
1

Scalable and Accurate Identification of AS-Level
Forwarding Paths

Z. Morley Mao David Johnson Jennifer Rexford Jia Wang Randy Katz
University of Michigan AT&T Labs–Research UC Berkeley
zmao@eecs.umich.edu

�
dsj,jrex,jiawang � @research.att.com randy@cs.berkeley.edu

Abstract— Traceroute is used heavily by network operators and
researchers to identify the IP forwarding path from a source to
a destination. In practice, knowing the Autonomous System (AS)
associated with each hop in the path is also quite valuable. In
previous work we showed that the IP-to-AS mapping extracted
from BGP routing tables is not sufficient for determining the AS-
level forwarding paths [1]. By comparing BGP and traceroute AS
paths from multiple vantage points, [1] proposed heuristics that
identify the root causes of the mismatches and fix the inaccurate
IP-to-AS mappings. These heuristics, though effective, are labor-
intensive and mostly ad hoc. This paper proposes a systematic
way to construct accurate IP-to-AS mappings using dynamic
programming and iterative improvement. Our algorithm reduces
the initial mismatch ratio of 15% between BGP and traceroute
AS paths to 5% while changing only 2.9% of the assignments in
the initial IP-to-AS mappings. This is in contrast to the results
of [1], where 10% of the assignments were modified and the
mismatch ratio was only reduced to 9%. We show that our
algorithm is robust and can yield near-optimal results even when
the initial mapping is corrupted or when the number of probing
sources or destinations is reduced. Our work is a key step towards
building a scalable and accurate AS-level traceroute tool.

I. INTRODUCTION

Traceroute is widely used to detect routing problems, char-
acterize end-to-end paths, and discover the Internet topology.
Traceroute sends a series of TTL-limited probes toward a
target destination, and reports the interfaces on the forwarding
path and the round-trip time for each hop. In Figure 1, the
first column shows the output of the traceroute to CNN’s web
site. This is invaluable to network operators and researchers.
For example, network operators use traceroute to identify
forwarding loops, blackholes, routing changes, unexpected
paths through the Internet, and the end-to-end latency. Upon
detecting a routing or performance anomaly, operators need
to identify the Autonomous System (AS) responsible for the
problem. The second and third columns of the Figure 1 denote
the AS information of the routers along the forwarding path.
Inaccurate information about the ASes along the path leads to
delays in identifying and correcting the problem. In addition,
research studies based on AS paths or graphs derived from
traceroute depend on having an effective way to map the
traceroute data to an AS-level forwarding path.

However, determining the AS-level forwarding path is an
inherently difficult problem, due to the operational reali-
ties of today’s Internet. Conventional approaches have many

This work was conducted while Morley was doing her internship at AT&T
Labs–Research.

1 169.229.62.1
2 169.229.59.225
3 128.32.255.169
4 128.32.0.249
5 128.32.0.66
6 209.247.159.109
7 64.159.2.65
8 64.159.1.46
9 209.247.9.170
10 66.185.138.33

12 66.185.136.17
11 66.185.147.208

13 64.236.16.52

AS25
AS11423
AS3356
AS3356
AS3356
AS3356
AS1668
AS1668
AS1668
AS5662

Level3

GNN

CNN

AS25
AS25
AS25

Calren

Berkeley

Fig. 1. Example traceroute output with AS information to www.cnn.com.

limitations. First, the AS path advertised via BGP (Border
Gateway Protocol) could be used as an estimate of the AS-
level forwarding path. However, the AS path traversed by BGP
update messages may differ from the forwarding path due to
route aggregation and routing anomalies such as deflections.
Network operators want to know when these kinds of dif-
ferences occur in practice. Second, each IP-level hop in the
traceroute path could be mapped to an AS number by using
an Internet routing registry (e.g., “NANOG traceroute” [2] and
prtraceroute [3]). However, the registries are often out-of-date
or incomplete. A third alternative is to use the origin AS—the
AS that initially announced the prefix—extracted from BGP
routing tables. Though this information is more accurate and
complete, the approach also has limitations such as multiple
origin AS’s (MOAS’s [4]), route aggregation, and unannounced
address blocks. For instance, for the fifth hop of the traceroute
example in Figure 1, both the whois address registry and
the BGP table return AS25 as the owner AS. However, we
will show later that this hop is an exchange point actually
belonging to AS11423.

Based on extensive measurements, previous work [1] dis-
covered that a large fraction (around 15%) of the traceroute
paths did not match the corresponding BGP paths. They found
that most discrepancies between the BGP and traceroute AS
paths stemmed from inaccuracies in the IP-to-AS mapping
applied to the traceroute data. They proposed heuristics to
identify the root causes of the mismatches and fix inaccurate
IP-to-AS mappings, based on the comparison of a large collec-
tion of BGP and traceroute paths from multiple vantage points.

2

The earlier work concentrated on a set of “explanations,” each
of which could account for the differences between many pairs
of BGP and traceroute AS paths. These explanations built on
an understanding of common operational practices, such as the
presence of Internet eXchange Points (IXP’s), where multiple
AS’s connect to exchange BGP routes and data traffic. Note,
however, we do not expect the BGP path to always match
the traceroute path, as they may differ due to reasons such as
routing anomalies.

The heuristics proposed in [1] have several limitations. First,
they are labor-intensive. They rely on collecting a large set
of traceroute probes, relevant BGP update messages, BGP
routing tables, and reverse DNS lookups. Because most of
the heuristics were based on the fan-in and fan-out counts
of the mismatched AS’s, the accuracy of the results can be
greatly affected by the number and diversity of data collection
locations, as shown in the comparison between 3 vs. 8 vantage
points.

Second, the heuristics depend on certain operational realities
which arguably could change over time. For instance, incom-
plete paths cannot be resolved using the heuristics proposed in
[1]. However, incomplete traceroute paths are not uncommon,
as some routers do not return ICMP replies. Currently, the
number of such paths is 6-15% of the total, but this could
increase.

Third, the rules in [1] for correcting mismatches are very
liberal. Technically an IP-to-AS mapping assigns a set of AS’s
to a given prefix, although that set is often a singleton. In
the heuristics of [1], no AS is ever deleted from the original
assignment to a prefix. In addition, prefixes identified as IXP’s
are mapped to the set of all AS’s, which means that we allow
the IXP’s to match any AS. Also, if two AS’s are identified
as “siblings”, then if either one is assigned to a given prefix
then both are. These rules thus do not always yield accurate
and realistic mappings, and can gloss over distinctions that
might otherwise be deduced, such as the precise set of AS’s
that connect to an IXP.

