to higher delays, including internal
factors like how the CDN selects servers for the clients,
and external factors such as interdomain routing changes.
Moreover, separating cause from effect is a major challenge.
For example, directing a client to a different front-end server
naturally changes where traffic enters and leaves the network,
but the routing system is not to blame for any resulting
increase in latency. After detecting large increases in latency,
our classification must first determine whether client requests
shifted to different front-end servers, or the latency to reach the
existing servers increased. Only then can we analyze why these
changes happened. For example, the front-end server may
change because the CDN determined that the client is closer to
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a different server, or because a load-balancing policy needed
to shift clients away from an overloaded server. Similarly,
if the round-trip time to a specific server increases, routing
changes along the forward or reverse path (or both!) could be
responsible.

The scale of large CDNs also introduces challenges. To
measure and control communication with hundreds of millions
of users, CDNs typically group clients by prefix or geographic
region. For example, a CDN may collect round-trip times
and traffic volumes by IP prefix, or direct clients to front-end
servers by region. During any measurement interval, a group
of clients may send requests to multiple front-end servers, and
the traffic may traverse multiple ingress and egress routers.
Thus, in order to analyze the latency increases for groups
of requests, we need to define the metrics to distinguish the
changes from an individual router or server.

In designing our tool LatLong for classifying large latency
increases, we make the following contributions:

Decision tree for separating cause from effect: A key
contribution of this paper is that we determine the causal
relationship among the various factors which lead to latency
increases. We propose a decision tree for separating the causes
of latency changes from their effects, and identify the data
sets needed for each step in the analysis. We analyze the
measurement data to identify suitable thresholds to identify
large latency changes and to distinguish one possible cause
from another.

Metrics to analyze over sets of servers and routers: Our
tool LatLong can analyze latency increases and traffic shifts
over sets of servers and routers. For all potential causes of
the latency increase in the decision tree, we propose metrics
to quantify the contribution of the latency increases. For
each potential cause, we define the metric to quantify the
contribution of latency increases by a single router or server,
as well as a way to summarize the contributions across all
routers and servers.

Deployment of LatLong in Google’s CDN: We apply
our tool to one month of traffic, performance, and routing
data from Google’s CDN, and focus our studies on the large
latency increases which last long and affect a large number of
clients. Note that our tool could be applied to study the latency
increases at any granularity. We focus on the large increases,
because these are the events which causes serious performance
degradation for the clients. We determine 100 msec as the
threshold of large latency increase, because it is significant
given that this number is the daily average aggregated from
group of clients. We also focus on the latency-sensitive traffic
for interactive applications for our study, which does not
include video traffic (e.g., YouTube). We identified that nearly
1% of the daily latency changes increase delay by more than
100 msec. Our results show that 73.9% of these large increases
in latency were explained (at least in part) by a large increase
in latency to reach an existing front-end server, with 42.2%
coincided with a change in the ingress router or egress router
(or both!); around 34.7% of the large increases of latency
involved a significant shift of client traffic to different front-
end servers, often due to load-balancing decisions or changes
in the CDN’s own view of the closest server.

Case studies to highlight challenges in CDN manage-

ment: We present several events in greater detail to highlight
the challenges of measuring and managing wide-area perfor-
mance. These case studies illustrate the difficulty of building
an accurate latency-map to direct clients to nearby servers, the
extra latency client experience when flash crowds force some
requests to distant front-end servers, and the risks of relying
on AS path length as an indicator of performance. Although
many of these problems are known already, our case studies
highlight that these issues arise in practice and are responsible
for very large increases in latency affecting real users.

Our tool is complementary to the recent work on Why-
High [3]. WhyHigh uses active measurements, combined
with routing and traffic data, to study persistent performance
problems where some clients in a geographic region have
much higher latency than others. In contrast, we use passive
measurements to analyze large latency changes affecting entire
groups of clients. The dynamics of latency increases caused
by changes in server selection and inter-domain routing are
not studied in the work of WhyHigh.

The rest of the paper is organized as follows. Section II
provides an overview of the architecture of the Google CDN,
and the datasets we gathered. Section III describes our design
of LatLong using decision-tree based classification. Section IV
presents a high-level characterization of the latency changes
in the Google’s CDN, and identifies the large latency events
we study. Next, we present the results of classification using
LatLong in Section V, followed by several case studies in
Section VI. Then, we discuss the future research directions in
Section VII, and present related work in Section VIII. Finally,
we conclude the paper in Section IX.

II. GOOGLE’S CDN AND MEASUREMENT DATA

In this section, we first provide a high-level overview of the
network architecture of Google’s CDN. Then, we describe the
measurement dataset we gathered as the input of our tool.

A. Google’s CDN Architecture

The infrastructure of Google’s CDN consists of many
servers in the data centers spread across the globe. The
client requests are first served at a front-end (FE) server,
which provides caching, content assembly, pipelining, request
redirection, and proxy functions for the client requests. To
have greater control over network performance, CDN admin-
istrators typically place front-end servers in managed hosting
locations, or ISP points of presence, in geographic regions
nearby the clients. The client requests are terminated at the
FEs, and (when necessary) served at the backend servers
which implement the corresponding application logic. Inside
the CDN’s internal network, servers are connected by the
routers, and IP packets enter and leave the network at edge
routers that connect to neighboring ISPs.

Figure 1 presents a simplified view of the path of a client
request. A client request is directed to an FE, based on
proximity and server capacity. Each IP packet enters the CDN
network at an ingress router and travels to the chosen FE.
After receiving responses from the back-end servers, the FE
directs response traffic to the client. These packets leave the
CDN at an egress router and follow an AS path through one
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TABLE I
MEASUREMENTS OF WIDE-AREA PERFORMANCE, TRAFFIC, AND ROUTING

Data Set Collection Point Logged Information

Performance front ends (FEs) (client /24 prefix, country, RPD, average RTT)

Traffic ingress routers (client IP address, FE IP address, bytes-in)

egress routers (FE IP address, client IP address, bytes-out)

Routing egress routers (client IP prefix, AS path)

Joint data (client IP prefix, FE, RPD, RTT, {ingress, bytes-in}, {egress, AS path, bytes-out})

or more Autonomous Systems (ASes) en route to the client.
The user-perceived latency is affected by several factors:
the location of the servers, the path from the client to the
ingress router, and the path from the egress router back to the
client. From the CDN’s perspective, the visible factors are: the
ingress router, the selection of the servers, the egress router,
and the AS path.

