
Incremental Consistent Updates

Naga Praveen Katta
Princeton University

nkatta@cs.princeton.edu

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

David Walker
Princeton University

dpw@cs.princeton.edu

ABSTRACT
A consistent update installs a new packet-forwarding policy
across the switches of a software-defined network in place of
an old policy. While doing so, such an update guarantees
that every packet entering the network either obeys the old
policy or the new one, but not some combination of the two.
In this paper, we introduce new algorithms that trade the
time required to perform a consistent update against the
rule-space overhead required to implement it. We break an
update in to k rounds that each transfer part of the traf-
fic to the new configuration. The more rounds used, the
slower the update, but the smaller the rule-space overhead.
To ensure consistency, our algorithm analyzes the depen-
dencies between rules in the old and new policies to deter-
mine which rules to add and remove on each round. In
addition, we show how to optimize rule space used by repre-
senting the minimization problem as a mixed integer linear
program. Moreover, to ensure the largest flows are moved
first, while using rule space efficiently, we extend the mixed
integer linear program with additional constraints. Our ini-
tial experiments show that a 6-round, optimized incremental
update decreases rule space overhead from 100% to less than
10%. Moreover, if we cap the maximum rule-space overhead
at 5% and assume the traffic flow volume follows Zipf’s law,
we find that 80% of the traffic may be transferred to the
new policy in the first round and 99% in the first 3 rounds.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management

Keywords
Consistent Network Updates, Software-Defined Networking,
OpenFlow, Network Programming Languages, Frenetic.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

1. INTRODUCTION
Network forwarding policies are volatile: They change

when traffic load shifts, when new security vulnerabilities
are found, and when equipment goes down for maintenance.
Software-Defined Networking (SDN) allows network admin-
istrators to write their own custom algorithms that compute
new network policies quickly and effectively. But during
changes in policies, administrators want the flow of traffic to
continue satisfying key invariants, like avoiding forwarding
loops, blackholes, and violations of access-control policies.

A consistent update [8] is a powerful mechanism for SDN
that helps ensure key invariants hold during the transitions
between policies. More specifically, a consistent update from
policy A to policy B ensures that every packet traversing the
network is forwarded exclusively according to A or exclu-
sively according to B—not by some other policy. Consistent
updates make it easier to reason about network semantics,
because any invariant that holds for both A and B also holds
across the update.

The generic way to implement a consistent update from
a previously-installed policy A to a new policy B uses a
two-phase commit [8]. To prepare for a two-phase commit,
each policy is preprocessed into one that tags all packets
entering the network with a version number (i.e., A and B
tagging packets with version numbers 1 and 2, respectively).
In the core of the network, every rule of the preprocessed
policy tests incoming packets for whether they contain the
correct version number and, if so, the policy acts as the
unpreprocessed policy. As the packets leave the network, the
egress switches strip the version numbers. Now, installation
of B occurs as follows: (i) install B’s rules in the middle of
the network, (ii) wait until step 1 completes on all switches,
(iii) install B’s rules at the network ingress points, (iv) wait
until all packets being processed by policy A drain from the
network, and (v) remove all of A’s rules.

This algorithm is both safe (updates are provably con-
sistent) and general (it can update between any pair of
policies). However, the algorithm has a significant prac-
tical drawback: in the period between steps (iii) and (v),
switches hold the rules from both policies—requiring dou-
ble the rule space. This rule space, especially TCAM, is
expensive and power-hungry, and there is a long literature
of optimization techniques designed to minimize rule space
utilization (See [6] for a recent example). Reitblatt et al.
discuss the possibility of saving space by not updating the
parts of the network where the policy does not change [8];
however, when policies differ, the required rule space still
doubles. Indeed, McGeer [7] observed this problem immedi-

ately. However, McGeer’s solution redirects traffic through
the controller, introducing substantial overhead and limit-
ing packet-processing throughput. Hong et al. [3] focus on a
different approach in which they move the network through
a series of intermediate configurations that preserve both
rule space and bandwidth constraints. As these intermedi-
ate configurations are neither precisely the new or old policy
(i.e., their update satisfies slightly weaker properties than a
consistent update for more general policies), they solve an
important though different problem. In summary, we still
need algorithms for consistent network update that adhere
to switch resource constraints.