In contrast to previous work, we take a more systematic
approach to correcting inaccurate IP-to-AS mappings. We
retain the assumptions of [1] that (i) the AS-level routing
and forwarding paths usually match and (ii) the IP-to-AS
mapping derived from the BGP routing tables is mostly correct.
Our algorithm identifies a small number of modifications to
the initial IP-to-AS mapping that significantly improve the
match rate. Compared to the heuristics in [1], we use a
more powerful notion of “matching” and attempt to derive
information from pairs of traceroute and BGP paths even when
some mismatches are unavoidable under the current mapping.
The unavoidable errors (defined later) are due to inaccuracy
in IP-to-AS mappings or legitimate reasons such as routing
anomalies or aggregation. To determine the unavoidable mis-
matches, we use dynamic programming to compute, for each
pair of a traceroute path and the corresponding BGP path, a
matching between elements of the two paths that minimizes
the number of mismatches for that pair. Based on summary
information from the set of optimal matchings, we then change
the mapping so as to reduce the number of unavoidable errors,
subject to constraints intended to keep the mapping realistic

and force the process to converge when applied iteratively.
When applied to the initial IP-to-AS mapping derived from

BGP tables, our algorithm reduces the fraction of mismatched
paths from 15% to 5%, while only changing 2.9% of the
assignments in the initial IP-to-AS mapping. This is in contrast
to the results of [1], where 10% of the assignments were
modified and the fraction of mismatched paths was only
reduced to 9%. We show that our algorithm is robust and
can yield near-optimal results even when the initial mapping
is corrupted or when one reduces the number of probing
sources or destinations and hence has fewer pairs to work
with. This is due to the fact that we modify the mappings to
correct the errors in the initial mappings by directly modeling
the errors into the problem. For instance, when we reduce
the set of destinations randomly so that ����� fewer probes
are needed, we obtain a mapping that is almost as good
as the one obtained using the full set. This is because our
initial measurements cover a large number of destinations with
similar AS paths. Moreover, our algorithm produces more fine-
grained mappings than the one derived in [1], for instance
retaining more singleton assignments and providing a clearer
picture of the precise set of AS’s connected to a given IXP.

The rest of the paper is organized as follows. Section II
overviews our data collection methodology. In Section III, we
formalize the problem of finding the number of unavoidable
mismatches under a specified IP-to-AS mapping for a given
path pair, and observe that a matching having only this
number of mismatches can be found efficiently using dynamic
programming. (The details of the algorithm are presented in
Appendix A.) Section IV gives our procedure for improving
an IP-to-AS mapping once we have computed the optimal
matchings for all the pairs of traceroute and BGP paths. We
thoroughly evaluate the effectiveness and accuracy of this
approach in Section V, which also examines its robustness
and proposes a technique to reduce the number of trace-
route probings needed to construct IP-to-AS mappings. In
Section VI we discuss how the changes introduced by our
constructed mappings can at least be partially validated using
publicly available information and local configuration data.
Finally, we discuss related work in Section VII and conclude
in Section VIII with a summary of our contributions and a
discussion of ongoing research.

II. DATA COLLECTION

Designing a useful “AS-level traceroute” tool depends on
having an accurate way to map the IP addresses of network
equipment to the administering AS’s. In this work, we focus
on systematically constructing an accurate IP-to-AS mapping
which can be used as input of AS-level traceroute tool.

We reuse the traceroute probes, BGP update messages, BGP
routing tables, and reverse DNS lookups from eight vantage
points (Table I) that were collected in [1]. The sites were
chosen based on their topological diversity and the ability to
collect both traceroute and BGP update data.

The data collection methodology is summarized here, while
the details can be found in [1]. Starting with a list of routing
table entries, we first identify the prefixes that cover the

3

Organization Location Dates in 2003 Upstream Provider Compared
(AS Number) Prefixes

AT&T Research (AS 6431) NJ, USA June 6-9 UUNET (701), AT&T (7018) 118345
UC Berkeley (AS 25) CA, USA June 6-8 Qwest (209), Level 3 (3356) 112120
PSG home network (AS 3130) WA, USA April 30 - May 8 Sprint (1239), Verio (2914) 117195
Univ of Washington (AS 73) WA, USA June 4-8 Verio (2914), Cable & Wireless (3561) 121660
ArosNet (AS 6521) UT, USA May 1-6 UUNET (701) 117323
Nortel (AS 14177) ON, Canada May 1-6 AT&T Canada (15290) 117966
Vineyard.NET (AS 10781) MA, USA June 4-9 UUNET (701), Sprint (1239), Level 3 (3356) 113114
Peak Web Hosting (AS 22208) CA, USA May 1-8 Level 3 (3356), Global Crossing (3549), Teleglobe (6453) 110388

TABLE I
EIGHT VANTAGE POINTS TO COLLECT TRACEROUTE AND BGP PATHS.

Extracted Origin MOAS
Prefixes AS’s Prefixes

AS 6431 120997 15105 0
AS 25 124202 15213 0
AS 3130 121054 15086 0
AS 73 123583 15194 0
AS 6521 121096 15099 0
AS 14177 121135 15104 0
AS 10781 121669 15103 0
AS 22208 125050 15136 0
RouteViews 134095 15294 860
RIPE(00–08) 128960 15328 3400
SingAREN 6744 862 25
Potaroo 142348 16112 211
Verio 105381 13778 116
AT&T 128411 15171 109
Combined 203698 16367 8827

TABLE II
BGP TABLES FOR IP-TO-AS MAPPING AROUND MAY 2003

routable address space and then select two IP addresses within
each prefix for traceroute probing. For each IP address we
measure the forwarding path with traceroute and extract the
BGP AS path from the routing table of the border router.
We also collected BGP updates in MRT format through a
BGP session with the same border router. We preprocessed
the traceroute and BGP paths by discarding paths with BGP
routing changes, private AS numbers, apparent AS loops, and
Null AS paths. These were fewer than 0.6% of the total.

The eight traceroute and BGP data sets were collected
between May and June in 2003. Table I provides details on
these sets. The number of prefixes observed from each vantage
point varies from 110K to 120K.

We construct an original mapping by combining BGP
routing tables from multiple locations (listed in Table II) and
extracting the last hop in the AS path (the “origin AS”) for
each entry. There are over 200K prefixes, along with over 16K
origin AS’s. The mapping assigns to each prefix the origin AS
for it, or the set of origin AS’s, if there is more than one. About
5% of the prefixes mapped to multiple origin AS’s (MOAS’s),
with as many as 5 origin AS’s assigned to some prefixes.

III. EVALUATING IP-TO-AS MAPPINGS

In this section we discuss our approach to evaluating a given
mapping of IP prefixes to AS’s by measuring how consistent
it is with our given set of traceroute-BGP path pairs.

Based on the discussion in the previous section, a mapping�
can be described by a set �
	 of IP prefixes and, for each�� � 	 , a non-empty set

��� ��� of AS’s. Most such sets will be
of size 1, although larger sets are possible if � corresponds to
a MOAS. The set � 	 is assumed to be complete in that every
IP address has at least one prefix in � 	 . For any IP address�

, let � 	 � � � be the longest prefix in � 	 that matches
�
. To

simplify our notation in what follows, we extend the definition
of
�

to IP’s by letting
��� � � stand for

��� � 	 � � ��� .
Consider a traceroute-BGP path pair

������� � , where
������������! "�$#%#$#%�&�(' � is a sequence of IP’s and

���)�*���"���$ "�%#$#%#$���%+ �
is a sequence of AS’s. A function ,.-0/21 �435�$#%#$#6�87:9<;/21 �43=�%#%#$#6�8>?9 is a matching for

�
and

�
if , ��@ �BA , �&@
C 1 � ,1 A @EDF7

. (Implicitly, we also view , as matching
�HG

with�$I�J GLK
.) Given a mapping

�
, the error of a given matching ,

for
�

and
�

isM 	 � , �&����� � � NNNN
O @ A 7 - �$I�J GLKBP� ���L�!G �%Q NNNNC , �&7 �SRUT /�, ��@ � -!1 A @ A 7:9 T

Note that there is a penalty of 1 both for matching an IP
��G

to
an AS not in

����� G � and for failing to match any IP to an AS�WV
that precedes the last matched AS in

�
. We do not impose

a penalty for failing to match AS’s after the last matched AS
since traceroute paths can often be truncated due to timeouts,
etc.