Like many CDNs, Google uses DNS to direct clients to
front-end servers, based first on a latency map (preferring
the FE with the smallest network latency) and second on
a load-balancing policy (that selects another nearby FE if
the closest FE is overloaded) [4]. To periodically construct
the latency map, the CDN collects round-trip statistics by
passively monitoring TCP transfers to a subset of the IP
prefixes. In responding to a DNS request, the CDN identifies
the IP prefix associated with the DNS resolver and returns the
IP address of the selected FE, under the assumption that end
users are relatively close to their local DNS servers. Changes
in the latency map can lead to shifts in traffic to different
FEs. The latency between the front-end and back-end servers
is a known and predictable quantity, and so our study focuses
on the network latency—specifically, the round-trip time—
between the FEs and the clients.

B. Passive Measurements of the CDN

The measurement data sets, which are routinely collected
at the servers and routers, are summarized in Table II.
The three main datasets—performance, traffic, and routing
measurements—are collected by different systems. The mea-
surement data gathered is composed of latency sensitive traffic
for the interactive applications. We do not include the video
traffic(e.g., YouTube) for our study, because that is latency
insensitive.

Client performance (at the FEs): The FEs monitor the
round-trip time (RTT) for a subset of the TCP connections
by measuring the time between sending the SYN-ACK and
receiving an ACK from the client. In cases when the SYN-
ACK or ACK packet is lost, this SYN-ACK RTT value
would be invalid. In these cases, the RTT for data transfers
in the same TCP connection would be used instead. These
measurements capture the propagation and queuing delays
along both the forward and reverse paths to the clients. Each
FE also counts the number of requests, producing a daily
summary of the round-trip time (RTT) and the requests per
day (RPD) for each /24 IP prefix. Each /24 prefix is associated
with a specific country, using an IP-geo database. We use it to
group prefixes in nearby geographical regions for our study.

Netflow traffic (at edge routers): The edge routers collect
traffic measurements using Netflow [2]. The client is the

source address for incoming traffic and the destination address
for outgoing traffic; similarly, the FE is the destination for
incoming traffic, and the source for outgoing traffic. Netflow
performs packet sampling, so the traffic volumes are estimates
after correcting for the sampling rate. This leads to records that
summarize traffic in each fifteen-minute interval, indicating the
client IP address, front-end server address, and traffic volume.
Traffic for a single client address may be associated with
multiple routers or FEs during the interval. The Netflow data
we use chooses bytes as the metric, because it represents the
traffic volume we care about. However, our techniques could
also be applied to analyze the number of flows. We do not see
any significant distinction between using the bytes versus the
flows as the metric.

BGP routing (at egress routers): The edge routers also
collect BGP routing updates that indicate the sequence of
Autonomous Systems (ASes) along the path to each client IP
prefix. (Because BGP routing is destination based, the routers
cannot collect similar information about the forward path from
clients to the FEs.) A dump of the BGP routing table every
fifteen minutes, aligned with the measurement interval for the
Netflow data, indicates the AS-PATH of the BGP route used
to reach each IP prefix from each egress router.

Joint data set: The joint data set used in our analysis
combines the performance, traffic, and routing data, using the
client IP prefix and FE IP address as keys in the join process.
First, the traffic and routing data at the egress routers are
joined by matching the client IP address from the Netflow
data with the longest-matching prefix in the routing data.
Second, the combined traffic and routing data are aggregated
into summaries and joined with the performance data, by
matching the /24 prefix in the performance data with the
longest-matching prefix from the routing data. The resulting
joint data set captures the traffic, routing, and performance for
each client IP prefix and front-end server, as summarized in
Table II. The data set is aggregated to prefix level. In addition,
the data do not contain any user-identifiable information (such
as packet payloads, timings of individual requests, etc.) The
data set we study is based on a sample, and does not cover
all of the CDN network.

The data have some unavoidable limitations, imposed by
the systems that collect the measurements: the performance
data does not indicate which ingress and egress router were
used to carry the traffic, since the front-end servers do not
have access to this information. This explains why the joint
data set has a set of ingress and egress routers. Fortunately,
the Netflow measurements allow us to estimate the request
rate for the individual ingress routers, egress routers, and AS
paths from the observed traffic volumes; however, we cannot
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directly observe how the RTT varies based on the choice of
ingress and egress routers. Still, the joint data set provides
a wealth of information that can shed light on the causes of
large latency increases.

Latency map, and front-end server capacity and de-
mand: In addition to the joint data set, we analyze changes to
the latency map used to drive DNS-based server selection, as
discussed in more detail in Section III-B. We also collect logs
of server capacity and demand at all front-end servers. We use
the logs to determine whether a specific FE was overloaded
at a given time (when the demand exceeded capacity, and
requests were load balanced to other front-end servers).

III. DESIGN OF THE LATLONG TOOL

Analyzing wide-area latency increases is difficult, because
multiple inter-related factors can lead to higher round-trip
times. Also, our analysis should account for the fact that
clients may direct traffic to multiple front ends, either because
the front-end server changes or because different clients in the
same region use different front-end servers.

In this section, we present the design of the decision tree
which LatLong uses to analyze latency increases, as illustrated
in Figure 2. We propose metrics for distinguishing FE changes
from latency changes that affect individual FEs. Then, we
describe the techniques to identify the cause of FE changes
(the latency map, or load balancing). Lastly, we present the
method to correlate the latency increases that affect individual
FEs with routing changes. The classification of our tool is
general, and the method is not dependent on specific way to
aggregate users or specific timescale. Therefore, we can sup-
port to diagnose latency changes at different granularities (e.g.,
different ways to aggregate users, and different timescales).

Table III summarizes the notation used in this paper.

A. Front-End Server Change vs. Latency Increase

The average round-trip time could increase for one of two
main reasons:

• Front-end server changes (ΔFE): The clients switch
from one front-end server to another, where the new
server used has a higher RTT. This change could be
caused by an FE failure or a change in the CDN’s
server-selection policies, as shown in the upper branch
of Figure 2.

• Front-end latency changes (ΔLat): The clients could
continue using the same FE, but have a higher RTT for
reaching that server. The increased latency could stem
from changes along the forward or reverse path to the
client, as shown in the lower branch of Figure 2.

The analysis is difficult because a group of clients could con-
tact multiple front-end servers, and the RTT and RPD for each
server changes. Correctly distinguishing all of these factors
requires grappling with sets of front-ends and weighting the
RTT measurements appropriately.