Since TCAM space is a major cost, we believe it is im-
portant to ask if one can trade time, or other resources, for
TCAM space. Trading time is especially promising when
updates are planned in advance (e.g., maintenance), pre-
dictable (e.g., known vacillations in load) or delay tolerant
(e.g., new nodes/jobs in a data center). In this paper, we
introduce a generic algorithm for implementing consistent
updates that trades update time for rule-space overhead.
The algorithm reduces the rule-space costs without divert-
ing traffic to the controller so that there is no significant
packet-processing delay. We divide a global policy into a
set of consistent slices and shift to the new policy one slice
at a time. By increasing the number of slices, we substan-
tially reduce the rule-space overhead on the switches. More-
over, we demonstrate how to represent the optimal selection
and ordering of slices as a mixed integer linear program-
ming problem. In addition, we show how to adjust the al-
gorithm to manage hard rule-space caps and, when given
flow volume statistics, to migrate high-volume flows early
while minimizing rule space used. We have implemented our
algorithm on the NOX controller platform [1] and present
preliminary empirical results. These results show, for ex-
ample, that a 6-round incremental update can reduce space
overhead required from 100% to 10%. When flow volume
follows Zipf’s law (an exponentially decaying distribution
observed in many practical scenarios) and rule space over-
head is capped at 5%, we transfer almost 99% of traffic to
the new policy, in just 3 rounds.

2. INCREMENTAL UPDATE ALGORITHM
The key to managing rule space during a consistent up-

date is to split the update into rounds that each move some
fraction of the traffic to the new policy. Once all flows have
moved, the global update is complete. During the transi-
tion, some fraction of the traffic follows the new policy and
some fraction follows the old policy. This is typical of any
consistent update mechanism (or any mechanism at all, as
simultaneous update of switches is impossible) and does not
violate the desired consistency properties. In particular, if
both the old and new policies satisfy some invariant of their
paths (such as loop freedom or connectivity), all packets
traversing the network follow paths with that property.

Intuitively, each round proceeds as follows: (i) choose
some subset of the flows entering the network to move from
old to new policy, (ii) determine the new rules that must
be placed in the network to preserve consistency prior to
moving the flows, (iii) install the new rules required using a
two-phase commit, (iv) determine the old rules that may be
safely removed, while still preserving consistency, (v) wait
until any lingering packets from the old policy have drained
out of the network, and (vi) remove the old rules allowed.

Notice that step (ii) requires an analysis of the new policy,
while step (iv) requires a related analysis of the old policy.
The analysis is necessary because the policy rules affecting a
flow are not simply a collection of rules on each switch that
exactly match that flow. For example, as shown in Figure 1,
the packets in a flow may undergo header modifications and
hence may match various rules at various points in the net-
work. Also, two flows may match the same old rule (with
a compressed ternary match) and hence the rule cannot be
removed until both flows migrate to the new policy.

The following paragraphs describe the structure of poli-
cies, the analyses that must be performed on them, and a
generic incremental update algorithm in more detail.

Policies. A global network policy R is a set of rules r, and
every rule is a triple 〈P, a, z〉 consisting of a predicate P ,
an action a, and a priority z. A predicate defines a set of
packets, based on the packet header fields and the packet lo-
cation (the switch and port at which the packet has arrived).
For example, the predicate (srcIP = 10.0.0.1 ∧ switch = 3

∧inport = 7) defines the set of packets with source IP ad-
dress 10.0.0.1 located at inport 7 on switch 3. We will typ-
ically write p ∈ P to indicate a packet p matches predicate
P or is included in the set defined by P . The predicate for
a particular rule can only match packets incoming to one
switch (i.e., each rule is local to a particular switch). How-
ever, our algorithms process predicates that describe packets
located at many switches in the network.

Actions transform packets and/or their location. We leave
the possible set of actions abstract in this paper, but they
may include any actions supported by OpenFlow, including
forwarding packets out single outports, dropping packets,
flooding or broadcasting packets out multiple outports, or
modifying the fields of packets.

To determine the effect of a policy on a packet, one finds
the highest-priority rule that matches the packet and per-
forms the associated actions. We assume policies are unam-
biguous: For any packet, at any location in the network, at
most one rule with highest priority matches the packet. Am-
biguous policies are easily made unambiguous by elevating
the priority of one or more rules. We also assume policies
are versioned. A k-version policy (1) modifies all packets
entering the network so they are tagged with version num-
ber k,1 (2) only matches on packets tagged k in the middle
of the network, and (3) strips tag k off of packets at the
network egress. Such policies are also assumed to be ingress
total ; that is, there should exist a rule that processes (and
tags with k) every packet entering the network.