The unavoidable error
M 	 �L�X�4� � for mapping

�
and pair������� � is defined to beY[Z]\ O M 	 � , ���X�4� � -�, is a matching for

���X�4� � Q #
A mapping

�
is said to be consistent with a pair

������� � ifM 	 ������� � � � . This suggests two metrics for evaluating the
quality of a mapping

�
:

1) T / �L�X��� � - M 	 ������� � � � 9 T , the total number of pairs with
which

�
is consistent, and

2) ^ J`_ba c K M 	 �L�X��� � , the total number of unavoidable errors
for

�
.

In this paper we shall consider both metrics. Their evalu-
ation is facilitated by the fact that we can compute

M 	 ������� �
efficiently using dynamic programming. In particular, given�

,
�

, and
�
, we can in d ��7�> � time find a matching , such

that
M 	 � , ���X��� � � M 	 ������� � . The details of the algorithm are

4

provided in Appendix A. When there is more than one optimal
matching , , we break ties in favor of the one that matches IP’s
to the last possible AS in the path. This is motivated by the
observation that mismatches that occur towards the end of the
AS path due to aggregation should be resolved by mapping
the IP address in question to the customer network, i.e., to the
AS later in the path.

The d �&7�> � running time bound is quite small in our
context, given that the average values of

>
and

7
are 3.8

and 7.4 respectively, with the maximum values encountered
being 11 and 25. The algorithm takes only 0.2 milliseconds
to complete for each traceroute-BGP pair on a 900 Mhz
Sparc processor. However, to consider the entire data set –
1,860,448 pairs, it takes more than 6 hours. Running the
algorithms on more vantage points and experimenting with
different threshold values of the rules require even longer
running time. This provides a strong motivation for reducing
the data needed to obtain accurate results, as discussed later
in Section V.

As an illustration of the effectiveness of the dynamic
programming approach, consider what happens when we apply
it to the initial mapping obtained from the BGP tables (in
Table II) with the entire data set of about 1.8 million pairs.
Whereas the heuristics in [1] was only able to identify roughly
79% of these pairs as consistent, we find that 85.3% of them
are. (A major factor in this improvement was our success
in handling pairs with truncated traceroute paths, which the
heuristics of [1] could not deal with at all.) When we apply
our approach using the heuristically optimized mapping based
on the heuristics presented in [1] to the full data set, we find
that 90.7% of the pairs are consistent. This figure is much
closer to the figure reported in [1], roughly 91%, but that
figure ignored the results for several classes of defective pairs
due to problems in traceroute, while we include them because
our dynamic programming algorithm allows us to deal with
the defects, even though most continue to have unavoidable
errors. For the first mapping, the total number of unavoidable
errors was 410,357 while for the second it was 265,459, which
in both cases was roughly 1.5 errors per inconsistent pair.

IV. IMPROVING IP-TO-AS MAPPINGS

Our dynamic programming algorithm, by producing an
optimal matching for each pair, can also be used to improve
the mapping by helping us identify places where the mapping
is accurate. For example, the mapping from the BGP tables
assigns prefix 154.54.10.0/24 to AS2149, but in the 7972 pairs
in which an IP address appears for which this is the longest
prefix in �
	 , our optimal matchings never match it to AS2149,
but match it to AS174 91.8% of the time (even though there
is a penalty involved). This suggests that the actual mapping
should have been to the latter AS. Indeed, if we change the
mapping accordingly, the optimal matchings for the relevant
pairs now match 154.54.10.0/24 with AS174 100% of the
time!

In this paper, we consider a simple scheme for improving
mappings by systematically exploiting the information from
our optimal matchings. Other schemes are possible, but the

current results already show significant improvement over the
previous approach and provide a starting point for other more
sophisticated rules. Suppose we are given a mapping

�
, the

results of computing optimal matchings under
�

for all pairs������� � , and a subset of the prefixes designated as confirmed
MOAS’s (typically confirmed by external data). We “improve”�

as follows.
Say a pair

������� � is good if
M 	 ���X�4� �eA 3

. We restrict
attention to those prefixes � that fail to match with a member
of
��� �X� in at least one good pair. (There is no need to change��� ��� for the other prefixes.) For each prefix �f� �g	 , let h�i

denote the set of all IP addresses whose longest prefix in �j	
is � , and let

7 i denote the number of good pairs involving
members of h�i . For each AS k , let

7 i � k � be the number
of good pairs in which our dynamic programming algorithm
matches a member of h i with k . Let l�m be the AS currently
assigned to � that has the smallest value of

7 i � k � (ties broken
arbitrarily), and let n$m �o7 i � lpm � P 7 i , the fraction of the good
pairs in which � is matched to l�m . Similarly, let l � be the AS
not assigned to � that has the largest value of

7 i � k � , and letn �q�r7 i � l � � P 7 i , the fraction of the good pairs in which � is
matched to l � . Apply the first of the following four rules that
is relevant (and only that rule) to � :s Rule 1: Delete from MOAS-pair

If T ��� �X�WT �o3 , � is not a confirmed MOAS, and n m D � # 1 ,
delete l m from

��� �X� , making it a singleton.s Rule 2: Replace a singleton
If
��� ��� is a singleton and n �Et � #`u�u , set

��� ��� � l � .s Rule 3: Create a MOAS-pair
If
��� ��� is a singleton and � #`3?D n �vD � #`u�u , add l � to

A(x), making it a pair.s Rule 4: Add to MOAS
If T ��� ���WT tw3 and n �yx � # 1 , add l � to

��� ��� .
Note that all the rules that add items to

��� ��� must of
necessity reduce the number of unavoidable errors. The rule
that deletes items can increase the number of errors, but is
included so as to reduce the probability of creating fictitious
MOAS’s. Similarly, the threshold ratios for additions to

��� ���
restrain the creation and expansion of MOAS’s. (If for every� we let

��� ��� be the set of all AS’s, we would get a mapping
with no unavoidable errors, but this would provide no insight
into the true correspondence between prefixes and AS’s.) The
particular thresholds in the rules were chosen with the above
goals in mind and after looking at the results from preliminary
matchings. Although the precise values of the thresholds are
somewhat arbitrary, the results obtained using them indicate
that they are quite effective. An obvious question for future
research is whether fine-tuning these thresholds can lead to
even better matchings.

The above scheme can only increase the size of
��� �X� by

one. This is motivated in part by the conservative arguments
of the previous paragraph, but also by the fact that we envision
applying the scheme iteratively, with corrections made in one
step helping to prevent mistakes in later ones. Here is the
iterative procedure we use:

1) Let
�

be our initial mapping.
2) Repeat until done:

5

a) Compute optimal matchings for the current map-
ping

�
and all traceroute-BGP path pairs.

b) Apply the improvement scheme to
�

.
c) If

�
remains unchanged, we are done.

3) For each prefix � with T ��� ���6T xw3 , add to
��� ��� all those

AS’s that were matched to � more than 2% of the time
and more than 10 times.

Note that, given the rules in the scheme, it is unlikely that
more than 10 iterations of the inner loop will be needed. This
is because the last rule is the one that is most likely invoked
over multiple iterations, and it cannot be invoked more 10
times given the threshold value, unless any deletion occurs.
The final step is designed to expand the identified MOAS’s of
size greater than 2 to include most of the likely candidates for
membership. This is still far more restrictive than the heuristics
used in [1], which assumed that for every prefix � identified
as a MOAS,

��� �X� contained all the AS’s.
In the next section we will discuss how the above procedure

performs given various choices for the starting mapping and
the set of traceroute-BGP path pairs.