The average round-trip time experienced by the clients is
the average over the requests sent to multiple front-ends, each
with its own average round-trip time. For example, consider
a region of clients experiencing an average round-trip time of

RTT1 at time 1, with a request rate of RPD1i and round-trip
time RTT1i for each front-end server i. Then,

RTT1 =
∑
i

RTT1i ∗ RPD1i

RPD1

where RPD1 =
∑

iRPD1i is the total number of requests
from that region, across all front-end servers, for time period 1.
A similar equation holds for the second time period, with the
subscripts changed to consider round-trip times and request
rates at time 2.

The increase in average round-trip time from time 1 to time
2 (i.e., ΔRTT = RTT2 −RTT1) is, then,

ΔRTT =
∑
i

(
RTT2i ∗ RPD2i

RPD2
−RTT1i ∗ RPD1i

RPD1

)

The equation shows how the latency increases could come
either from a higher round-trip time for the same server (i.e.,
RTT2i > RTT1i) or a shift in the fraction of requests directed
to each FE (i.e., RPD2i/RPD2 vs. RPD1i/RPD1), or both.

To tease these two factors apart, consider one FE i, and the
term inside the summation. We can split the term into two
parts that sum to the same expression, where the first captures
the impact on the round-trip time from traffic shifting toward
front-end server i:

ΔFEi = RTT2i ∗
(
RPD2i

RPD2
− RPD1i

RPD1

)

where ΔFEi is high if the fraction of traffic directed to front-
end server i increases, or if the round-trip time is high at time
2. The second term captures the impact of the latency to front-
end server i increasing:

ΔLati = (RTT2i −RTT1i) ∗ RPD1i

RPD1

where the latency is weighted by the fraction of requests
directed to front-end server i, to capture the relative impact
of this FE on the total increase in latency. Through simple
algebraic manipulation, we can show that

ΔRTT =
∑
i

(ΔFEi +ΔLati).

As such, we can quantify the contribution to the latency
change that comes from shifts between FEs:

ΔFE =
∑
i

ΔFEi/ΔRTT

and latency changes for individual front-end servers

ΔLat =
∑
i

ΔLati/ΔRTT

where the factors sum to 1. For example, if the FE change
contributes 0.85 and the latency change contributes 0.15, we
can conclude that the latency increase was primarily caused
by a traffic shift between front-end servers. If the FE change
contributes -0.1 and the latency change contributes 1.1, we
can conclude that the latency increase was due to an increase
in latency to reach the front-end servers rather than a traffic
shift; if anything, the -0.1 suggests that some traffic shifted to
FEs with lower latency, but this effect was dwarfed by one or
more FEs experiencing an increase in latency.
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Fig. 2. LatLong system design: classification of large latency changes.
TABLE II

SUMMARY OF KEY NOTATION

Symbol Meaning
RTT1, RTT2 round-trip time for a client region at time 1 and time 2
ΔRTT change in RTT from time 1 to time 2 (i.e., RTT2 −RTT1)
RTT1i, RTT2i round-trip time for requests to FEi at time 1 and time 2
RPD1, RPD2 requests for a client region at time 1 and time 2
RPD1i, RPD2i requests to FEi at time 1 and time 2
ΔFEi latency change contribution from traffic shifts at FEi

ΔLati latency change contribution from latency changes at FEi

ΔFE latency change contribution from traffic shifts at all FEs
ΔLat latency change contribution from latency changes at all FEs
r1i, r2i fraction of requests served at FEi predicted by the latency map at time 1 and time 2
ΔLatMap fraction of requests shifting FEs predicted by the latency map
ΔFEDist actual fraction of requests shifting FEs
LoadBalance1 fraction of requests shifting FEs by the load balancer at time 1
ΔLoadBal difference of the fraction of requests shifting FEs by the load balancer from time 1 to time 2
ΔIngress fraction of the traffic shifting ingress router at a specific FE
ΔEgressASPath fraction of the traffic shifting (egress router, AS path) at a specific FE

In the following subsections, we present the method to
identify the causes of the FE changes: the latency map and
load balancing.

B. Front-End Changes by the Latency Map

Google CDN periodically constructs a latency map to direct
clients to the closest front-end server. The CDN constructs the
latency map by measuring the round-trip time for each /24
prefix to different front-end servers, resulting in a list mapping
each /24 prefix to a single, closest FE. From the latency map,
we can compute the target distribution of requests over the
front-end servers for groups of co-located clients in two time
intervals. To combine this information across all /24 prefixes in
the same region, we weight by the requests per day (RPD) for
each /24 prefix. This results in a distribution of the fraction of
requests r1i from the client region directed to front-end server
i, at time 1.

As the latency map and the request rates change, the region
may have a different distribution {r2i} at time 2. To analyze
changes in the latency map, we consider the fraction of
requests that should shift to different front-end servers:

ΔLatMap =
∑
i

|r2i − r1i|/2

Note that we divide the difference by two, to avoid double
counting the fraction of requests that move away from one

FE (i.e., r2i − r1i decreasing for one front-end server i) and
towards another (i.e., r2i−r1i increasing for some other front-
end server).

C. Front-End Changes by Load Balancing

In practice, the actual distribution of requests to front-end
servers does not necessarily follow the latency map. Some
FEs may be overloaded, or unavailable due to maintenance.
To understand how the traffic distribution changes in practice,
we quantify the changes in front-end servers as follows:

ΔFEDist =
∑
i

∣∣∣∣RPD2i

RPD2
− RPD1i

RPD1

∣∣∣∣ /2
That is, we calculate the fraction of requests to FE i at time
1 and time 2, and compute the difference, summing over all
front-end servers. As with the equation for ΔLatMap, we
divide the sum by two to avoid double counting shifts away
from one front-end server and shifts toward another.

The differences are caused by the CDN’s own load-
balancing policy, which directs traffic away from busy front-
end servers. This may be necessary during planned mainte-
nance. For example, an FE may consist of a cluster of com-
puters; if some of these machines go down for maintenance,
the aggregate server capacity decreases temporarily. In other
cases, a surge in client demand may temporarily overload the
closest front-end server. In both cases, directing some clients
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to an alternate front-end server is important for preventing
degradation in performance. A slight increase in round-trip
time for some clients is preferable to all clients experiencing
slower downloads due to congestion.