Policy Analysis. In each round i of the update, one chooses
a predicate, Pi, that describes a subset of the packets enter-
ing a network. This predicate defines the flows that move
to the new policy on this round. Any such predicate Pi

over ingress packets defines what we call a slice of a policy.
Given an ingress predicate P , a policy R, and a topology
T , the slice defined by P in R is the set of rules reachable
by packets p that originate in the set defined by P and that
flow through the network defined by the policy R and the
topology T .

Now, given the predicate Pi for round i, one must compute
the slice defined by Pi through the new policy. This slice

1VLAN tags or MPLS labels may be used for tagging.

Figure 1: (a) Header modifications at a middlebox,
(b) Multiple predicates reaching the same rule

// packets reachable from P in T through R
procedure reachable_packets(P:Pred, R:Policy, T:Topo){
reaches = P;
while (eval(R,T,reaches) ∪ reaches) != reaches do

reaches = reaches ∪ eval(R,T,reaches));
return reaches;

}

// rules in R reachable from ingress predicate P
procedure reachable_rules(P:Pred, R:Policy, T:Topo) {
packets = reachable_packets (P, R, T);
rules = ∅;

for each r in R in descending rule priority order
if (r.predicate ∩ packets) != ∅ then

rules = rules ∪ {r};
packets = packets - r.predicate;

return rules;
}

Figure 2: The slice generation algorithm.

includes all rules that must be added to support the flow of
the Pi-traffic through the network. If any rule in this set is
omitted, some packet is unable to complete its journey across
the network properly. Omitting such a rule causes this round
of the update to violate the per-packet consistency property.

Next, suppose the slice of the new policy corresponding to
the disjunction of predicates P1∨· · ·∨Pi has been installed.
Now, one needs to know which old rules must remain to
process the traffic deferred to later rounds. To identify these
rules, we compute the slice generated by the complementary
ingress predicate through the old policy, i.e., ¬(P1 ∨ · · · ∨
Pi)∧Ingress, where Ingress defines the complete set of ingress
packets.

Figure 2 presents the slice-generation algorithm, which
may be viewed as a form of header-space (reachability) anal-
ysis [5]. The function eval(R, T, P) returns the new set of
packets obtained by evaluating the policy R over the input
packet set P and then pushing the resultant packets across
the network topology T to their new locations.

Generic Update Algorithm. Figure 3 presents a complete,
generic algorithm for incremental consistent update. The
main algorithm updates the network from the old policy to
the new policy under topology T. The variable old remains

tracks the set of rules from the old policy yet to be evicted
from the network; it is initially equal to old. The variable
new placed tracks the set of rules from the new policy al-
ready installed in the network; it is initially equal to the
empty set, since no new rules have been installed. The vari-
able packets tracks the flows that remain to be migrated
from old to new policies; it is initially ingress—the com-
plete set of packets that may enter the network.

procedure update(old:Policy, new:Policy, T:Topo) {
old_remains = old;
new_placed = ∅;
packets = ingress;

while packets != ∅ do
choose ingress predicate P;

// compute new rules to be added to switches
to_add = reachable_rules(P, new, T)-new_placed;
new_placed = new_placed ∪ to_add;

// compute the old rules to be removed
packets = packets - P;
required = reachable_rules (packets, old, T);
to_remove = old_remains - required;
old_remains = required;

// perform the slice update consistently
two_phase_commit(to_add, to_remove);

return;
}

Figure 3: Incremental consistent update alg.

Figure 4: The effect of predicate choice.

Each iteration of the while loop corresponds to a round
of the update procedure. At the beginning of the round, we
choose P, a predicate defining the new flows to migrate from
old to new policies. For now, we leave the choice abstract—
any series of choices defines a correct update. In the middle
of the loop, we compute the new rules to be added and the
old rules to be removed, using the policy analysis described
earlier. Then, we perform a two-phase update [8], and repeat
until the set of packets left to move becomes empty.