V. EXPERIMENTS

A. Experiment selection and design

In this section, we thoroughly evaluate the effectiveness and
accuracy of the dynamic-programming-based approach on the
data set in Table I. The results of several experiments are
discussed to show its robustness against the changes in the
initial mapping as well as the reduction in the number of BGP
and traceroute path pairs. The former analysis is important as
it may be difficult to collect BGP tables from a large number
of vantage points to construct a complete and accurate initial
mapping. The latter evaluation is critical for a practical AS-
level traceroute tool, as one cannot afford to do large amounts
of probing.

Table III illustrates the experimental design space along the
dimensions of (1) initial mapping and (2) set of traceroute-
BGP path pairs. In the base case for the initial mapping, we use
the mapping obtained from the large collection of BGP tables
shown in Table II and described in Section II. The second
option for the initial mapping is the “heuristically optimized”
mapping obtained in [1] using ad-hoc heuristics. The third
option is obtained by randomly deleting the assignments for
10% of the prefixes in the BGP-table-based mapping and
instead initially assigning these to a non-existent AS, thus
simulating the effect of added noise and inaccuracy in the
initial mapping.

The base case for traceroute pairs contains all 1.8 million
pairs from our original set. To study the robustness against
smaller data sets, our second and third cases use smaller sets
obtained by deleting all pairs with certain sources/destinations.
More details on the construction of these subsets will be
presented when we describe the relevant results.

The prefixes in the initial BGP tables have varying lengths.
Among the 200K prefixes, more than z2��� them have length
of 24 or longer. For the purpose of applying our dynamic pro-
gramming algorithm and improvement scheme, we subdivide
all prefixes that are in the initial mapping and encountered

traceroute-BGP pairs
Initial mapping Full Omitting Omitting

BGP Tables – data set Sources Destinations
Unmodified DP-BGP DP-OS DP-OD
Heuristically Optimized DP-HO - -
Omitting Assignments DP-OM - -

TABLE III
EXPERIMENT DESIGN SPACE AND SELECTED EXPERIMENTS

in the traceroute data into /24’s with one exception described
below. The imposed limit at length 24 is motivated by the
fact that most ISP’s filter out prefixes longer than /24. This
finer-grained partition of the IP-address space is motivated by
the hope of allowing the mapping to account for the effects
of address aggregation. A large supernet, for instance the one
corresponding to a /16 prefix, might be assigned to a single
AS by our initial mapping while it matches multiple AS’s
when we correlate traceroute paths with the BGP AS paths. If
we divide the /16 into the corresponding /24’s, the conflicting
assignments may be significantly reduced without having to
create new MOAS’s – each /24 might match to a single AS
in most of the pairs (although different /24’s might match to
different AS’s).

The initial mapping for the newly created /24’s is inherited
from the mapping for the parent supernet. Any MOAS prefix
in the original table is considered to be a “confirmed MOAS”
in the sense of Section IV since the origin AS’s in the BGP
tables are deemed to be reasonably accurate in this regard.
However, a newly created /24 of such a MOAS prefix is
not considered to be a “confirmed MOAS,” thus allowing for
potential deletions from the assigned set when we apply our
improvement rules. For ease of programming, we carry out
the subdivision into /24’s for all encountered prefixes except
those that already contain a subnet with length 24 or longer.
Our results might improve if we carried out the subdivision
for all prefixes, but very few prefixes and pairs are affected by
this exception. The total number of prefixes in our experiment
after subdivision into /24’s is 105,068, more than half of which
are newly created.

Recall that our improvement rules ignore traceroute-BGP
path pairs with more than 2 unavoidable errors. Based on the
initial BGP table mapping, 85.30% of the pairs have no errors,
10.67% have a single error, and 2.28% have 2 errors. The
remaining pairs all have more than 3 unavoidable errors but
make up only 1.75% of the pairs. After going through the
dynamic programming based optimization, only 0.55% of the
pairs have more than 2 errors. Most likely these represent
defective pairs where the two paths fail to correspond due
to forwarding path changes during traceroute probing, BGP
routing changes, or other causes.

B. DP evaluation: DP-BGP and DP-HO

The dynamic programming algorithm performs optimization
on each pair of traceroute and BGP AS path. Subsequently, we
re-optimize the assignment for each IP prefix by tabulating the
results of the derived matchings for the prefix and applying
the four rules of Section IV. We then iterate the procedure.

6

Table IV summarizes the results for all five experiments: DP-
BGP, DP-HO, DP-OM, DP-OD, and DP-OS. It shows the
benefit of iterative optimization. Each row is for one iteration
of the improvement procedure. Iteration 0 evaluates the initial
mapping. In general, Iteration

@
evaluates the mapping created

in Iteration
@ R 1 . Recall that the final iteration simply expands

all MOAS’s with more than 2 elements to contain all AS’s that
match the prefix at least 2% of the time.

We now describe the meaning of each column in the table.
The first column is the iteration number, 0 being the starting
point. The “Mismatch” column indicates the percentage of
traceroute-BGP path pairs with at least one unavoidable error.
“Error count” is the total number of unavoidable errors in all
the pairs. An error is either a mismatch between an AS in
the BGP path and the assigned AS of a traceroute IP address
using the dynamic programming algorithm or a skipped AS in
the middle of a BGP path. Note, we do not penalize for AS’s
skipped toward the end of BGP path as traceroute may not
reach the destination AS. Most pairs with unavoidable errors
have 1 or 2 errors. The column labeled “Matched prefixes”
presents the percentage of prefixes encountered in the data set
that do not have conflicting matchings. The number of changed
assignments in this iteration is shown in “New maps” column.
The “Rule” columns contain the number of errors that are
expected to be corrected by application of the corresponding
rule during the current iteration. The values in parentheses
indicate the number of prefixes to which the rule is applied
during the current iteration. Only the first rule can increase the
number of errors as it deletes an AS from an AS pair in the
mapping. The total number of errors to be corrected is shown
in the “Expected gain” column. The last column, marked by
“Actual gain,” is the actual reduction in the total number of
unavoidable errors compared to the previous iteration. Note,
this number is at least as large as the value in the “Expected
gain” column in the previous row. It is often significantly larger
in the first several iterations, because the dynamic program re-
optimizes the matchings at each iteration and the reassignment
of one IP prefix may help us correct other errors as well.

We now focus on the results of the first experiment: DP-
BGP. All 5 experiments conducted converge within 6 itera-
tions. The last iteration is where the final step (4) of the
iterative procedure adds likely AS’s to some of the MOAS
assignments. DP-BGP uses the initial IP-to-AS mapping based
on 200K prefixes from BGP tables in Table II. Initially,
only 1${ #}| ��� of the pairs have unavoidable errors, indicating
that the BGP tables provide a fairly good starting point.
Most modifications to the mapping are performed in the first
iteration, as is the case in the other four experiments. Typically
the most common change in assignment is replacement (Rule
4). For example, close to

35� ���2� prefixes have their assignments
replaced in DP-BGP during the first iteration. The replacement
rule usually corrects for the effects caused by sharing of
addresses between sibling AS’s, inaccuracy of ICMP source
IP address, and routing anomalies. This provides a good
indication that the dynamic programming algorithm is per-
forming fine-grained correction. The previous study [1] did not
consider replacement as a way to correct IP-to-AS mappings,
as it did not optimize over all the paths systematically. Our

algorithm is a significant improvement in this regard. We
observe that the “Actual gain” is almost always much larger
than the “Expected gain” during the first several iterations. For
instance, the gain obtained in Iteration 1 is 1p� |5� { |2| , which
is 35% more than the expected gain of 1${2z � ��~2z . This shows
that value of reoptimizing and iterating.