To estimate the fraction of requests shifted by the load
balancer, we identify front-end servers that handle a lower
fraction of requests than what is suggested by the latency
map. The latency map indicates that front-end server i should
handle a fraction r1i of the requests for the clients at time 1.
In reality, the server handles RPD1i/RPD1.

LoadBalance1 =
∑
i

[
r1i − RPD1i

RPD1

]+

where [ ]+ indicates that the sum only includes the positive
values, with the target request load in excess of the actual load.
Similarly, we define the fraction of queries load balanced at
time 2 as LoadBalance2.

If much more requests are load balanced on the second
day, then more requests are directed to alternative FEs that
are further away, leading to higher round-trip times. Thus, we
use the difference of the load balancer metric to capture more
load balancing traffic at time 2:

ΔLoadBal = LoadBalance2 − LoadBalance1

We expect the load-balancing policy to routinely trigger
some small shifts in traffic.

D. Inter-domain Routing Changes

Next, our analysis focuses on events where the RTT jumps
significantly for specific FEs. These increases in round-trip
time could be caused by routing changes, or by congestion
along the paths to and from the client. Since the CDN does not
have direct visibility into congestion outside its own network,
we correlate the RTT increases only with the routing changes
visible to the CDN—changes of the ingress router where client
traffic enters the CDN network, and changes of the egress
router and the AS path used to reach the client.

Recall that the latency metric ΔLat can be broken down to
the sum of latency metrics at individual FEs (i.e., ΔLati). We
focus our attention on the FE with the highest value of ΔLati,
because the latency change for requests to this FE has the most
impact on the latency increase seen by the clients. Then, we
define metrics to capture what fraction of the traffic destined
to this FE experiences a visible routing change. Focusing on
the front-end server i with the highest latency increase, we
consider where the traffic enters the network. Given all the
traffic from the client region to the front-end server, we can
compute the fractions f1j and f2j entering at ingress router j
at time 1 and time 2, respectively. Note that we compute these
fractions from the “bytes-in” statistics from the Netflow data,
since the front-end server cannot differentiate the requests per
day (RPD) by which ingress router carried the traffic.

To quantify how traffic shifted to different ingress routers,
we compute:

ΔIngress =
∑
j

|f2j − f1j|/2

Note that the difference between the fractions is divided by
two, to avoid double counting traffic that shifts away from
one ingress router and toward another. Similarly, we define a
metric to measure the fraction of traffic to a FE that switches
to a different egress router or AS path. Suppose the fraction
of traffic to (egress router, AS path) k is g1k at time 1 and
g2k at time 2. Then,

ΔEgressASPath =
∑
k

|g2k − g1k|/2

similar to the equation for analyzing the ingress routers. These
metrics allow us to correlate large increases in latency to server
i with observable routing changes. Note that the analysis
can only establish a correlation between latency increases
and routing changes, rather than definitively “blaming” the
routing change for the higher delay, since the performance
measurements cannot distinguish RTT by which ingress or
egress router carried the traffic.

IV. DISTRIBUTION OF LATENCY CHANGES

In the rest of the paper, we apply our tool to measurement
data from Google’s CDN. The BGP and Netflow data are col-
lected and joined on a 15-minute timescale; the performance
data is collected daily, and joined with the routing and traffic
data to form a joint data set for each day in June 2010. For our
analysis, we focus on the large latency increases which last for
a long time and affect a large number of clients. We pick daily
changes as the timescale, because the measurement data we get
is aggregated daily. We group clients by “region,” combining
all IP addresses with the same origin AS and located in the
same country. In this section, we describe how we preprocess
the data, and characterize the distribution of daily increases in
latency to identify the most significant events which last for
days. We also determine the threshold for the large latency
increases we study.

As our datasets are proprietary, we are not able to reveal
the exact number of regions or events, and instead report
percentages in our tables and graphs; we believe percentages
are more meaningful, since the exact number of events and
regions naturally differ from one CDN to another. In addition,
the granularity of the data, both spatially (i.e., by region) and
temporally (i.e., by day) are beyond our control; these choices
are not fundamental to our methodology, which could easily
be applied to finer-grain measurement data.

A. Aggregating Measurements by Region

Our joint dataset has traffic and performance data at the
level of BGP prefixes, leading to approximately 250K groups
of clients to consider. Many of these prefixes generate very
little traffic, making it difficult to distinguish meaningful
changes in latency from statistical noise. In addition, CDN
administrators understandably prefer to have more concise
summaries of significant latency changes that affect many
clients, rather than reports for hundreds of thousands of
prefixes.

Combining prefixes with the same origin AS seems like a
natural way to aggregate the data, because many routing and
traffic changes take place at the AS level. Yet, some ASes
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are quite large in their own right, spanning multiple countries.
We combine prefixes that share the same country and origin
AS (which we define as a region), for our analysis. From the
performance measurements, we know the country for each /24
prefix, allowing us to identify the country (or set of countries)
associated with each BGP prefix. A prefix spanning multiple
countries could have large variations in average RTT simply
due to differences in the locations of the active clients. As
such, we filter the small number of BGP prefixes spanning
multiple countries. This filters approximately 2K prefixes,
which contribute 3.2% of client requests and 3.3% of the traffic
volume.

After aggregating clients by region, some regions still
contribute very little traffic. For each region, we calculate the
minimum number of requests per day (RPD) over the month
of June 2010. We choose a threshold for the minimum RPD
to filter the regions with very low client demand. This process
improves statistical accuracy, because it makes sure that we
have enough samples of requests for the regions we study. This
also helps focus our attention on regions with many clients,
and reduce the volume of the measurement data we analyze.
This process helps us to exclude the regions ranging at the
long tail in traffic distribusion. After this preprocessing step,
our experiments still cover 94% of the traffic, which include
15% of the regions. We also ensure that these regions cover
all the major geographical areas globally and all the major
ASes.

Hence, for the rest of our analysis, we focus on clients
aggregated by region (i.e., by country and origin AS), and
regions generating a significant number of requests per day.
Note that our analysis methodology could be applied equally
well to alternate ways of aggregating the clients and filtering
the data.

The measurement results we present in the following sec-
tions cover all the days in the month of June 2010. The data
represents the global traffic we receive at Google, and we
ensure that all the major geographical areas and large ASes
are covered.