3. RULE SPACE OPTIMIZATION
The algorithm in Figure 3 does not describe how to choose

a series of predicates that minimize the rule-space overhead,
given a fixed number of rounds for an update. To understand
why ingress predicate selection is challenging, consider the
diagrams in Figure 4.

The left side shows a network with switches labeled A, B,
C, and D, and a new policy we want to install. The new
policy dictates that, eventually, each switch will contain two
rules, as shown by the dark (blue) lines. The rules labelled 1,
2, 3, and 4 on switches A and C, respectively handle ingress
packets. Packets flow from one rule to the next as indicated
by the dotted lines.

The central diagram demonstrates what happens if we
choose an ingress predicate that overlaps with rules 1 and
3 for the first round of the update. Since packets flow from
rules 1 and 3 to both rules on B, we are forced to add both
rules of B at once during round 1. If instead, we had chosen
a predicate that overlaps with rules 1 and 4, as in the right-
most diagram, we would avoid overloading switch B on the
first round of the update.

Constants

K number of rounds
S number of switches
Rold old policy
Rnew new policy
Rold

s,m mth rule in the old policy on switch s
Rnew

s,m mth rule in the new policy on switch s
Mold

s number of rules in old policy on switch s
Mnew

s number of rules in new policy on switch s
Mmax

s max(Mnew
s , Mold

s)
Pn an ingress predicate (n ∈ [1..N])
Wnew

n,s,m weight of the rule Rnew
s,m for predicate Pn

W old
n,s,m weight of the rule Rold

s,m for predicate Pn

Ts rule-space overhead threshold/cap on switch s

Variables

O Rule space overhead (to be minimized)
Xn,k 1 if Pn is selected by end of round k
Y new
k,s,m 1 if Rnew

s,m is added to s by end of round k
Y old
k,s,m 1 if Rold

s,m is deleted from s by end of round k
Znew

k,s total new rules added to s by end of round k
Zold

k,s total number old rules removed from s by the
end of round k

Figure 5: Optimization Variables and Constants

MIP Setup. To optimize predicate selection and ordering,
we have represented the problem as a mixed integer linear
program (MIP). Figure 5 defines the set of constants and
variables that appear in the MIP. Of particular interest is
the set of predicates P1, . . . , PN . The goal of the algorithm is
to select some subset of those predicates each round so that
the overhead (O) is minimized. Variable Xn,k is 1 if Pn is
selected by round k and is 0 otherwise. Thus the algorithm
must be seeded with a specific set of predicates P1, . . . , PN ,
which will then be assigned to rounds.

We seed our algorithm with the set formed by the union
of predicates from all rules on all switches in the new pol-
icy. But this set of predicates can be any arbitrary set that
completely defines the flow space of packets entering the
network. For example, the collection of predicates from the
(old/new) rules on just the ingress switches is also a good
choice. The more the predicates added to this set, the bet-
ter the optimal solution, because of a wider choice of slice
selection in each round, at the cost of more computation.

The constant W old
n,s,m gives the weight of the rule Rs,m

for the predicate Pn in the old policy, which is determined
by whether a packet matching Pn can flow to Rs,m. If no
packet can flow from Pn to Rold

s,m, then W old
n,s,m is 0. If, on

the other hand, packets can flow from multiple predicates
P1, . . . , Pj (not necessarily the first j predicates in the order)
to Rold

s,m (and from no other predicate), then the weights

W old
1,s,m, . . . ,W old

j,s,m would each be equal to 1/j; the weights
Wnew

n,s,m for the new policy are calculated analogously. Using
the fraction 1/j ensures that, if new rules corresponding to
predicates P1, . . . , Pj have been installed and the weights
W old

1,s,m, . . . ,W old
j,s,m sum to 1, then the rule Rold

s,m is no longer
needed—no packets following the old policy can flow to that
rule any longer. Instead, all packets that could have flowed
to that rule are now handled by the new policy.