Based on the results of DP-BGP, we conclude that the
dynamic programming algorithm is very effective in reduc-
ing the mismatches between traceroute and BGP AS paths,
while making a relatively small number of corrections in
the mapping. As shown, the number of paths with errors is
reduced by more than z2��� from 1%{ #`| � to

u=# 3�� � . Similarly,
the total number of errors is cut by close to z u � . The
number of prefixes with errors is reduced by

��| � . All this
is accomplished by making changes to the assignments for
only about

�=� �2��� prefixes. A close look at the distribution
of the changes made based on each rule indicates that aboutu ��� of the corrections made are replacements,

��� � involve
creating a pair of AS’s, ~�� involve adding an AS to a MOAS,
and a negligible number involve deletion from a pair of AS’s.

To compare our algorithm with the previous study [1], look
first at the final line for DP-BGP and the first line for DP-HO,
which evaluates the heuristically obtained mapping from that
study. There are � # 3�| � mismatched pairs initially as shown
in Iteration 0 for DP-HO, as compared to the 5.23% for
the final DP-BGP mapping. Moreover, our approach, when
applied to the heuristically obtained mapping, reduces the
number of mismatched pairs even further, to 3.08%. This
further improvement can probably be attributed to the fact
that the heuristically obtained mapping is more liberal in its
assignment of MOAS’s than is the BGP-table-based mapping.
It allows identified IXP’s to map to any AS and any prefix
that maps to one of a pair of sibling AS’s is assumed to map
to both. It is noteworthy that during Iteration 0 of DP-HO,
165 prefixes are affected by Rule 1 which deletes an AS from
an AS pair. This is a significantly higher number than that
for DP-BGP and hence an indication that the liberality of the
heuristically obtained mapping is not totally warranted.

Table V compares the distribution of mapping sizes for all
the 105,068 prefixes encountered in the data set for DP-HO
and DP-BGP. The mapping size is the number of AS’s a prefix
maps to. A small number of prefixes in DP-HO map to all AS’s
as they are identified to be IXP’s. We note that significantly
more prefixes map to a single AS in DP-BGP than in DP-HO
– � ��# 3�� � compared to ~"{ # � 1b� , as DP-BGP provides more
fine-grained correction and is less liberal in adding AS’s to
mappings.

C. Robustness in initial IP-to-AS mapping: DP-OM

The third experiment DP-OM in Table IV illustrates the
resilience of our algorithm with respect to errors in the initial
IP-to-AS mapping. The errors are introduced by assigning a
randomly chosen 1$��� of the prefixes to a single non-existent
“dummy” AS. The effect is quite obvious as more than

u ���
of the pairs contain unavoidable errors in Iteration 0, and
the number of errors is more than four times that for the
initial BGP-table-based mapping! Remarkably, the iterative

7

DP-BGP: using initial BGP-table-based mapping, 1,860,448 traceroute measurements
i Mis- Error Matched New Rule 1 Rule 2 Rule 3 Rule 4 Expected Actual

match count prefixes maps gain (map) gain (map) gain (map) gain (map) gain gain
0 14.70% 410357 90.82% 2853 -8 (6) 74071 (1850) 43371 (862) 28652 (135) 146086 0
1 8.17% 212880 93.77% 442 -17 (3) 8908 (120) 3697 (221) 10271 (98) 22859 197477
2 7.42% 187121 94.23% 47 0 (0) 16 (2) 1961 (16) 7010 (29) 8987 25759
3 6.96% 177297 94.26% 10 0 (0) 6 (2) 4 (1) 451 (7) 461 9824
4 6.94% 176833 94.26% 2 0 (0) 0 (0) 4 (1) 2 (1) 6 464
5 6.94% 176827 94.26% 1 0 (0) 0 (0) 0 (0) 2 (1) 2 6
6 6.94% 176825 94.26% 27 0 (0) 0 (0) 0 (0) 32535 (27) 32535 2
7 5.23% 143697 94.27% - - - - - - 33128

DP-HO: using Heuristically Optimized mapping, 1,860,448 traceroute measurements
0 9.27% 265459 91.67% 2539 -122 (165) 27286 (1298) 17347 (592) 46891 (484) 91402 0
1 4.96% 142129 94.19% 323 0 (5) 6691 (68) 1566 (149) 7112 (101) 15369 123330
2 4.54% 125688 94.53% 29 0 (1) 12 (2) 119 (7) 3552 (19) 3683 16441
3 4.36% 121945 94.55% 3 0 (0) 0 (0) 4 (1) 114 (2) 118 3743
4 4.35% 121827 94.55% 1 0 (0) 0 (0) 0 (0) 2 (1) 2 118
5 4.35% 121825 94.55% 1 0 (0) 0 (0) 0 (0) 2 (1) 2 2
6 4.35% 121823 94.55% 64 0 (0) 0 (0) 0 (0) 24428 (64) 24428 2
7 3.08% 96786 94.59% - - - - - - 25037

DP-OM: omitting 10% of randomly selected BGP-table-based mapping, using 1,860,448 traceroute measurements
0 54.11% 1700492 81.70% 9153 -4 (5) 728816 (8025) 83330 (1018) 17197 (105) 829339 0
1 17.98% 476275 91.49% 1866 0 (9) 35649 (995) 45904 (483) 41894 (379) 123447 1224217
2 12.01% 289402 93.30% 509 0 (1) 6582 (226) 4888 (74) 23019 (208) 34489 186873
3 10.15% 247750 93.73% 97 0 (0) 131 (21) 237 (16) 4176 (60) 4544 41652
4 9.88% 242295 93.79% 23 0 (0) 39 (6) 82 (3) 232 (14) 353 5455
5 9.86% 241919 93.81% 1 0 (0) 0 (0) 0 (0) 12 (1) 12 376
6 9.86% 241907 93.81% 159 0 (0) 0 (0) 0 (0) 60911 (159) 60911 12
7 6.57% 175977 93.88% - - - - - - 65930

DP-OD: omitting traceroute probing destinations, using 242,836 traceroute measurements
0 13.10% 46653 91.37% 1169 0 (0) 7448 (775) 4566 (337) 3406 (57) 15420 0
1 7.73% 25728 93.97% 198 0 (2) 895 (49) 492 (83) 1786 (64) 3173 20925
2 6.89% 22265 94.33% 42 0 (0) 1 (1) 102 (8) 1034 (33) 1137 3463
3 6.46% 21081 94.39% 16 0 (0) 1 (1) 11 (3) 146 (12) 158 1184
4 6.41% 20917 94.42% 4 0 (0) 0 (0) 6 (2) 58 (2) 64 164
5 6.38% 20853 94.42% 1 0 (0) 0 (0) 0 (0) 1 (1) 1 64
6 6.38% 20852 94.42% 9 0 (0) 0 (0) 0 (0) 3986 (9) 3986 1
7 4.79% 16749 94.42% - - - - - - 4103
F 7.12% 190511 91.93% - - - - - - -

DP-OS: omitting traceroute probing sources, using 938,377 traceroute measurements
0 18.45% 264925 91.56% 2721 -4 (4) 35063 (1753) 26137 (835) 19322 (129) 80518 0
1 11.61% 149943 94.51% 436 -9 (3) 7683 (135) 8422 (207) 7935 (91) 24031 114982
2 9.88% 124373 94.98% 56 -2 (3) 7 (2) 431 (19) 6340 (32) 6776 25570
3 9.20% 116817 95.02% 13 0 (0) 14 (4) 476 (4) 85 (5) 575 7556
4 9.14% 116217 95.03% 1 0 (0) 4 (1) 0 (0) 0 (0) 4 600
5 9.14% 116213 95.04% 17 0 (0) 0 (0) 0 (0) 31783 (17) 31783 4
6 5.94% 84194 95.04% - - - - - - 32019
F 6.34% 165630 94.09% - - - - - - -

TABLE IV
DP-BGP, DP-HO, DP-OM, DP-OD, DP-OS: ITERATIVE OPTIMIZATION USING DYNAMIC PROGRAMMING.