B. Identifying Large Latency Increases

To gain an initial understanding of latency changes, we first
characterize the differences in latency from one day to the
next throughout the month of June 2010, across all the client
regions we selected. We consider both the absolute changes
(i.e., RTT2 −RTT1) and the relative change (i.e., (RTT2 −
RTT1)/RTT1), as shown in Figures IV-A(a) and IV-A(b),
respectively. The graphs plot only the increases in latency,
because the distributions of daily increases and decreases are
symmetric.

The two graphs are plotted as complementary cumula-
tive distributions, with a logarithmic scale on both axes,
to highlight the large outliers. Figure IV-A(a) shows that
latency increases less than 10msec for 79.4% of the time.
Yet, nearly 1% of the latency increases exceed 100 msec, and
every so often latency increases by more than one second.
Figure IV-A(b) shows that the RTT increases by less than
10% in 80.0% of cases. Yet, the daily RTT at least doubles
(i.e., a relative increase of 1 or more) for 0.45% of the time,
and we see occasional increases by a factor of ten.

TABLE III
EVENTS WITH A LARGE DAILY RTT INCREASE

Category % Events
Absolute RTT Increase ≥ 100 ms 76.9%

Relative RTT Increase ≥ 1 35.6%
Total large events 100%

TABLE IV
CAUSES OF LARGE LATENCY INCREASES (WHERE LATENCY MORE THAN

DOUBLES, OR INCREASES BY MORE THAN 100 MSEC), RELATIVE TO
PREVIOUS DAY. NOTE THAT NEARLY 9% OF EVENTS INVOLVE BOTH FE

LATENCY INCREASES AND FE SERVER CHANGES.

Category % Events
FE latency increase 73.9%

Ingress router 10.3%
(Egress, AS Path) 14.5%
Both 17.4%
Unknown 31.5%

FE server change 34.7%
Latency map 14.2%
Load balancing 2.9%
Both 9.3%
Unknown 8.4%

Total 100.0%

We define an event to be a daily RTT increase over a
threshold for a specific region. Table IV-B summarizes the
events we selected to characterize the latency increase. We
choose the threshold of absolute RTT increase as 100 ms
and the threshold of relative RTT increase as 1, leading to a
combined list of hundreds of events corresponding to the most
significant increases in latency: with 76.9% of the events over
the absolute RTT increase threshold; 35.6% of the events over
the relative RTT increase threshold; and 12.5% of the events
over both thresholds.

V. LATLONG DIAGNOSIS OF LATENCY INCREASES

In this section, we apply our tool to study the events of large
latency increases, which are identified in the previous section.
We first classify them into FE changes and latency increases
at individual FEs. Then, we further classify the events of
FE changes according to the causes of the latency map and
load balancing; classify the events of FE latency increases
according to the causes of inter-domain routing changes.

Our high-level results in this section are summarized in
Table V. Nearly three-quarters of these events were explained
(at least in part) by a large increase in latency to reach
an existing front-end server. These latency increases often
coincided with a change in the ingress router or egress router
(or both!); still, many had no visible interdomain routing
change and were presumably caused by BGP routing changes
on the forward path or by congestion or intradomain routing
changes. Around one-third of the events involved a significant
shift of client traffic to different front-end servers, often due
to load-balancing decisions or changes in CDN’s own view of
the closest server. Nearly 9% of events involved both an “FE
latency increase” and an “FE server change,” which is why
they sum to more than 100%.

A. FE Change vs. Latency Increase

Applying our tool to each event identified in the last section,
we see that large increases in latency to reach existing servers
(i.e., ΔLat) are responsible for more than two-thirds of the
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events with a large increase in round-trip time. To identify the
cause of latency increases, we first show the CDF of ΔFE
(traffic shift) and ΔLat (latency increase) for the events we
study in Figure 4. The distributions are a reflection of each
other (on both the x and y axes), because ΔFE and ΔLat
sum to 1 for each event.

The graph shows that about half of the events have ΔFE
below 0.1, implying that shifts in traffic from one FE to
another are not the major cause of large-latency events.
Still, traffic shifts are responsible for some of the latency
increases—one event has a ΔFE of 5.83! (Note that we do
not show the very few points with extreme ΔFE or ΔLat
values, so we can illustrate the majority of the distribution
more clearly in the graph). In comparison, ΔLat is often fairly
high—in fact, more than 70% of these events have a ΔLat
higher than 0.5.

To classify these events, we apply a threshold to both
distributions and identify whether ΔFE or ΔLat (or both)
exceeds the threshold. Table V-A summarizes the results for
thresholds 0.3, 0.4, and 0.5. These results show that, for
a range of thresholds, around two-thirds of the events are
explained primarily by an increase in latency between the
clients and the FEs. For example, using a threshold of 0.4
for both distributions, 65% of events have a large ΔLat and
another 9% of events have large values for both metrics,
resulting in nearly three-quarters of the events caused (in large
part) by increases in RTTs to select front-end servers. In the

TABLE V
EVENTS CLASSIFIED BY ΔLat AND ΔFE

Threshold
0.3 0.4 0.5

ΔLat 61% 65% 71%
ΔFE 23% 26% 29%
Both 16% 9% 0%

rest of the paper, we apply a threshold of 0.4 to distinguish
events into the three categories in Table V-A. This is because
the threshold of 0.5 separates the two categories apart; the
threshold of 0.3 (where one factor contributes to 30% of the
latency increases) is not as significant as 0.4.

B. Normal Front-End Changes

To understand the normal distribution of latency-map
changes, we calculate ΔLatMap for all of the regions—
whether or not they experience a large increase in latency—
on two consecutive days in June 2010. Figure 5 shows the
results. For 76.9% of the regions, less than 10% of the requests
change FEs because of changes to the latency map. For 85.7%
of regions, less than 30% of traffic shifts to different front-
end servers. Less than 10% of the regions see more than
half of the requests changing front-end servers. Often, these
changes involve shifts to another front-end server in a nearby
geographic region.

However, note that the distribution of ΔLatMap has a long
tail, with some regions having 80% to 90% of the requests
shifting FEs. For these regions, changes in the measured
latency lead to changes in the latency map which, in turn,
lead to shifts in traffic to different front-end servers. These
outliers are not necessarily a problem, though, since the FEs
on the second day may be very close to the FEs on the first
day. To understand the impact of these traffic shifts, we need
to consider the resulting latency experienced by the clients.

Figure 5 also shows the resulting distribution of ΔFEDist
(i.e., the actual FE changes) for all client regions for one
pair of consecutive days in June 2010. As expected, the
distribution matches relatively closely with the distribution
for ΔLatMap, though some significant differences exist.
Sometimes the traffic shifts even though the latency map does
not change. This is evident in the lower left part of the graph,
where 40% of the client regions see little or no change to the
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latency map, but more than half of the regions experience as
much as a 5% shift in traffic.