MIP Equations. Figure 6 presents the set of equations that
define the MIP. Equations 2 and 3 give the basic constraints

min O subject to (1)

Xn,k+1 ≥ Xn,k ∀n ∈ [N], k ∈ [K − 1] (2)

Xn,K = 1 ∀n ∈ [N] (3)

Y new
k,s,m ≥

N∑
n=1

Xn,kW
new
n,s,m ∀k ∈ [K], s ∈ [S],m ∈ [Mnew

s]

(4)

Y old
k,s,m ≤

N∑
n=1

Xn,kW
old
n,s,m ∀k ∈ [K], s ∈ [S],m ∈ [Mold

s]

(5)

Znew
k,s =

Mnew
s∑

m=1

Y new
k,s,m ∀k ∈ [K], s ∈ [S] (6)

Zold
k,s =

Mold
s∑

m=1

Y old
k,s,m ∀k ∈ [K], s ∈ [S] (7)

O ≥
(Mold

s + Znew
k+1,s − Zold

k,s)−Mmax
s

Mmax
s

∀k ∈ [K − 1], s ∈ [S]

(8)

Xn,k ∈ {0, 1} ∀k ∈ [K], n ∈ [N]

Y new
k,s,m, Y old

k,s,m ∈ {0, 1} ∀k ∈ [K], s ∈ [S],m ∈ [M(s)]

Znew
k,s , Zold

k,s , O ∈ R+ ∀k ∈ [K], s ∈ [S]

(9)

Figure 6: The rule space optimization problem.

on the variables Xn,k, which determine whether predicate
Pn is selected by the kth round. Equation 3 guarantees that
all predicates are selected within K rounds.

Equation 4 constrains Y new
k,s,m, which defines whether or

not the rule Rnew
s,m must be added to the switch by the end

of this round k. Since Y new
k,s,m is 0 or 1, this equation states

that if there is any non-zero weight on Rnew
s,m , then it must be

added. Dually, equation 5 constrains Y old
k,s,m, which defines

whether or not the rule Rs,m should be deleted on the switch
s by the end of round k. Notice the opposite orientation of
the inequality here. Since Y old

k,s,m is also 0 or 1, this rule

states that Rold
s,m can only be deleted if the summand on

the right of the inequality in equation 5 equals 1—i.e., if no
predicates requiring Rold

s,m are left to move to the new policy.

Equations 6 and 7 define Znew
k,s (Zold

k,s) which gives the
total number of new (old) rules that are added (deleted)
to the switch s by the end of round k. Equation 8 tallies
the rules that remain on each switch after each round and a
lower bound on the overhead O is calculated relative to the
number of rules in Mmax

s (i.e., whichever is larger among
the old and the new policy).

The last group of equations simply define the types of the
variables in the program.

Capping Overhead. The MIP in Figure 6 minimizes the
overhead after fixing the total update time (i.e., the number
of rounds). It is also possible to fix the overhead allowed and
minimize the total time required to perform the complete
update, as in Figure 7. More specifically, given a thresh-
old T (across all switches or a switch specific threshold Ts)
on rule space, we try to complete the update as quickly as
possible. This involves introducing a new binary variable Ik
(one per round) as in equation 11, which represent whether

min

K∑
k=1

Ik subject to (10)

Ik ≥ 1−
∑N

n=1 Xn,k

N
∀k ∈ [K] (11)

Ts ≥ (Mold
s + Znew

k+1,s − Zold
k,s) ∀k ∈ [K − 1], s ∈ [S] (12)

Figure 7: Modified MIP with switch rule caps.

max

N∑
n=1

K∑
k=1

Xn,kVn subject to (13)

Ts ≥ (Mold
s + Znew

k+1,s − Zold
k,s) ∀k ∈ [K − 1], s ∈ [S] (14)

Figure 8: Modified MIP for traffic volume

a round k is an intermediate round where the update is still
in progress (in which case Ik = 1) or if the update is al-
ready complete by round k (i.e, Xn,k = 1, ∀n ∈ [N] in which
case Ik = 0). The objective then is to minimize the num-
ber of such intermediate rounds as described in equation 10
(which replaces 1) subject to the additional constraints on
Ik (equations 11) and rule space (equation 12).

Optimizing Traffic Volume Transfer. If information con-
cerning flow volume is available, we can further adjust the
MIP to update the parts of the policy handling the highest
traffic volume as early as possible. Here, we assume each
ingress predicate Pn is associated with a weight Vn that
represents the estimated incoming traffic volume for that
slice. Figure 8 illustrates the changes. In particular, the
new objective function is represented by equation 13 and
the additional rule space constraint 14 is added.