Mapping size DP-HO DP-BGP
all AS’s 56 (0.05%) 0

1 88583 (84.31%) 97958 (93.23%)
2 16278 (15.49%) 6762 (6.44%)
3 135 (0.13%) 289 (0.28%)
4 13 (0.01%) 42 (0.04%)
5 3 (0.00%) 4 (0.00%)

6-15 0 13 (0.01%)

TABLE V
DISTRIBUTION OF MAPPING SIZE: NUMBER OF AS’S EACH PREFIX MAPS

TO.

algorithm steadily reduces the errors in the mapping and

converges with only z #`u2| � of the pairs having unavoidable
errors, fairly close to the final result in DP-BGP. We observe
that, as with DP-BGP, the replacement rule (Rule 2) is the most
frequently invoked, although here with much higher frequency.
Typically, the rule when invoked replaces the dummy AS with
the correct mapping.

D. Robustness in the set of pairs used: DP-OD, DP-OS

So far all our analysis is based on the entire traceroute
and BGP data set collected in the previous study [1], where
an extensive set of traceroute measurements were performed
as a first attempt to study techniques needed for an accurate
AS-level traceroute tool. In that study, traceroute targets were
selected based on the local BGP table; two IP addresses were

8

probed from each prefix, yielding at least 200,000 IP addresses
from each vantage point chosen. From all eight vantage points,
we have over 1.8 million traceroute results. Clearly, if one can
reduce the number of probes without sacrificing the accuracy
of the resulting mapping, it becomes more practical to perform
the probing regularly, as will be necessary if we want to keep
our mapping up to date. Minimizing the number of probes is
also an important requirement for the scalability and efficiency
of our desired AS-level traceroute tool. Previous work [5]
suggested that increasing probing sources has less benefit
compared to adding probing destinations for the purpose of
discovering network topology. We study the effect of reducing
both probing sources and destinations on our final mapping.

Each traceroute measurement provides the correlation be-
tween a prefix level path and its corresponding BGP path
from the local BGP table. Some quick analysis shows that
there is significant redundancy in our overall set of pairs, and
so smaller sets might suffice. One way to reduce redundancy
is to simply probe one destination IP address for each unique
BGP path at a given source, even if that path corresponds
to multiple prefixes. We simulate this by randomly selecting
just one of our pairs for each BGP path at each source. This
reduces our work: DP-OD uses only 242,836 pairs – 13% of
the measurements in the full data set. However, it sacrifices
coverage of the address space, since many measurements
sharing the same BGP path to different IP addresses differ in
their prefix-level paths. Applying our dynamic-programming-
based approach to this set of pairs and the BGP-table-based
mapping (DP-OD in Table IV) we get surprisingly good
results. The first eight rows indicate iterative improvement
in reducing errors and mismatched paths similar to that for
DP-BGP. However, we should focus our attention on the last
row, marked with “F.” This shows the result of taking the final
mapping obtained from the reduced set of pairs and evaluating
it against the entire data set of all 1.8 million traceroute-BGP
pairs. The result is quite close to the final result in DP-BGP
with only slightly more errors and mismatched pairs.

DP-OD focuses on reducing the probing destinations. It is
equally important to understand the impact of probing sources
on the usefulness of measurement data. To study this impact,
we picked four vantage points (AT&T Research, Univ of
Washington, Nortel, and Peak Web Hosting) out of the eight
locations in Table I, based on their diversity in topology and
network connectivity. This roughly halved the numbers of
measurements and pairs. The results are included under DP-OS
in Table IV. Once again, the final matching, when evaluated
against the full set of pairs, is almost as good as that obtained
using the full set. Indeed, it is slightly better than that obtained
for DP-OD, perhaps reflecting the fact that here we used a
bigger subset of pairs. Both results together, however, help
make the case that our approach is robust with respect to the
set of input pairs we use, although at least a small price must
be paid for using less complete sets. Note also that in both
cases we still get substantially fewer mismatches than did the
heuristically optimized mapping of [1], even though the latter
used the full set of pairs.

Mapping Identical Disjoint Comparison target
DP-BGP 97.10% 1.76% BGP
HO-BGP 90.00% 0.00% BGP
DP-HO 90.28% 0.04% DP-BGP
DP-OM 95.84% 3.40% DP-BGP
DP-OD 97.80% 1.16% DP-BGP
DP-OS 99.56% 0.10% DP-BGP

TABLE VI
COMPARING THE SIMILARITY OF NEWLY CREATED IP-TO-AS MAPPINGS.

Category Existing Created
prefixes /24’s

Rule 1: Delete from MOAS-pair 0.00% 0.23%
Rule 2: Replace a singleton 12.92% 46.00%
Rule 3: Create a MOAS-pair 10.69% 25.34%
Rule 4: Add to MOAS 1.77% 3.05%

TABLE VII
DP-BGP: DISTRIBUTION OF FINAL 3050 MAPPING CHANGES.

E. Comparing all experiments

We now compare the mappings resulting from all five exper-
iments (DP-BGP, DP-HO, DP-OM, DP-OD, and DP-OS), the
initial BGP-table-based mapping (BGP), and the heuristically
optimized mapping of [1] (HO-BGP). Table VI shows for a
given combination of mapping and comparison target, how
many assignments are the same and how many are completely
disjoint. Some of the mappings may overlap and constitute
the third case. Let us first look at how DP-BGP and HO-
BGP compare to BGP, the mapping from which they are both
derived. Surprisingly DP-BGP modifies the BGP assignments
for less than

� � of the prefixes compared to 1$��� for HO-BGP.
This comparison shows that our dynamic programming based
algorithm makes significantly fewer changes to BGP, while
reducing the number mismatched pairs by a significantly larger
amount. (There are no disjoint prefixes between HO-BGP and
BGP, as HO never deletes any AS’s from an assignment.)

The rest of the table shows comparisons with DP-BGP, to
illustrate the effect of perturbing the initial mapping or reduc-
ing the set of pairs. The mappings from all four experiments –
DP-HO, DP-OM, DP-OD, and DP-OS agree with that for DP-
BGP in over ����� of the assignments. DP-HO is the worst, as it
starts from HO-BGP rather than BGP. DP-OS does remarkably
well, as the agreement is close to 100%. This explains why the
mapping works so well over the entire data set. In the future,
we plan to develop a scheme combining DP-OD and DP-OS
to further reduce probing.