We expect the load-balancing policy to routinely trigger
some small shifts in traffic. Figure 6 plots the distribution of
ΔLoadBal for all client regions for a single day in June 2010,
as shown in the “Normal Cases” curve. As expected, around
30% of the client regions are directed to the closest front-
end server, as indicated by the clustering of the distribution
around ΔLoadBal = 0. In the next subsection, we show that
the large latency events coincide with larger shifts in traffic,
as illustrated by the “ΔFE Events” curve in Figure 6.

C. Front-End Changes During Events

To understand the influence of traffic shifts during the
events, we analyze the large-latency events where front-end
changes are a significant contributor to the increase in latency
(i.e., ΔFE ≥ 0.4); 35% of the events fall into this category,
as shown earlier in Table V-A. Figure 7 plots the distributions
of ΔLatMap and ΔFEDist for these events. For these
events, the FE distribution still mostly agrees with the latency
map. Compared with the curves in Figure 5, the events which
experienced large latency increases have a stronger correlation
with FE changes. According to the latency map, only 14% of
events have fewer than 10% of requests changing FEs; 46% of
the events have more than half of queries shifting FEs. Note
that FE changes (i.e., in nearby geographical locations) do
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Fig. 7. Distribution of ΔLatencyMap and ΔFEDistribution for events
ΔFE ≥ 0.4.

not necessarily lead to large latency increases, and may even
improve user-perceived throughput by avoiding busy servers.
That said, these FE changes can cause increases in round-trip
time, so we need to understand how and why they happen.

We then calculate the ΔLoadBal, the difference of fraction
of traffic directed by the load balancer from one day to the
next. Figure 6 shows the distribution of ΔLoadBal for these
events and for all client regions. As illustrated in the figure,
92.5% of the normal cases have less than 10% of requests
shifted away from the closest front-end server. In contrast,
for the ΔFE events, 27.7% of the events have a ΔLoadBal
value greater than 10%; more than 9% of the events have
a ΔLoadBal in excess of 0.3, suggesting that the load-
balancing policy is responsible for many of the large increases
in latency.

Based on the ΔLatMap and ΔLoadBal metrics, we
classify the events into four categories: (i) correlated only
with latency map changes, (ii) correlated only with load
balancing changes, (iii) correlated with both latency-map
changes and load balancing; and (iv) unknown. We choose the
85th-percentile and 90th-percentile in the distribution for the
normal cases as the thresholds for ΔLatMap and ΔLoadBal.
Table V-C summarizes the results: 26.7% of the events are
correlated with both changes to the latency map and load
balancing; 40.8% of the events only with changes in the
latency map; 8.3% of the events only with load balancing;
and 24.3% of the events fall into the unknown category. The
table also shows results for the 90th-percentile thresholds.

Note that in the “unknown” category, although the fraction
of traffic shifting FEs is low, this does not mean that the FE
change is not responsible for the latency increases. This is
because: what matters is the latency difference between the
FEs, not only the fraction of traffic shifting FEs. For these
events in the unknown category, we still need to analyze
how much the latency differs between the FEs from one
day to the next; we suspect that, while the fraction of traffic
shifting is small, the absolute increase in latency may be high.
Completing this analysis is part of our ongoing work.

D. Inter-domain Routing Changes

In this subsection, we study the events where the round-trip
time increases to existing front-end servers. We characterize
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TABLE VI
CLASSIFICATION OF EVENTS WITH ΔFE ≥ 0.4

Threshold (0.27, 0.06) (0.53, 0.08)
(Percentile) 85th 90th
Latency Map 40.8% 23.8%
Load Balancing 8.3% 12.6%
Both 26.7% 18.4%
Unknown 24.3% 45.1%
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Fig. 8. Ingress router shifts (ΔIngress).

the events based on these metrics, and classify events based on
changes to the ingress router, the egress router and AS path,
or both.

For better insight into whether routing changes are respon-
sible for latency increases, we first consider the prevalence of
routing changes for all client regions—when latency does not
necessarily increase significantly—for a pair of consecutive
days in June 2010. Figure 8 shows the CCDF, with the y-axis
cropped at 0.45, to highlight the tail of the distribution where
clients experience a large shift in ingress routers. Significant
routing changes are relatively rare for the “Normal Cases.” In
fact, 76.6% of the client regions experience no change in the
distribution of traffic across ingress routers. Less than 7% of
the regions experience a shift of more than 10%. As such, we
see that shifts in where traffic enters Google’s CDN network
do not occur often, and usually affect a relatively small fraction
of the traffic.

However, large shifts in ingress routers are more common
for the events where the round-trip time to a front-end server
increases significantly (i.e., ΔLat ≥ 0.4), as shown by the
“ΔLat Events” curve in Figure 8. The events we study have a
much stronger correlation with changes in the ingress routers,
compared with the normal cases. Though 55% of these events
do not experience any change in ingress routers, 22.2% of
events see more than a 10% shift, and 6.7% of the events see
more than half of the traffic shifting ingress routers.

Similarly, we calculate ΔEgressASPath for both the
normal cases and the ΔLat events, as illustrated in Figure 9.
Compared with ingress changes, we see more egress and
AS path changes, in part because we can distinguish routing
changes at a finer level of detail since we see the AS path.
For the normal cases, 63% of the client regions see no change
in the egress router or the AS path; 91% see less than 10% of
the traffic shifting egress router or AS path. In comparison, for
the “ΔLat Events,” only 39% of the events see no changes in
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TABLE VII
CLASSIFICATION OF EVENTS WITH ΔLat ≥ 0.4

Thresholds (0.025, 0.05) (0.06, 0.09)
(Percentile) 85th 90th

Ingress 13.9% 12.6%
Egress/AS-path 19.6% 17.4%
Both 23.7% 17.6%
Unknown 42.7% 52.5%

the egress routers and AS paths; 32% of the events see more
than 10% of the traffic changing egress router or AS path, and
10% of the events see more than half of the traffic shifting
egress routers and/or AS paths.