4. EVALUATION
We implemented the incremental updates algorithm in

Python on the top of the popular NOX platform [1]. In
this section, we present some preliminary results that show
the scalability and flexibility of the update algorithm. All
the experiments were done on three widely-used network
topologies (using Mininet)—Fattree, Smallworld and Wax-
man, each with 24 switches and 576 hosts. Our experiments
show the result of replacing one load-balancer (LB) policy
with another. We chose to focus on this kind of policy as it
is fairly challenging for analysis as it contains both complex
forwarding and packet modification. To define an LB pol-
icy, a set of server replicas are allotted fixed nodes on the
network. For every flow coming through an edge switch into
the network, the policy assigns a random server replica, mod-
ifies the destination IP address of the flow to the assigned
server IP address and then establishes the shortest path hop-
by-hop from the edge switch to the server’s location. The
second LB policy is generated by bringing down a couple
of servers and repeating the above procedure for a different
random assignment of incoming flows to replicas. This re-
sulted in around 100 OpenFlow rules per switch, each rule
having an exact-match predicate on srcIP and dstIP with
the corresponding actions including a forwarding action and
an occasional header modification.

We implemented the reachability analysis in Python to ob-
tain the weights used in the MIP; in all our experiments, it

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

S
w

itc
h

R
ul

e
S

pa
ce

 O
ve

rh
ea

d
(%

)

K - number of rounds

Space overhead at the end of an update round

Smallworld-Random
SmallWorld-Optimal

Fattree-Random
Fattree-Optimal

Waxman-Random
Waxman-Optimal

Figure 9: The rule space/time tradeoff

completed in approximately 2 minutes. Though this was not
a particularly efficient implementation, recent research has
shown that reachability analysis can be done in real time [4].
The MIP consisted of around 90,000 integer variables and
was solved using the Gurobi optimizer [2]. This solver uses
an iterative process to converge on an optimal solution. Con-
sequently, as shown in Figure 10, one can trade computation
time against the accuracy of the result, coming closer to the
optimal solution as more time is spent. In our experiments,
the Gurobi optimizer would return the optimal solution in a
few seconds for most runs, but would occasionally run into
hours in order to find the exact optimal solution. As shown
in the figure, when the number of rounds increase, Gurobi
takes more time preprocessing the MIP to prune the search
space. However, after the preprocessing step, in most cases,
we found the optimality gap drops to below 1% in about 5
seconds and 0.1% in at most 5 minutes, which was accurate
enough for practical scenarios.

Figure 9 shows that incremental updates reduce rule-space
requirements dramatically. The single point at the top left-
hand side of the graph represents the rule-space overhead
required for the consistent update algorithm formulated by
Reitblatt et al. [8]: near 100% (i.e., double the requirements
of an individual policy). The graph shows 6 curves: 3 (up-
per) curves for random incremental updates (one curve for
each of 3 different topologies) and 3 (lower) curves for opti-
mal consistent updates. A random incremental update maps
a random set of N

K
initial predicates to each of the K rounds

and then does the reachability analysis in order to do a
network-wide consistent update in each round. The optimal
algorithm uses the MIP described in Figure 3. The upper 3
curves in Figure 9 demonstrate that even randomly-selected
incremental updates are an excellent implementation strat-
egy when compared with prior consistent update algorithms.
They have the advantage that they are cheap to compute
and yet reduce rule-space overhead considerably: Down to
roughly 60% after just 2 rounds and close to 20% after 8-10
rounds. The overhead shown is the mean over 10 rounds
with the standard deviation at a maximum of 4%. But if
one has the time to solve the MIP, then one can achieve the
best possible gains on the switch space overhead. Figure 9
shows that the space overhead decreases in proportion to the
number of rounds used, touching almost 0% as K becomes
large enough.

Figures 11 and 12 analyze the incremental update algo-
rithm from the perspective of the extensions proposed to
the MIP in Section 3. In these experiments, the switch rule-
space overhead on any switch is capped at a maximum of

 1

 20

 0 20 40 60 80 100 120 140

%
 a

cc
ur

ac
y

(lo
g-

sc
al

e)

Running time of optimizer (sec)

K=4
K=8

K=16

Figure 10: Gurobi accuracy Vs running time

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

T
ra

ffi
c

vo
lu

m
e

%

The kth round of update

Traffic volume updated to the new policy by a round

Smallworld-Optimal-traffic
SmallWorld-Optimal-time

Fattree-Optimal-traffic
Fattree-Optimal-time

Waxman-Optimal-traffic
Waxman-Optimal-time

Figure 11: Optimizing for traffic volume

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

%
 o

f I
ni

tia
l P

re
di

ca
te

s

The kth round of update

% of predicates updated to the new policy by a round

Smallworld-Optimal-time (6 rounds)
SmallWorld-Optimal-traffic (11 rounds)