VI. VALIDATION

In general, validating an IP-to-AS mapping is hard due to
the lack of access to information in network configurations.
We must rely on information obtained from other sources,
both public and internal, which themselves are incomplete.
Also, since our approach is different in nature from previous
ones, different sorts of validation are needed. An important
distinction between our new algorithm and previous work is
that the changes to the IP-to-AS mappings are all based on

9

prefixes and what our dynamic program matches them to, and
not directly based on inferred relationships between AS’s or on
inferred IXP’s. Therefore, our validation is based on finding
explanations for the changes rather than on confirming the
inferred relationships. Typically, one type of change can have
several explanations.

As in [1], we first use router configuration data from
AT&T’s network, AS 7018, and the �E��� @�� entry for the
corresponding AS’s (using organization names) to validate
changes of IP-to-AS mappings where AS 7018 is involved.
We found a total of 54 such cases. Recall that the IP-
to-AS mappings resulting from the dynamic-programming-
based approach could have two categories of prefixes: prefixes
existing in the original IP-to-AS mapping and newly created
/24 prefixes. Changes can be applied to either an existing prefix
or a new /24 prefix.

As seen in Table VII, replacement is the most common
change applied to an IP-to-AS mapping. Mismatches are fixed
by replacing the AS in the original mapping, commonly by its
sibling or customer AS. Sibling AS’s are owned and managed
by a single organization. They may share address spaces,
with one AS numbering some of its equipment using part of
an address block originated by another. In addition, an AS
does not necessarily announce the addresses assigned to its
equipment via BGP. Sometimes these addresses fall into larger
address blocks originated by its sibling or provider.

In our validation, we consider the replacement 7018 by
another AS � to be valid if AS � is a sibling or a customer of
AS 7018. Using the configuration data, we are able to verify
18 out of 22 such cases; they are all customers of AS 7018.
The replacement of another AS � by AS 7018 is valid if AS� is a sibling or customer of AS 7018. We can verify 7 out of
10 such replacements. The cases we were unable to validate
could be due to errors in the inference, but are most likely due
to incomplete or not up-to-date router configuration data.

Our algorithm could also produce new MOAS prefixes.
These are commonly due to sibling AS’s, customer AS’s, or
IXP’s. In all the cases that correspond to customers of AS
7018, the prefix was specified in a static route associated with
one or more access links to a customer. This means AS 7018
originated the route to this prefix on behalf of a customer; thus
the prefix referred not to the equipment inside the backbone
but rather to addresses in the customer’s network. We found
16 newly identified MOAS prefixes involving AS 7018, 14 of
them correspond to siblings or customers of AS 7018. There
are also 6 modified MOAS prefixes, 2 of them are IXP’s
connected with AS 7018 and the rest are siblings or customers
of AS 7018. Overall, we confirm 45 out of 54 changes (83%)
to the IP-to-AS mappings. Though we are not able to validate
all the cases, we did not find any evidence that contradicts the
changes that the dynamic programming algorithm applied.

For the rest of the inferred MOAS prefixes that are not
verified using local configuration data, we queried �E��� @�� using
the AS number or prefix to see if the description contained the
words “exchange point” or “Internet exchange”. This check
succeeded for 24 of our 1246 MOAS inferences. Then, we
compared our results against a list of known IXP’s that was
derived from [6] and [7]. This confirmed 24 of the inferences,

including well-known IXP’s over the entire world such as
Internet Exchange in Japan, Vienna, Paris, Hong Kong, New
York, and San Jose. For example, the fifth hop in the traceroute
example in Figure 1 is verified to be the Calren exchange point.
Comparing to the results in [1], the new approach identified 11
additional IXP’s among the MOAS prefixes. Most of them are
in Europe or of small size in the U.S., among them are IXP’s in
Vienna, Switzerland, France, London, San Diego, New York,
Chicago, and Miami. In the previous approach, the fan-in and
fan-out AS count for these prefixes is less than 2, causing
them to be missed. Using both methods, we identify 38 of the
inferred MOAS prefixes as IXP’s. We also randomly sampled
10 out of the remaining 1208 MOAS prefixes. We found 4
that appear to have similar names and are likely siblings, 3
that appear to have a customer provider relationship since one
of the AS’s is a tier-1 ISP and the address space has been
divided into smaller blocks, and the last 3 cases are unclear
based on registry name information.

With more complete data sources, a more thorough vali-
dation might be possible, but even the limited amount pre-
sented here, together with our mismatch statistics, supports
the hypothesis that our dynamic-programming-based approach
produces an IP-to-AS mapping of substantially improved
quality and can be quite effective in the context of an AS-
level traceroute tool.

VII. RELATED WORK

Recent measurement studies have quantified the differences
between BGP and traceroute AS paths. The analysis in [8]
showed that these differences have a significant impact on the
characterization of the Internet topology. The work in [9] used
publicly-available data (such as whois, lists of known IXP’s,
and other Web sites) to test the hypothesis that many of the
mismatches stem from IXP’s and siblings. To improve the ac-
curacy of AS graphs derived from traceroute, the work in [10]
proposed techniques that identify border routers between AS’s
to correct mistaken AS mappings; this is an alternate approach
that handles some of the inaccuracy introduced by IP-to-AS
mappings derived from BGP tables. Traceroute data have been
used in other studies that measure router-level topologies and
map routers to AS’s [11], [12]. Except for handling certain
traceroute anomalies such as unmapped IP addresses, these
studies did not focus on improving the accuracy of the IP-to-
AS mapping derived from the BGP routing tables.

Focusing solely on BGP AS paths, the work in [13],
[14] presented algorithms for inferring AS-level commercial
relationships, including siblings; however, these studies did
not consider the influence of sibling AS’s on the accuracy
of traceroute AS paths. Previous work [1] relied on traceroute
paths and BGP updates collected from multiple vantage points
to a large number of destinations throughout the Internet
and proposed heuristics for identifying IXP’s, siblings, and
other causes of mismatches to improve the IP-to-AS mapping
applied to the traceroute paths.

VIII. CONCLUSIONS

This work attempts to provide a systematic solution to the
problem in [1]. In contrast to previous work, we formulate

10

the problem of evaluating an IP-to-AS mapping in terms of a
collection of optimization problems over the set of path-pairs,
problems that can be solved efficiently by dynamic program-
ming. We also provide an iterative scheme for improving a
mapping, based on the solutions to all the path-pair match-
ing problems. Together, these yield a robust algorithm for
constructing near-optimal IP-to-AS mappings and identifying
accurate AS-level traceroute paths. The techniques presented
in this work can exploit all the path-pairs including those with
incomplete paths. They do not rely on the understanding of
common operational practices or depend on additional data
sources, although based on our limited validation studies, the
mappings they automatically produce seem to be effective at
revealing relationships that previously could only be inferred
by detailed study of network data.

Our ultimate goal is to build a scalable and accurate
AS-level traceroute tool. This would help network operators
to diagnose routing and performance problems. Researchers
could also use it to build a more accurate Internet topology
map and to help deduce Internet path properties in network
tomography, for example.

In our ongoing research, we are addressing the following
issues. First, our algorithm assumes that the IP-to-AS mapping
is stable. We are investigating how frequently the mapping
changes and how to update the mapping upon discovering such
changes. Second, we are investigating the impact of changing
the set of rules we use to improve IP-to-AS mappings.
Although our experimental results show that the current set of
rules work very well, we are exploring additional or alternative
rules that might further reduce the mismatch ratio of our final
mapping. Third, we are continuing to investigate the trade-
off between the nature and number of probings made and the
quality of the mappings derived from the resulting set of path-
pairs, since the major effort in this whole process remains the
collecting of pairs.