Based on both of the routing indicators, we classify the
events into four categories: (i) correlated only with ingress
router changes, (ii) correlated only with changes in the egress
router and AS path, (iii) correlated with both ingress changes
and egress/AS-path changes, and (iv) unknown. To identify
significant shifts, we look to the distributions for “Normal
Cases” and consider the 85th and 95th percentiles for shifts
in both ΔIngress and ΔEgressASPath. Table V-D sum-
marizes the results. Based on the 85th-percentile thresholds,
23.7% of the events are associated with large shifts in both the
ingress routers and the egress/AS-path; 13.9% of the events
are associated with ingress-router shifts; 19.6% of the events
are associated with shifts in the egress router and AS path;
and 42.7% of the events fall into the unknown category. We
also show results using the 90th-percentile thresholds.

Note that around half of the events fall into the unknown
category, where we could not correlate latency increases
with large, visible changes to interdomain routing. Potential
explanations include AS-level routing changes on the forward
path (from the client to the front-end server) that do not affect
where traffic enters Google’s CDN network. Intradomain
routing changes in individual ASes could also cause increases
in round-trip time without changing the ingress router, egress
router, or AS path seen by the CDN. Finally, congestion along
either the forward or reverse path could be responsible. These
results suggest that CDNs should supplement BGP and traffic
data with finer-grain measurements of the IP-level forwarding
path (e.g., using traceroute and reverse traceroute [5]) both
for better accuracy in diagnosing latency increases and to
drive new BGP path-selection techniques that make routing
decisions based on direct observations of performance.
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VI. CASE STUDIES

For a better understanding of large latency increases, we
explore several events in greater detail. These case studies
illustrate the general challenges CDNs face in minimizing
wide-area latency and point to directions for future work.
Although many of these problems are known already, our case
studies highlight that these issues arise in practice and are
responsible for very large increases in latency affecting real
users.

A. Latency-Map Inaccuracies

During one day in June 2010, an ISP in the United States
saw the average round-trip time increase by 111 msec. Our
analysis shows that the RTT increased because of a shift of
traffic to different front-end servers; in particular, ΔFE was
1.01. These shifts were triggered primarily by a change in
the latency map; in particular, ΔLatMap was 0.90. Looking
at the latency map in more detail revealed the reason for
the change. On the first day, 78% of client requests were
directed to front-end servers in the United States, and 22%
were directed to servers in Europe. In contrast, on the second
day, all requests were directed to front-end servers in Europe.
Hence, the average latency increased because the clients were
directed to servers that were further away. The situation was
temporary, and the clients were soon directed to closer front-
end servers.

This case study points to the challenges of identifying the
closest servers and using DNS to direct clients to servers—
topics explored by several other research studies [6], [4], [7],
[8], [9]. Clients do not necessarily reside near their local DNS
servers, especially with the increasing use of services like
GoogleDNS and OpenDNS. Similarly, client IP addresses do
not necessarily fall in the same IP prefix as their local DNS
server. Further, DNS caching causes the local DNS server to
return the same IP address to many clients over a period of
time. All of these limitations of DNS make it difficult for a
CDN to exert fine-grain control over server selection. Recent
work at the IETF proposes extensions to DNS so requests
from local DNS servers include the client’s IP address [10],
which should go a long way toward addressing this problem.
Still, further research on efficient measurement techniques and
efficient, fine-grain control over server selection would be very
useful.

B. Flash Crowd Leads to Load Balancing to Distant Front-
End Servers

As another example, we saw the average round-trip time
double for an ISP in Malaysia. The RTT increase was caused
by a traffic shift to different front-end servers; in particular,
ΔFE was 0.979. To understand why, we looked at the metrics
for front-end server changes. First, we noticed that ΔLatMap
was 0.005, suggesting that changes in the latency map were
not responsible. Second, we observed that ΔFEDist = 0.34
and ΔLoadBal = 0.323, suggesting that load balancing
was responsible for the shift in traffic. Looking at the client
request rate, we noticed that the requests per day jumped
significantly from the first day to the second; in particular,
RPD2/RPD1 = 2.5. On the first day, all requests were

served as front-end servers close to the clients; however, on
the second day, 40% of requests were directed to alternate
front-end servers that were further way. This led to a large
increase in the average round-trip time for the whole region.

This case study points to a general limitation of relying
on round-trip times as a measure of client performance. If,
on the second day, Google’s CDN had directed all client
requests to the closest front-end server, the user-perceived
performance would likely have been worse. Sending more
requests to an already-overloaded server would lead to slow
downloads for a very large number of clients. Directing some
requests to another server—even one that is further away—
can result in higher throughput for the clients, including the
clients using the remote front-end server. Understanding these
effects requires more detailed measurements of download
performance, and accurate ways to predict the impact of
alternate load-balancing strategies of client performance. We
believe these are exciting avenues for future work, to enable
CDNs to handle flash crowds and other shifts in user demand
as effectively as possible.

C. Shift to Ingress Router Further Away from the Front-End
Server

On day in June 2010, an ISP in Iran experienced an increase
of 387 msec in the average RTT. We first determined that the
RTT was mainly caused by a large increase in latency to reach
a particular front-end server in western Europe. This front-end
server handled 65% of the requests on both days. However,
ΔLati for this server was 0.73, meaning 73% of the increase
in RTT was caused by an increase in latency to reach this
front-end server. Looking at the routing changes, we saw a
ΔIngress of 0.38. Analyzing the traffic by ingress router, we
found that, on the first day, all of the traffic to this front-end
server entered the CDN’s network at a nearby ingress router
in western Europe. However, on the second day, nearly 40%
of the traffic entered at different locations that were further
away—21% in eastern Europe and 17% of traffic in the United
States. Thus, the increase in RTT was likely caused by extra
latency between the ingress router and the front-end server,
and perhaps also by changes in latency for the clients to reach
these ingress routers.

This case study points to a larger difficulty in controlling
inbound traffic using BGP. To balance load over the ingress
routers, and generally reduce latency, a large AS typically
announces its prefixes at many locations. This allows other
ASes to select interdomain routes with short AS paths and
nearby peering locations. However, an AS has relatively
little control over whether other ASes can (and do) make
good decisions. In some cases, a CDN may be able to use
the Multiple Exit Discriminator (MED) attribute in BGP to
control how individual neighbor ASes direct traffic, or perform
selective AS prepending or selective prefix announcements to
make some entry points more attractive than others. Still, this
is an area that is ripe for future research, to give CDNs more
control over how clients reach their services.