Fattree-Optimal-time (8 rounds)
Fattree-Optimal-traffic (12 rounds)
Waxman-Optimal-time (9 rounds)

Waxman-Optimal-traffic (13 rounds)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

%
 o

f I
ni

tia
l P

re
di

ca
te

s

The kth round of update

% of predicates updated to the new policy by a round

Figure 12: Optimizing for update time

5%. Given this threshold, Figure 11 asks how can one max-
imize the amount of traffic seeing the new policy as early
as possible. This is done by assigning each initial predicate
a weight which is a measure of the traffic volume handled
by that predicate in an average time bin. The weights are
drawn from a Zipf distribution in line with measurements re-
ported in recent literature [9] on the skewed distribution of
traffic volume over the prefixes/flows seen in ISPs, datacen-
ters, etc. The figure shows the percentage of traffic covered
by the updated policy by the end of each round of the in-
cremental update process. As one can observe, almost 80%
of the traffic volume shifts to the new policy by the end of
the first round and 99% of the traffic shifts in just 3 rounds.
But because of this, there is a tradeoff in terms of ineffi-
cient switch space usage which leads to a slight increase in
the number of rounds needed to complete the update. Fig-
ure 12 shows the number of initial predicates that have been
updated to the new policy by the end of a round. The fig-
ure also shows the number of rounds it takes to complete if
the objective was to finish the update process as quickly as

possible given the space threshold of 5%. One can observe
that the number of rounds taken to complete increases as
one shifts from the objective of minimizing time to maxi-
mizing traffic. Similarly if one aims to minimize the total
update time (a function of K), then one has to tradeoff the
volume of traffic seeing the new policy in the early rounds
as one can see from Figure 11. Also, there is no obvious
random predicate assignment algorithm that achieves these
objectives while adhering to the space cap.

5. CONCLUSION
In this paper, we presented an algorithm for incremen-

tal consistent network update that navigates the trade-off
between update time and rule-space overhead. It divides a
global policy into a set of slices and by combining two impor-
tant techniques—reachability analysis and an encoding as a
mixed integer-linear program, shifts from old to new policy
one slice at a time in an efficient manner. By increasing
the number of slices, we substantially reduce the rule-space
overhead. Moreover, when traffic volume follows Zipf’s law,
we also manage to shift most traffic to the new policy after
just a few rounds of the algorithm.

Acknowledgments. The authors wish to thank the HotSDN
reviewers and members of the Frenetic project for their feed-
back. We would also like to thank Mark Reitblatt and Nate
Foster for sharing parts of their implementation of consistent
updates. This work was supported in part by the NSF under
the grant CNS 1111520; the ONR under award N00014-12-
1-0757; and a Google Research Award.

6. REFERENCES
[1] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: Towards an
operating system for networks. SIGCOMM Comput.
Commun. Rev., 38(3), 2008.

[2] Gurobi Optimization, Inc. Gurobi optimizer reference
manual, 2012. http://www.gurobi.com.

[3] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-driven wan. In ACM
SIGCOMM, Aug. 2013.

[4] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network policy
checking using header space analysis. In USENIX
NSDI, 2013.

[5] P. Kazemian, G. Varghese, and N. McKeown. Header
space analysis: Static checking for networks. In
USENIX NSDI, Apr. 2012.

[6] A. X. Liu, C. R. Meiners, and E. Torng. TCAM Razor:
A systematic approach towards minimizing packet
classifiers in TCAMs. IEEE/ACM Trans. Netw.,
18(2):490–500, Apr. 2010.

[7] R. McGeer. A safe, efficient update protocol for
OpenFlow networks. In HotSDN, Aug. 2012.

[8] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In ACM
SIGCOMM, Aug. 2012.

[9] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and
X. Huang. Leveraging Zipf’s law for traffic offloading.
SIGCOMM Comput. Commun. Rev., Jan. 2012.

http://www.gurobi.com

	Introduction
	Incremental Update Algorithm
	Rule Space Optimization
	Evaluation
	Conclusion
	References