REFERENCES

[1] Z. Morley Mao, Jennifer Rexford, Jia Wang, and Randy Katz, “Towards
an Accurate AS-level Traceroute Tool,” in Proc. ACM SIGCOMM,
September 2003.

[2] “Nanog traceroute,” ftp://ftp.login.com/pub/software/
traceroute/.

[3] “Prtraceroute,” http://www.isi.edu/ra/RAToolSet/
prtraceroute.html.

[4] Xiaoliang Zhao, Dan Pei, Lan Wang, Dan Massey, Allison Mankin,
S. Felix Wu, and Lixia Zhang, “An analysis of BGP multiple origin AS
(MOAS) conflicts,” in Proc. Internet Measurement Workshop, November
2001.

[5] Paul Barford, Azer Bestavros, John Byers, and Mark Crovella, “On the
Marginal Utility of Network Topology Measurements,” in Proc. Internet
Measurement Workshop, November 2001.

[6] “Packet Clearing House,” http://www.pch.net/resources/
data/exchange-points/.

[7] Elena Silenok, “Study of Internet eXchange Points,” .
[8] Lisa Amini, Anees Shaikh, and Henning Schulzrinne, “Issues with

inferring Internet topological attributes,” in Proceedings of SPIE, July
2002, vol. 4865.

[9] Young Hyum, Andre Broido, and k claffy, “Traceroute and BGP AS
Path incongruities,” CAIDA Technical Report, March 2003. http:
//www.caida.org/outreach/papers/2003/ASP/.

[10] Hyunseok Chang, Sugih Jamin, and Walter Willinger, “Inferring AS-
level Internet topology from router-level path traces,” in Proc. Workshop
on Scalability and Traffic Control in IP Networks, SPIE ITCOM Con-
ference, August 2001.

[11] Ramesh Govindan and Hongsuda Tangmunaraunkit, “Heuristics for
Internet map discovery,” in Proc. IEEE INFOCOM, 2000.

[12] Neil Spring, Ratul Mahajan, and David Wetherall, “Measuring ISP
topologies with Rocketfuel,” in Proc. ACM SIGCOMM, August 2002.

[13] L. Gao, “On inferring autonomous system relationships in the Internet,”
IEEE/ACM Trans. Networking, December 2001.

[14] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, and
Randy H. Katz, “Characterizing the Internet hierarchy from multiple
vantage points,” in Proc. IEEE INFOCOM, June 2002.

APPENDIX

A. Dynamic Programming Details

Let
�

be a mapping with associated prefix set �:	 , where�
assigns a set

��� �X� of AS’s to each prefix ��� � 	 . Suppose
we are given a pair

�L�X�4� � , where
���������b���! "�$#%#$#��&�(' � is a

sequence of IP-addresses in � 	 and
����*�p�b���% 2�%#$#%#��4�%+ � is

a sequence of AS’s. Our goal is to find a matching , which
minimizes

M 	 � , ���X��� � , as defined in Section III.
For any IP-address

�(G
and AS

� V
, let � ���(G8�4� V � be the

penalty for matching
�HG

to
� V

. In our case � �L�(G8�4� V � is 0 if� V � ��� � 	 ���(G ��� , where � 	 ���(G � is the longest prefix in � 	
that matches

�(G
, and 1 otherwise. The following algorithm will

however work for arbitrary choices of � . If , is a matching
for

������� � and 1 A � A 7 , define� � , ���X����� � � � �� G���� ��� �!G����pIpJ G�K ���C �=, � � �XR NNNN /�, ��@ � -=1 A @ A � 9 NNNN � #
This is the cost of the matching, restricted to the first � prefixes
in
�

. Then, for 1 A @ A 7 and 1 Af��A > , define � ����������@4� ���
to be the minimum value of

� � , ���X������@ � over all matchings ,
with , �&@ � � � .

Note that Y[Z�\ /�� �L�X������7g� ��� -=1 Af��A >�9 is the optimal
cost of a matching for

�
and

�
, under the assumption that

there is no penalty for failure to match AS’s after , �&7 � . We
can compute this minimum using straightforward dynamic
programming. The initial conditions are� ���X�4��� 1 � ��� � � �L�H�b��� V � C ��R 1 � 1 A���A >�#� ���X�4���8@W� 1 � � G�

� ��� �
��� � �4�p� � � 1 A @ A 7g#

For the recurrence relation, we have that for
3 A0��A > and3 A @ A 7 ,� �L�X�4���8@W� ��� � � ���!G���� V �C Y[Z]\�6� � � V

O � ���X�4���8@ R 1 � � � C Y��b� � � � ��R 1 R � �$Q
These can be computed in order of increasing � , and for each� in order of increasing

@
. In case of ties, we choose the

maximum � .
The actual algorithm for computing the matching will of

course have to keep a record of which option was the minimum
for each

@W� � :
Let �L�X������@W� ��� be the index of the AS assigned to the

�&@ R1 �*¡ � prefix under the assignment determining � ���������8@W� �=� . In
other words, ���������8@W� �=� is that � , 1 A � Af� , that minimizes� �L�X�4���8@ R 1 � � � C Y��b� � � � �BR 1 R � � .

11

The optimal assignment is then computed as follows:

, ��7 � �
argmin

O � ����������7g� ��� -�1 Af��A > Q
, ��@ � � � �X������@HC 1 � , ��@(C 1 � � � 1 A @jDe7

,�np¢ >£@¤7 /�¥ � �=� -=1 Af��A >�9 is the value of � that minimizes¥ � ��� . Note that the running time for this algorithm is d �&7�> � .
A more complicated algorithm can reduce this to d �&7�> � .
Given its higher constant-factor overhead and the fact that>

was so small in our instances, we did not implement this
version, but present its details below as they may be of interest
to future researchers.

We now use two variables in our recurrence. The first is
simply the variable � ���������8@W� �=� from our first algorithm, which
we will now call � �b���������8@W� �=� . The second, � 2����������@4� ��� , is
defined to be the minimum value of

� �L�X�4��� , �8@ � over all
matchings , for which 1 A , ��@ � D � and , �&@�C 1 � t � . The
initial conditions for � � are the same as before, while those
for � are� �L�X����� 1 � �=� � Y¦Z]\m � ��§ V � � ��� � ��� � � C �BR 1 R � �� �L�X������@W� 1 � � @
for 1 A¨��A >

and 1 A @ A 7
. The recurrence relations for� � and � now become� � ����������@4� ��� � � �L� G ���WV �C Y[Z]\ � � � ����������@ R 1 � ��� � � ����������@ R 1 � ��� �

� ����������@4� ��� �Y[Z�\ � � � �L�X�4���8@W� ��R 1 � � � �L�X�4���8@W� ��R 1 � C 1 �
In order to construct the matching we store new variables© �b���X�4���8@W� ��� and

© "�L�X�4���8@W� ��� , where
© � ����������@4� ��� is the

index (1 or 2) of the function that provided the minimum in
computing � � ���X�4���8@W� ��� . We deduce the matching from these
variables as follows:

As before, we let , �&7 � be the � that minimizes� � ���X�4���87g� �=� . Given that , �&@ � � � has been computed and@ªx 1 , we compute , �&@ R 1 � as follows.
1) If

© � ����������@4� ��� � 1 , set , ��@ R 1 � � � .
2) Otherwise,

a) Set � � � .
b) While

© ���X�4���8@W� � � ��3
, set � � � R 1 .

c) Set , �&@ � � � R 1 .