D. Shorter AS Paths Not Always Better

On another day in June 2010, an ISP in Mauritius experi-
enced a 113 msec increase in the average round-trip time. On
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both days, more than half of the client requests were handled
by a front-end server in Asia—60% on the first day and 74%
on the second day. However, on the second day, the latency
to reach this front-end server increased substantially. Looking
at the routing data, we see that traffic shifted to a different
egress router and AS path. On the first day, 56% of the traffic
left Google’s CDN’s network in Asia. On the second day,
this number dropped to 10%, and nearly two-thirds of the
traffic left the network in Europe over a shorter AS path.
Presumably, upon learning a BGP route with a shorter AS
path, the routers preferred this route over the “longer” path
through Asia. However, AS-path length is (at best) loosely
correlated with round-trip time, and in this case the “shorter”
path had a much higher latency.

This case study points to a larger problem with today’s
interdomain routing system—routing decisions do not con-
sider performance. The BGP decision process uses AS-path
length as a (very) crude measure of performance, rather
than considering measurements of actual performance along
the end-to-end paths. Future work could explore lightweight
techniques for measuring the performance along different
interdomain paths, including the paths not currently selected
for carrying traffic to clients. For example, recent work [11]
introduces a “route injection” mechanism for sampling the
performance on alternative paths. Once path performance is
known, CDNs can optimize interdomain path selection based
on performance, load, and cost. However, large CDNs with
their own backbone network introduce two interesting twists
on the problem of intelligent route control. First, the CDN
selects interdomain routes at multiple egress points, rather than
a single location. Second, the CDN can jointly control server
selection and route selection for much greater flexibility in
directing traffic.

VII. FUTURE RESEARCH DIRECTIONS

In this section, we briefly discuss several natural directions
for future work on diagnosing wide-area latency increases for
CDNs.

Direct extensions of our measurement study: First, we
plan to extend our design in Section III to distinguish between
routing changes that affect the egress router from those that
only change the AS path. Second, as discussed at the end of
Section V-C, we plan to further explore the unexplained shifts
in traffic from one front-end server to another. We suspect
that some of these shifts are caused by a relatively small
fraction of traffic shifting to a much further away front-end
server. To analyze this further, we plan to incorporate the RTT
differences between front-end servers as part of our metrics
for studying FE changes. Third, our case studies in Section VI
required manual exploration, after automatically computing
the various metrics. We plan to conduct more case studies
and automate the analysis to generate reports for the network
operators.

More accurate diagnosis: First, we plan to work with the
groups that collect the measurement data to provide the data on
a smaller timescale (to enable finer-grain analysis) and in real
time (to enable real-time analysis). Second, we plan to explore
better ways to track the performance data (including RTT and

RPD) separately for each ingress router and egress/AS-path.
Currently, the choice of ingress and egress routers are not
visible to the front-end servers, where the performance data
are collected. Third, we will explore techniques for correlating
across latency increases affecting multiple customer regions.
For example, correlating across interdomain routing changes
that affect the AS paths for multiple client prefixes may enable
us to better identify the root cause [12].

Incorporating additional data sets: We plan to investigate
techniques for improving the visibility of the routing and
performance changes from outside the CDN network. For
example, active measurements—such as performance probes
and traceroute (including both forward and reverse tracer-
oute [13])—would help explain the “unknown” category for
the ΔLat events, which we could not correlate with visible
routing changes. In addition, measurements from the front-
end servers could help estimate the performance of alternate
paths, to drive changes to the CDN’s routing decisions to avoid
interdomain paths offering poor performance.

VIII. RELATED WORK

CDNs have been widely deployed to serve Web content. In
these systems, clients are directed to different servers to reduce
latency and balance load. Our classification reveals the main
causes of high latency between the clients and the servers.

An early work in [6] studied the effectiveness of DNS redi-
rection and URL rewriting in improving client performance.
This work characterizes the size and the number of the web
objects CDNs served, the number of distinct IP addresses used
in DNS redirection, and content download time, and compared
the performance for a number of CDN networks. Recent work
in [14] evaluated the performance of two large-scale CDNs—
Akamai and LimeLight. Instead of measuring CDNs from
end hosts, we design and evaluate techniques for a CDN to
diagnose wide-area latency problems, using readily-available
traffic, performance, and routing data.

WhyHigh [3] combines active measurements with routing
and traffic data to identify causes of persistent performance
problems for some CDN clients. For example, WhyHigh
identifies configuration problems and side-effects of traffic
engineering that lead some clients to much higher latency
than others in the same region. In contrast, our work focuses
on detecting and diagnosing large changes in performance
over time, and also considers several causes of traffic shifts
from one front-end server to another. The dynamics of latency
increases caused by the changes in FE server selection, load
balancing, and inter-domain routing changes are not studies
in the work of WhyHigh. WISE [15] predicts the effects
of possible configuration and deployment changes in the
CDN. Our work is complementary in that, instead of studying
planned maintenance and operations, we study how to detect
and diagnose unplanned increases in latency.

PlanetSeer [16] uses passive monitoring to detect network
path anomalies in the wide-area, and correlates active probes
to characterize these anomalies (temporal vs. persistent, loops,
routing changes). The focus of our work is different in that,
instead of characterizing the end-to-end effects of performance
anomalies, we study how to classify them according to the
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causes. Recent work [17] measures wide-area performance
for CoralCDN using kernel-level TCP statistics, and identified
causes of performance problems such as server-limits and the
congestion window. In comparison, we focus on the causes
of performance problems at the IP layer, related to the CDN
network design and Internet routing.

Note that management of wide-area performance of CDN
services is a relatively new topic, and a heavily commercial
topic, so not many published papers are available on how CDN
management is done today.

IX. CONCLUSION

The Internet is increasingly a platform for users to access
online services hosted on servers distributed throughout the
world. Today, ensuring good user-perceived performance is a
challenging task for the operators of large Content Distribution
Networks (CDNs). In this paper, we presented the system
design for automatically classifying large changes in wide-
area latency for CDNs, and the results from applying our
methodology to traffic, routing, and performance data from
Google. Our techniques enable network operators to learn
quickly about significant changes in user-perceived perfor-
mance for accessing their services, and adjust their routing
and server-selection policies to alleviate the problem.

Using only measurement data readily available to the CDN,
we can automatically trace latency changes to shifts in traffic
to different front-end servers (due to load-balancing policies
or changes in the CDN’s own view of the closest server) and
changes in the interdomain paths (to and from the clients). Our
analysis and case studies suggest exciting avenues for future
research to make the Internet a better platform for accessing
and managing online services.
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